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Abstract

In this paper we study a refinement equation of the form ¢(x) =
Y nez hn®(2x —n), where {h,} is a finitely supported sequence.
Let the symbol of the sequnce m(z) := > h,2" take the form

m(z) = (%)Nzk, Z?:o a;jz’ where >.jaj =1and Zj(—l)jaj #

2 2
0. Under the assumption (Zogoddjgk \aj\) +<ZO§evenj§k \aj\)
< 22N=1 we show that the corresponding ¢ is in Ly. Then the
B-spline type wavelet sequences that possess the largest possible
regularities and required vanishing moments are characterized.

AMS Subject Classification: 39A70, 41A80, 65B10.
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1 Introduction

We start by setting some notations. We define a low-pass filter as
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mo(€) =271 Z ce” e, (1.1)

Here, we assume that only finitely many ¢,, are nonzero. However, some
of our results can be extended to infinite sequences that have sufficient
decay for |n| — oco. Next, we define ¢ by

$(€) = I3 mo(277€). (1.2)
This infinite product converges only if my(0) = 1; i.e., if Y ¢, =2.In
this case, the infinite products in (2) converge uniformly and absolutely
on compact sets, so that ¢ is a well-defined ¢ function. Obviously,

~

o(&) = mo(§/2)p(£/2), or, equivalently, ¢(t) = > c,¢(2t —n) at least

in the sense of distributions. From Lemma 3.1 in [2], ¢ has compact
support.

We now consider the simplest possible masks mg(§) with the follow-
ing form.

Definition 1.1 Denote by ® the set of all B-spline type scaling func-

tions ¢(t) that have Fourier transform ¢E(§) = m0(§/2)q3(£/2). Here the
filter

mo(€) =271 Z cpe ™

is in the set M that contains all filters with the form

—i£ N
mi(© = (<) Fe. (1)
where
k
F(§) = e7F¢ Z aze ¢, (1.4)
=0

Here, all coefficients of F(€) are real, F(0) = 1; N and k are positive
integers; and k' € 7. Hence, the corresponding ¢ can be written as

. A A
e - (Fro—) Feite) (15)
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Clearly, ¢ is a B-spline of order N if F(§) = 1. Thus, we call ¢
as defined by Def. 1.1 a B-spline type scaling function. The vanishing
moments of ¢ are completely controlled by the exponents of its “spline

factor,” (%) . In addition, the regularity of ¢ is justified by the

factors F(§), and is independent of its vanishing moment.
Let both ¢ and ¢ be B-spline type scaling functions defined by Def.
1.1. Then

~
~

H(€) = mo(E/2)(6/2),  3(E) = mol€/2)0(€/2),

or, equivalently,

o) =Y cnd(2t =), G(t) =D End(2t —n),

n n

at least in the sense of distributions. Here, both mg(£) € M and mg(§) €
M satisfy Eqgs. (1.3) and (1.4). Thus,

=i\

mi©) = mi© = (F5—) F© (16)
) e\ N

o) = wf© = (F5—) Fo, (1.7

where

k k
F(¢) = e ¢ Z aje_ij5 F(f) = ¢ ¢ Z &je_ijs.
j=0 §=0

From Lemma 3.1 in [2], ¢ and 6 have compact support.
We also define the corresponding ¢ and ) by

D(E) = <o (€2 + MD(E/2),  D(E) = €2 mo(€/2 + m)(E/2),

or, equivalently,
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Since vanishing moment conditions [ z‘¢(z)dz =0,¢=0,1,---,L,
are equivalent to j—égwgzo =0,¢=0,1,---, L, we immediately know
that the maximum number of vanishing moments for 1) and ¢ are N — 1

and N — 1, respectively. Therefore, the vanishing moments of ¢ and
¢ are completely determined by the exponent of their “spline factors”

—3 N —1 N . .
<#> and (#) . In addition, as we pointed out before, the

regularities of ¢ and ¢ will be justified by factors F(£) and F(£) and
are independent of their vanishing moments.

Ingrid Daubechies, in her book “Ten Lectures on Wavelets,” wrote:
“What is more important, vanishing moments or regularity? The an-
swer depends on the application, and is not always clear.” She also
pointed out that achieving higher regularity by increasing vanishing mo-
ments is not efficient, because 80% of the zero moments are wasted. In
[He1998], we gave a method for constructing biorthogonal wavelets with
the largest possible regularities and required vanishing moments based
on the established condition. In the next section, we give a condition for
the coefficients a; (j = 0,1,--- ,k) of F(§) such that the corresponding
¢ is in Lo(R). By using the condition we improve the results in [6]. In
Section 3, we will give a method for constructing a sequence of B-spline
type scaling and wavelets from either an orthogonal sacaling function
or a pair of biorthogonal scalings by using their convolutions with cer-
tain B-splines. In particular, if both the method and the lifting scheme
of Sweldens (see [11]) are applied, then all of the pairs of biorthogo-
nal spline type scaling functions shown in references [2] and [4] can be
constructed from the Haar scaling function.

2 Construction of biorthogonal B-spline type
wavelets

Denote

ijz Z b; ijz Z b;.

k;even j 0<even j<k k,odd j 0<odd j<k

We now establish the following main results of this section.
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Theorem 2.1 Let ¢ € ® be defined as in Definition 1.1; i.e.,
¢ =112 ymy (277€),
where m{Y (£) € M is defined by (1.3) and (1.4):

mie = (M) ree

and F(§) = *’“Z aje 9 N,k € Zy and k' € Z, where F(0) = 1.
If F(m) # —1 and the coeﬁ‘icients of F(§) satisfy

alk] = ( > Iajl> (Z Iag|> <2 (2.1)

k;even j k;odd j

then ¢ is in Ly(R).

Remark 2.1 Consider the example shown in [2] (see PP. 542-544 in
[2]), we find that the function ¢ = 1152, m{’ (277¢) with the mask

e (1+e™ 1 e 1o
mé(f)zeg( 2 )(—§—|—2€ 5—56 25)

is not in Ly(R).
It is easy to check that m} (&) satisfies

2 2
< > |aj|> + ( > |aj|> —5=2N"143
k;even j k;odd j

where N = 1. This example shows that a necessary condition for ¢ € ®
being square integrable is

(z m) (z m) Sy,
k;even j k;odd j

where @ is the set defined in Definition 1.1.
Condition (2.1) can be replaced by stronger conditions,

k

1
> agl <2V,
=0

due to the obvious inequality a® + b? < (a + b)? for all a,b > 0.
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Proof. Tt is sufficient to prove the boundedness of the following integral

/ B©)Pde
€| >
2

NN
o0 1 —i27]§ )
= 2 / me | (——) Feg)
2t-1x<|g|<2tr ! 2

/=1
B i /QHW% 1_2'5615 ZNH?;llF@j&)I?d&
< O5 [ IO
< ciﬁ [ TP [P e
—1 m<[g] <2
< cgw Lo PO 22)

We now prove the boundedness of the last integral in inequality (2.2).

Denote
f(g) +’F (g+w> f(§+7r).

THE) = ]F (g)

Hence, for any 27-periodic continuous function f, we have

/ fEOI, |Fe)[*de
2t-1x<j¢|<2r
- / T f(€)dg < Var||T |2 < V2r| | FlleelI T

Let p(T') be the spectral radius of the opertor T'. Since F'(0) = 1 and
F(m) # —1, it can be shown that p(T) > 0 (see also [1]). For every
e > 0, there is an integer ¢(€) such that

1T < (p(T) +€),  £>Le).
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It follows from (2.2) that

/l£|> b€ |d§<(JZ4 N+ C Z 4=NE(p(T) + €)'

{=L(e)+1

so p(T) must be estimated if we are to choose an € > 0 small enough
for the series to converge. Regardless of how small an € > 0 is chosen,
the contribution

£(€) £L(e)
CY AN < 0> ANt
—1 =1

is finite, although possibly large.
To evaluate p(T"), we consider the conjugate operator, T, of T'. It
is easy to find that

T*f(&) = 2|F()]? £(2€).

In fact, for any 2m-periodic continuous functions f and g,

(Tf,9)

:/_1|F<g)|2f(g)g(§)d§+/_:|F(g )If(% )g(i)di

w/2 37/2
- 2(/ F(€) P F (€)g(2e)de + / W&)Pf(f)g(%)dé)

—7/2 w/2
3m/2

_ / F(€)]2F (€) 5(26)de

—7/2

-2 CIF(©) 1P (6) g(20)de = (£.T7g).

—T

If we consider the Fourier expression

k
FEP =Y b,

l=—k

then the matrix of 7™ restricted to Ej, = {Z];:_k cee™ (c_p, -+ ,cp) €
C?**1Y is given by
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2H - 2 (bj—2i>i7j:—k7m R

It is clear that b; can be written as

k|t
b= @y—jak—j, t=—Fk-- k. (2.3)
§=0
Hence, by = b_y, for all t = —k,--- k. It is also obvious that by is

an eigenvalue of H with multiplicity 2. To estimate bounds of the

eigenvalues of H, we consider the maximum column sum matrix norm
| - |1 of H = Hj, for k = 2m and 2m + 1:

k m m—1
[ Homllr = nax '—kaj%l = maX{ > bl Y \bzt+1|} , (24)

t=—m t=—m

where

Z |bae| = 22‘5%‘4‘50
t=1

t=—m

m |2m—2t
= 25 E A2m—2t—jA2m—j
=1 | j=0

m 2m—2t

< 22 Z | G2m—2t—j@2m—j| + bo. (2.5)

t=1 ;=0

+ by

In (2.5) we substitute ¢ = 2m — j and obtain
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m  2m

QZZW S +Zat

t=1 (=2t

m m—1

2 Z Z |a2u 2ta2u| + 2 Z Z |a2u 2t+1A2u+1

t=1 u=t t=1 u=t
m m—1
2 2
+ E Ay + § Aot 11
m m
E E |a2u—2t@2,| + g g |@2u—2tGou|

t t=1 u=t
m—1 m—1m—1

+ |a2u—2t4102u+1] + Z Z |@2u—2t+1G2u+1

t=0 u=t t=1 wu=t

u=0 t=0 u=1 t=1
m—1 wu m—1 wu

|a@2u—214102041] + Z Z |a2u—2t+102u+1] - (2.6)

u=0 t=0 u=1 t=1

In the rightmost equality of (2.6), substituting u — ¢t = j yields

> 1bal

t=—m

m u—1
Z Z |as;||aza| + Z Z |asj||azu|
u=0 j=0 u=1 j=0
m—1 u m—1u—1
+ > D lagjallaza| + |azj41]lazusal-
u=0 j=0 u=1 j=0

Then, we switch the two sums of the second summation and the fourth
summation on the right-hand side of the above equality and combine
the new second summation with the first summation and the new fourth
summation with the third summation. Thus, we obtain
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m m
> lbul < Z a2u||a29|+z Z |azu|as;|
t=—m u=0 5=0 7=0 u=j+1
m—1 u m—2 m—1
+ |a2u+1’|a2a+1| D > lazusllagl
u=0 j= 7=0 u=j+1
mo o u
= > \azu||a2gl+z Z |azu|az;]
u=0 j=0 u=0 j=u+1
m—1 wu m—2 m—1
+ |a2u+1’|@2g+1| + Z Z |a2us1||azjt]
u=0 j= u=0 j=u+1
m m m—1m—1
- ZZ Jazallaz;| + ) D lavusllagjs]
u=0 j= u=0 5=0
m 2 m—1 2
= <Z!a2j|> +<Z|a2j+1|) : (2.7)
i=0 j=0

Similarly, we have

Z |bar1] < <Z|azyl) (Z |a2j+1|> : (2.8)

t=—m

From (2.4), (2.7) and (2.8) we find the spectral radius of Hs,, as

m 2 m—1 2
p(Hom) < [[Hom|1 < <Z |G2j!> + (Z ’%’H\) :
7=0 J=0

By using the same argument, we find that

m 2 m—1 2
p(Hamy1) < |[Homiallr < <Z ’a2j|> + <Z |a2j+1‘)
7=0 J=0

It follows that

p(T) = p(T") = 2p(H) < 2 (Z \%‘!) +2 (Z |@2j+1|>
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If (2.1) holds, i.e.,

m 2 m—1 2
(Sat) + (Smel] <22
=0 =0
then p(T) < 22N, So we choose

(2*Y = p(T)) .

€ =

N | =

Therefore
p(T) + e < 22V,

and we obtain the estimation

/|§|>7r

The tail of the series is a convergent geometric series, thus completing
the proof of the theorem.

A 9 £(e) 00 T ¢
o(¢)| dg < CHAMITI 3 <%) -

{=L0(e)+1

By using Theorem 2.1 and noting Remark 2.1, we immediately have
the following improvement of Theorem 2 in [6].

Theorem 2.2 Let ¢ = 1132, m{ (277€) and b = szlrhév(Q*j{) be two
B-spline type scaling functions defined by 1.1, and let m}' (£) and m{’ (€)

be in the form of (1.6) and (1.7), respectively. If

alk] = < > |aj|>2+ < > |aj|>2 < 2N-1

k;even j k;odd j
2 2
alkl = > | + [ Y lal| <22V, and
l;;even 7 l};odd j

iy k k V ~ V_
(”) Z;/:“ Ze:o ZZ:O (jffi\iié/) (j+2njiffk’)al7aé = 2N+N 157107
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where = min{k',k'}; v = maz{N + k + k', N + k + k'}; 6,0 is the
Kronecker symbol; and n = 0,£1,4+2,---. Then we have gb,gz; € L*(R)
and (p(t),d(t — i) = 0 for all i € Z. The corresponding v and ¥
define biorthogonal wavelets (biorthogonal Riesz bases) and are in C®
and C%, respectively. Here o and & are more than

1 -1 -
N — 3 log, (2a[k]) and N — 3 log, <2d[k]) )
respectively.

Proof. By using Theorem 2.1 and arguments similar to that in the proofs
of Lemmas 4, 5, and 7 in [6], we can complete the proof of the theorem.

The algorithm shown in [6] for constructing biorthogonal scaling
functions ¢ and qg with the largest possible regularity and the required
vanishing moments can be improved by the following optimization prob-
lem of finding suitable F/(¢) and F(€), or, equivalently, suitable coeffi-
cient sets, a = {ap, - ,ar} and a = {aog,--- ,ax}, of F(£) and F(f),
respectively, such that a[k] and a[k] are the minimum under conditions
(i) and (ii) of Theorem 2.2. For wavelet analysis of spline approximation,
we usually assume F'(§) = 1; i.e., the corresponding ¢ is the B-spline
of order N. Consequently, the optimization problem can be written as
follows.

2 2
min alkl = > al ]+ D lal| (2.9)
k;even 7 l;:;oddj
. 2
i
subject to Z(—l)jdj +1] >0, (2.10)
j=0
alk] < 2281, (2.11)
i max{kaﬂ-k’} ( N ) < N )d
. 7 . 14
— = J—0—=K)\Jj+2n
= QNHN-1g (2.12)

where object (2.9) will give the largest possible regularity, condition
(2.10) is from the definition of F'; and conditions (2.11) and (2.12) come
from conditions (i) and (ii) of Theorem 2.2.
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As examples, we consider my(§) = (%» i.e., ¢ is the B-spline of

order 1. If we choose N = 1 and k = &' = 0, then the solution of problem
(2.9)-(2.12) is @p = 1 and we arrive at the Haar function. If we choose
N =2,k =1, and k¥ = 0, then the solutions are ay = 3/2 and a; =
—1/2. Hence, the corresponding ¢ is defined by ¢(&) = 1mO(Q Ig),

) 2 .
~2 _ [ 14e— 3—e~ o
where mg(§) = S 5— ). The regularities of ¢ and ¢ are more

than 0.5 and 2 — log,(5) /2 = 0.839036, respectively.
If we choose N = 2, N = 2, k= 2, and K = —1, then the solutions of
the optimization problem are ag = —1/2, as = 2, and as = —1/2. Hence,

the corresponding ¢ is the B-spline of order 2, and ¢ is defined by &(5 ) =
) ) e\ 2
1% 12 (279¢), where m3(€) = € <1+@ ﬁ) (=1 +2¢7% — Le=%€) The

regularities of ¢ and ¢ are more than 1.5 and 2 — log,(5 )/2 = 0.339036,
respectively.

3 Construction of sequences of biorthogo-
nal B-spline type scaling functions

In this section, we will give a a method for constructing a sequence of
B-spline type scaling functions and wavelets from either an orthogonal
sacaling function or a pair of biorthogonal scaling functions by using
their convolutions with certain B-splines.

Denote B, (t) the B-spline of degree n—1 having nodes at 0,1, -+, n;
i.e., By(t) = Qn(t) = M(t;0,1,--- ,n), which is defined by (1.1) on page
11 of Schoenberg [12]. The Fourier transform of B,,(t) is

Another type of B-spline functions we need are denoted by C,,(t) (n =
1,2,--) that are defined as

Co(t) = M(t;—n, -+, —1,0), (3.2)

where function M is given in (1.1) of [12]. Therefore, the Fourier trans-
form of C),(t) is
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Cr(6) = e/ (%2/2)) (3.3)

Comparing the above expression with Eq. (3.1) yields

Cn(§) = Ba(8). (3.4)
Eq. (3.4) can also be derived from the symmetry of B-splines. The
symmetry C,(t) = B,(—t) leads to the Fourier transform of C,,(¢)(§) =

B (=t)(§) = Ba(t)(£)
In this section, we denote by ¢(t) an orthogonal scaling function that
satisfies the dilation equation (or refinement equation)

= > (2t — k), (3.5)
k
where the constant coefficients ¢, satisfy the following four properties.
(i) ¢ =0 for k ¢ {0,1,--- ,2p —1};
(i) D opee =25
(iif) Y p(—=1)*kmer =0for 0 <m < p—1;
(iv) >k ckCr2m = 200m for 1 —p <m <p—1.

If ¢ and ¢ are biorthogonal scaling functions with refinement expres-
sions

o)=Y b2t —n), o)=Y &bt —n),  (36)

n n

then the coefficients ¢, and ¢, satisfy
(i) cr=2¢ =0for k¢ {0,1,---,2p—1} and k ¢ {0,1,--- ,2p — 1};

(i) Dop e = 2o G = 25
(i) > (=D)*kmep = S (—=1)Fk™e, = 0 for 0 < m < p — 1 and

)’ CrClh_am = 200m for 1 —p<m <p-—1.
(iv)” 2%
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Let ¢(t) = 3370 cxp(2t — k) and ¢(t) € L*(R). We define ¢,, :=
¢ * B,,. Clearly ¢, is in L*(R). We also have the following results on ¢,.

Theorem 3.1 Let ¢(t) = Y77 cvd(2t — k), and let ¢(t) € L*(R)
satisfy (i)-(iv). Then ¢, := ¢ x B,, satisfies the dilation equation
2p+n—1
Gu=D W6 (2t k), (3.7)
k=0

where

n 1 - n

J=0

In addition, h™ as shown in (3.8) possesses the following properties.
(i)” B =0 for k ¢ {0,1,---,2p+n—1};

(i) by =2

(iii)” 3 (=1 k™R =0 for 0<m < p+n— 1.

Proof. Denote the mask of ¢ by mg(§). Then from (3.1), the mask of

G, s

n

5, © = (K ) mlo)

Consequently,

1 n 1 2p—1
n —ij —i
mg &) = on ( .)e Jg—che k&
n — \ ] 2 —
7=0 k=0

12p+n—1 1 k n
_ - il , —ikg
53 ()]
k=0

Jj=0

Noting ( 7; ) = 0 for j > n, we have Egs. (3.7) and (3.8).

7

From items (i) and (3.8), we immediately obtain (i)”. Item (ii)” also

holds because
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Finally, we prove item (iii)”. For m =0,1,--- ,p+n — 1,

2p+n—1

> DR

k=0

1 2p+n—1 n n
= % Z Z(—l)kk‘m ( ] )Ck_j

B GG Er)

Hence, for 0 < ¢ < p — 1, the sum in the second parenthesis in the last
line of the above equation is equal to zero (see item (iii)). Forp <i <m,
we have 0 <m—-i<m—-—p<p+n—1—p=n—1. Therefore, from
the identity

> o(-1y ( j ) = (—1)"nldy,

— J

7=0

(¢ =0,1,---,n), the sum in the first parenthesis in the last line of the
above equation becomes zero. It follows that the right-hand side of the
last equation is equal to zero. This completes the proof of theorem.

From Theorem 3.1, we know that ¢, is a scaling function with the
approximation degree p+n — 1. However, it does not satisfy orthogonal
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condition (iv). Thus, we need to define a biorthogonal scaling function,
¢n, With respect to ¢,, by

(cn R ;s'n) (t) = 6(t). (3.9)

Taking Fourier transforms on both sides of Eq. (3.9) while noting Eq.
(3.3) leads to

o = & — p—ing/2 5/—2 LN
$n(E) (©) (Sm@m) $(8). (3.10)

Theorem 3.2 The function ggn is well defined by Eq. (3.9), and it
satisfies the following dilation equation.

ou©) =iz, (§) o0 (5). .11

where

g, (€)= (ﬁ)nm(ﬁ)

and mg 1s the mask of .

In addition, let ¢, be defined as in Theorem 3.1. Then~{$n(t —
k)}rez and {¢n(t — k)}rez are biorthogonal sets; i.e., @, and ¢,, satisfy

<¢n(t)a ¢n<t - k)> = ok

Proof. To derive dilation equation (3.11), we start from Eq. (3.10) and
apply Egs. (3.4) and (3.9) to give

n

6.0 _ Gule/d) o©) _ B/, (5)
2

——

on(£/2) Ca(§) #(€/2)  Bu(¢)

B (15@5)”% (g)

Hence, BEq. (3.11) is established and ¢, is well defined by (3.9).

To prove the biorthogonality of {6, (t — k)}rez and {Gn(t — k) }rez,
we use the General Parseval’s Relation, substituting expressions shown
as in (3.1) and (3.10), and noting relation (3.4), we have
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o~

Bult), Bult — k) = (B0 (). Bm(€)e )

2
1 ke, 5 o C/g(f)_likAA
— e 5<Bn(§)¢(€),%> = 5" (6(€), 6())

= (6(t), ot = k)) = or,
where the last step is due to the orthonormality of {¢(t — k) }rez.

Similar to Theorem 3.1, we derive the following properties of the
dilation coefficients of ¢,,.

Theorem 3.3 Let o(t) = S22 crp(2t — k). Then bn, n < 2p— 1,
defined as in (3.9) satisfies the dilation equation

2p—1
o= h (2t — k), (3.12)
k=n

where dilation coefficients, {E,(Cn)}k, satisfy

Lo n\5m
Ck:Q_nA (j)thrJ

7=0
fork=nn+1---2p—1.

More properties on %,(Cn) (n < k < 2p—1), the dilation coefficients
of ¢, and computation of the coefficients will be discussed in a later
paper. In the following we shall determine the classes the functions ¢,,
(1 <n < 2p—1) may be in which.

Although ¢ € L*(R) leads to ¢,, = B, *¢ € L*(R), it cannot guaran-
tee that ¢, is also in L*(R). However, if ¢, is the distribution solution
to the dilation equation (3.12), then ¢,(0) = 1, and from [14], ¢, € H*
for s > log, >, ‘ﬁ,&n)‘ — 1/2. The proof follows from the fact that

@(g)\ < o0+ eh™,

where M = log, >, ’h,(gn) — 1, and hence ¢, € H™* for s > M + 1/2.

Therefore, scaling function ¢, generates a multiresolution analysis of
H—s.
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Using Theorem 2.1, we now give a condition for the orthogonal scal-
ing function, ¢ € @, defined in Definition 1.1 such that its corresponding
¢n is in L*(R).

Theorem 3.4 Let ¢ be defined as

o0

6= ngy ),

where m) (€) = (#)NF(O with F(§) = ”kfz aje" ¢ is de-
fined by (1.3) and (1.4). If F(mw) # —1 and the coeﬁczents of F(§)
satisfy

( > \%I) (Z |a3|> < 2271 (3.13)

k;even j k;odd j

then ¢ is in Lo(R), while both ¢ and ¢, (n < N) are in L*(R) when

< 2. |%'|> + ( > Iajl> < 22N~ (3.14)

k;even j k;odd j

We now extend the results for the orthogonal scaling functions to
the the biorthogonal scaling functions.

Theorem 3.5 Let f(t) = S22 erf(2t—k) and g(t) = Zi’i_ol drg(2t —
k) be biorthogonal scaling functwns (i.e., {(f(t),g(t — L)) = dor) with

approzimation degrees p and p, respectz"uely. Then functions f, and g,
defined by

Ja(t) = (Bux f)(1), and (Cy % Gn)(t) = g(t), (3.15)

where B, and C,, are B-splines, are also biorthogonal scaling functions
with approximation degrees p+mn — 1 and p —n — 1, respectively.

In addition, if f € L*(R), then f, is also in L*(R). If the Fourier
transform of g can be written as

Hmo ~¢),
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where m (£) = <#>NF(§) with F(§) = e_’kgz aje” is de-
fined by (1.3) and (1.4), with F(w) # —1 and the coeﬁ‘iczents of F(§)

satisfy
(5 ot) (5 ol) <2
k;even j ksodd j

then both g and g, are also in L*(R).

Example 3.1. Considering the examples given in [2] and [4] (or see
the examples shown at the end of Section 2), let y¢ and , 5¢ be a pair
of biorthogonal scaling functions with masks ymg and ,, 5mo, respec-

—_—~—

tively. It is easy to check that n¢,(t) =nin ¢(t — k) and Nﬁgn(t)
=Ninin @t =€) (n < N) for some integers k and ¢, where £, and g,

—_~—

are defined by Egs. in (3.15). Denote the masks of x@,(t) and N(E (t)
by myin, and my,, 5 ,, which can be found using Theorems 3.1 and
3.3. We have therefore given an easy way to derive sequences of pairs
of biorthogonal spline type scaling functions shown in [2] and [4] (and

in Section 2). For instance, the masks of 1¢ and 3¢ are respectively

1+e%

1mo(§) = 5

and

e . . ,
16 (1+e %) (1 —de ™ 4 ).

—_—

1,3Mo(§) =

Then the masks of ¢, and qubn for n = 1,2 are respectively

—i£\2 —i€\3
ma(©) = LS e = LT
et

Maa(€) = =S (14 € R (1L — e o ¢726),
~ 1 —i —i —2i
g a(€) = =3 (1+ e TE)(1 = 4e7E 4 ¢72%)

which are respectively omg, 3mog, 22m0, and 33mg (a different factor
e™ (k € Z) merely shifts the function support) shown in papers [3]
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and [4]. In addition, by using Sweldens’s lifting scheme (see [11]), we
can construct masks NN 4oMo from N, ~Mo. Therefore, starting from the
mask of the Haar scaling function, 1my =11 mg, we can obtain all ,,mg
(n = 2,3,---) using Theorem 3.1 and all ,, ;m¢ using both the lifting
scheme and the method supplied by Theorem 3.3. Specifically, from
11mo we have all masks 1 9,41m0 (n = 1,2,---) by applying the lifting
scheme, and all 9, 40_¢mo for £ =2,3,--- ,2n+1 can be found by using
the formulas in Theorem 3.3.
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