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Abstract

In this short paper, we give several new formulas for ζ(n) when n is
an odd positive integer. The method is based on a recent proof, due
to H. Tsumura, of Euler’s classical result for even n. Our results
illuminate the similarities between the even and odd cases, and may
give some insight into why the odd case is much more difficult.

AMS Subject Classification: 11M06, 11Y35, 41A30, 65D15.

Key Words and Phrases: Riemann Zeta function, Euler’s for-
mula, Euler polynomial, Bernoulli number.

1 Introduction

Let ζ(s) be the Riemann zeta function. In [1], Tsumura gave an elementary
proof of Euler’s well-known formula

ζ(2k) =
(−1)k−122k−1π2k

(2k)!
B2k (1.1)

where k is a positive integer and {Bn} denotes the sequence of Bernoulli
numbers. In this paper, we use Tsumura’s method to develop an ”Euler-
type” formula for ζ(2k + 1) analogous to (1.1) above.
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2 Preliminaries

For d > 0 and u ∈ [1, 1 + d], we let

2et

et + u
=

∞∑
n=0

φn(u)
tn

n!
, (2.1)

We observe that φn(1) = En(1), where En(x) is the nth Euler polynomial.
If n is a nonegative integer and u > 1, we have

φn(u) = −2
∞∑

j=1

(−u)−jjn. (2.2)

When n is a negative integer, we take (2.2) as our definition of φn(u). It
is easily shown that φ−1(1) = 2 ln 2, and that

φ−m(1) = −2(21−m − 1)ζ(m) (2.3)

whenever m is an integer greater than 1. Finally, we note that for u ≥ 1,

lim
n→∞

(
|φn(u)|

n!

)1/n

≤ 1

π
, (2.4)

and thus the series in Eq. (2.1) converges absolutely for |t| < π.
For any positive integer k, we have

0 =
∞∑

n=1

(−u)−n sin(nπ)

n2k

=
∞∑

n=1

(−u)−n

n2k

∞∑
j=0

(−1)j (nπ)2j+1

(2j + 1)!

=
∞∑

j=0

(−1)j+1uπ2j+1

2(2j + 1)!
φ2j+1−2k(u)

=
k−1∑
j=0

(−1)j+1uπ2j+1

2(2j + 1)!
φ2j+1−2k(u) +

∞∑
j=k

(−1)j+1uπ2j+1

2(2j + 1)!
φ2j+1−2k(u)

=
k−1∑
j=0

(−1)j+1uπ2j+1

2(2j + 1)!
φ2j+1−2k(u) +

∞∑
m=0

(−1)m+k+1uπ2m+2k+1

2(2m + 2k + 1)!
φ2m+1(u).

In light of (2.4), we can now let u → 1+, obtaining
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0 =
k−1∑
j=0

(−1)j+1π2j+1

2(2j + 1)!
φ2j+1−2k(1) +

∞∑
m=0

(−1)k+1π2k+1fm

2(2m + 2k + 1)!
, (2.5)

where fm = (−1)mπ2mE2m+1(1).
Setting k = 1 in (2.5) and recalling that φ−1(1) = 2 ln 2, we have the

curious formula

ln 2 =
π2

2

∞∑
m=0

(−1)mπ2m

(2m + 3)!
E2m+1(1). (2.6)

3 Main Results

We can use (2.3) and (2.5) to deduce the following theorem, which gives
ζ(2k + 1) recursively in terms of ln 2, ζ(3), . . . , ζ(2k − 1):

Theorem 3.1 For any positive integer k,

(1− 2−2k)ζ(2k + 1) =
k−1∑
j=1

(−1)jπ2j

(2j + 1)!

(
22j−2k − 1

)
ζ(2k − 2j + 1)

−(−1)kπ2k ln 2

(2k + 1)!
+

(−1)kπ2k+2

2

∞∑
m=0

(−1)mπ2mE2m+1(1)

(2m + 2k + 3)!
. (3.1)

This result may be regarded as the analogue of equation (5) of [1], in
the sense that the infinite series above reduces to a single term if the E2m+1

is replaced by an E2m. This provides some perspective on the difficulty of
evaluating ζ(2k + 1) as opposed to ζ(2k).

When k = 1, 2, and 3, Theorem 3.1 yields the respective formulas:

ζ(3) =
π2

9
ln 4− 2π4

3

∞∑
m=0

(−1)mπ2mE2m+1(1)

(2m + 5)!
,

ζ(5) =
2π2

15
ζ(3)− π4

225
ln 4 +

8π6

15

∞∑
m=0

(−1)mπ2mE2m+1(1)

(2m + 7)!
,

ζ(7) =
10π2

63
ζ(5)− 2π4

315
ζ(3) +

π6

19845
ln 16− 32π8

63

∞∑
m=0

(−1)mπ2mE2m+1(1)

(2m + 9)!
.
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If desired, we may express the infinite series in these formulas in terms of
the Bernoulli numbers, via the identities

E2m+1(1) = −E2m+1(0) =
2 (22m+2 − 1)

2m + 2
B2m+2.

It is well-known that

|B2m+2| <
2(2m + 2)!

(2π)2m+2 (1− 2−2m−1)
,

and this implies that the mth term of the series in (3.1) is O(m−2k−2).
Hence our result gives slightly faster convergence than the standard series
for ζ(2k + 1).

Building on Theorem 3.1, we now develop the following Euler-type
formula for ζ(2k + 1):

Theorem 3.2 Let fm = π2m(−1)mE2m+1(1). For any positive integer k,

ζ(2k + 1) =
(−1)k+1π2k+2

(1− 2−2k)

∞∑
m=0

Pk(m)fm

(2m + 2k + 3)!
, (3.2)

where Pk(m) is a polynomial in m with rational coefficients, having degree
at most 2k. For k ≥ 0, we have the recurrence:

(−1)k+1Pk(m) =
1

2(m + k + 2)

k−1∑
l=0

(−1)l

(
2m + 2k + 4

2m + 2l + 3

)
Pl(m)− 1

2
. (3.3)

Proof. For ease of notation, we set Z(s) = 1
2
φ−(2s+1)(1), noting that Z(0) =

ln 2 and Z(n) = (1 − 2−2n)ζ(2n + 1) for any positive integer n. We may
rewrite (3.1) as

Z(k) = −
k∑

j=1

(−1)jπ2j

(2j + 1)!
Z(k − j) +

(−1)kπ2k+2

2

∞∑
m=0

fm

(2m + 2k + 3)!
. (3.4)

If Z(k) = π2k+2
∑∞

m=0Pk(m)fm/((2m + 2k + 3)!), we see from (2.6) that
P0(m) = 1/2. For k > 0 we have
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Z(k) = −
k∑

j=1

(−1)jπ2j

(2j + 1)!
π2k−2j+2

∞∑
m=0

Pk−j(m)fm

(2m + 2k − 2j + 3)!

+
(−1)kπ2k+2

2

∞∑
m=0

fm

(2m + 2k + 3)!

= −π2k+2

k∑
j=1

(−1)j

(2j + 1)!

∞∑
m=0

Pk−j(m)fm

(2m + 2k − 2j + 3)!

+
(−1)k

2

∞∑
m=0

fm

(2m + 2k + 3)!

= −π2k+2

k−1∑
l=0

(−1)k−l

(2k − 2l + 1)!

∞∑
m=0

Pl(m)fm

(2m + 2l + 3)!
+

∞∑
m=0

fm

2(2m + 2k + 3)!

= (−1)k+1π2k+2

∞∑
m=0

(k−1∑
l=0

(−1)lPl(m)fm

(2k − 2l + 1)!(2m + 2l + 3)!
− fm

2(2m + 2k + 3)!

)
.

Hence

(−1)kPk(m) =
1

2
−

k−1∑
l=0

(−1)lPl(m)(2m + 2k + 3)!

(2k − 2l + 1)!(2m + 2l + 3)!

=
1

2
− 1

2(m + k + 2)

k−1∑
l=0

(−1)lPl(m)

(
2m + 2k + 4

2m + 2l + 3

)
. (3.5)

Equation (3.3) can be written in the following closed form as a partition
of unity:

1

m + k + 2

k∑
`=0

(−1)`P`(m)

(
2m + 2k + 4

2m + 2` + 3

)
= 1.

The first few Pk(m) are given by

P1(m) =
(m + 1)(2m + 7)

6
,

P2(m) =
(m + 1)(m + 2)(28m2 + 224m + 465)

180
,

P3(m) =
(m + 1)(m + 2)(m + 3)(248m3 + 3348m2 + 15346m + 24003)

3780
,
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and we can use these to obtain formulas for ζ(3), ζ(5) and ζ(7), respectively.
The pattern suggested by the above formulas holds in general, and we have:

Theorem 3.3 Let Pk(m) be defined as in Theorem 3.2. For any integers
k and n with 1 ≤ n ≤ k, Pk(−n) = 0.

Proof. We first establish

Pn−1(−n) =
(−1)n−1

2
(3.6)

for any positive integer n. From (3.3) we have

(−1)n+1Pn(−n− 1) =
1

2

n−1∑
`=0

(−1)`

(
2

2`− 2n + 1

)
P`(−n− 1)− 1

2
= −1

2
,

which implies (3.6).
We now proceed by induction on k. Assuming that P`(−n) = 0 when

1 ≤ n ≤ ` ≤ k, we must show that Pk+1(−n) = 0 when 1 ≤ n ≤ k + 1.
From (3.3) we have

(−1)k+2Pk+1(−n) =
1

2(k − n + 3)

k∑
`=0

(−1)`

(
2k − 2n + 6

2`− 2n + 3

)
P`(−n)− 1

2

=
1

2(k − n + 3)

k∑
`=n−1

(−1)`

(
2k − 2n + 6

2`− 2n + 3

)
P`(−n)− 1

2
.

Since P`(−n) = 0 if n ≤ ` ≤ k, the right-hand side is

1

2(k − n + 3)
(−1)n−1(2k − 2n + 6)Pn−1(−n)− 1

2
= 0. (3.7)

In light of Theorem 3.3 and computational evidence, we propose the
following conjecture.

Conjecture 1 For any positive integer k, the polynomial Pk(m) has sim-
ple roots m = −1,−2, . . . ,−k, and no other rational roots if k ≥ 2.

Although the Euler-type formulas from Theorem 3.2 are more compact,
they converge very slowly as compared to Theorem 3.1. As a compromise,
we give:
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Theorem 3.4 Let fm = (−1)mπ2mE2m+1(1). For any positive integer k,

ζ(2k + 1) =
(−1)kπ2k

1− 2−2k

[
ak ln 2− π2

∞∑
m=0

Qk(m)fm

(2m + 2k + 3)!

]
, (3.8)

where ak is a constant and Qk(m) is a polynomial in m with rational coeffi-
cients, having degree at most 2k−2. Recursive formulas for ak and Qk(m)
are given by

ak = −
k−1∑
`=1

a`

(2k − 2` + 1)!
− 1

(2k + 1)!
(3.9)

and

Qk(m) = − 1

2(m + k + 2)

k−1∑
`=1

(
2m + 2k + 4

2m + 2` + 3

)
Q`(m)− 1

2
. (3.10)

The proof of this result is similar to that of Theorem 3.2, and hence is
omitted.

Eqs. (3.9) and (3.10) can be written in closed form as

−(2k + 1)!
k∑

`=1

a`

(2k − 2` + 1)!
= 1

and

− 1

m + k + 2

k∑
`=1

Q`(m)

(
2m + 2k + 4

2m + 2` + 3

)
= 1,

respectively. For k = 1, 2, and 3, we obtain a1 = −1/6, a2 = 7/360, a3 =
−31/15120, Q1(m) = −1/2, Q2(m) = (m + 2)(2m + 9)/6, and Q3(m) =
−(m + 2)(m + 3)(28m2 + 280m + 717)/180. Hence,

ζ(3) =
π2

9
ln 4− 2π4

3

∞∑
m=0

fm

(2m + 5)!
,

ζ(5) =
7π4

675
ln 4− 8π6

45

∞∑
m=0

(m + 2)(2m + 9)

(2m + 7)!
fm,

ζ(7) =
62π6

59535
ln 4− 16π8

2835

∞∑
m=0

(m + 2)(m + 3)(28m2 + 280m + 717)

(2m + 9)!
fm.

Additionally, we have the following result on the roots of Qk(m):
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Theorem 3.5 Let k and n be integers. Then the polynomials Qk(m) sat-
isfy Qn(−n− 1) = −1

2
for all n ≥ 1 and Qk(−n) = 0 for all k ≥ n ≥ 2.

We may also make the following:

Conjecture 2 For k ≥ 2, the polynomial Qk(m) has simple roots −2,−3, . . . ,
−k, and Qk(m) has no other rational roots if k ≥ 3.
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