Stable Refinable Generators of
Shift Invariant Spaces with Certain

Regularities and Vanishing Moments

Tian-Xiao He

Abstract. In this paper, we discuss the stable refinable functions
that generate shift invariant (SI) spaces and possess the largest possi-
ble regularities and required vanishing moments. The stability of the
corresponding complementary spaces is also discussed.

§1. Introduction

We start by setting some notation. We define a low-pass filter as
mo(€) =271 ) hye e (1)
n

Here, we assume that only finitely many h,, are nonzero. However, some
of our results can be extended to infinite sequences that have sufficient
decay for |n| — oco. Next, we define ¢ by

éwzﬂm@%» (2)

This infinite product converges only if mo(0) = 1, i.e., if > h, = 2. In
this case, the infinite products in (2) converge uniformly and absolutely
on compact sets, so that QAS is a well-defined C'*° function. Obviously,
d(&) = mo(&/2)p(€£/2), or, equivalently, ¢p(t) = > hnp(2t —n) at least in
the sense of distributions. From Lemma 3.1 in [9], ¢ has compact support.

We now consider the simplest possible masks mg(§) with the following
form.
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Definition 1. Denote by ® the set of all functions ¢(t) that have Fourier
transform ¢(€) = mo(£/2)$(€/2). Here the filter mo(£) = 2713 hpe™ ™
is in the set M that contains all filters of the form

mo= (2 e, ®)
where

k
ek’ Zaje_ijg. (4)
=0

Here, all coefficients of F(§) are real, F(0) = 1; N and k are positive
integers; and k' € 7ZZ. Hence, the corresponding ¢ can be written as

) e—i€/2\ N .
w0 = (F5) rerie, )

Clearly, ¢ is a B-spline of order N if F'(§) = 1. The vanishing moments
of ¢ are completely controlled by the exponents of its “spline factor,”

AN
(%) . In addition, the regularity of ¢ is justified by the factors

F (&), and are independent of their vanishing moments.

A shift invariant (SI) space is a closed subspace of Ly(IR) that is invari-
ant under the operator S (f) := f(- — k) (k € ZZ). For ¢ € L2(IR), we say
that V = S(¢) := span{¢(- — k) : k € ZZ} is generated by ¢. In addition,
if ¢ is refinable, then ¢ is said to be a refinable generator of S(¢), and S(¢)
is called a refinable Sl space. Each element ¢ € ® is a refinable generator
of the corresponding SI space S(¢). A refinable generator is said to be a
pseudo-scaling (refinable) generator if it satisfies ¢(&) = mq(€/2)p(€/2) and
Imo(€)]? + |mo(€§ + )| = 1.

In [1,2,11], the following concepts were introduced that are important
in our discussion.

Definition 2. The bracket operator [, | : La(R) x L2(R) — L1(T), T =
[0, 27), is defined by

[f,9]= Y f(&+2mk)g(€ + 2nk). (6)

kEZL

For f € La(IR) the function [f, f] € L1(T) is called the auto-correlation of

f.
If f, g are compactly supported, then [f, g] is a trigonometric polyno-
mial and has the Fourier expansion

[£,816) =Y _(F(),g(-+ k))e™e. (7)

keZ
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Definition 3. Let S(¢) be a shift invariant space that is generated by
¢. {p(- — k) rem is called a stable basis of S(¢) if there exist constants
0 < A < B < oo such that for every ¢ = {ci}kem € l2(Z)

> ckp(-—k)

kEZL

Allelly, z) < < Bllclly, ) - (8)

L2(R)

Obviously, a stable basis of S(¢) is a basis of S(¢).
Theorem 4. [16] Let ¢ € Ly(IR) and let 0 < A < B < oo. Then (8) and

~

A< [QAS, qﬁ] < B, a.e.

are equivalent.

In Section 2 we will discuss the conditions for the coefficients {a;} such
that the corresponding function ¢ is in Lo (IR) and is stable. The stability
of the corresponding complementary spaces will be also discussed. Sec-
tion 3 will give applications of the refinable generators in the construction
of the biorthogonal and orthogonal scaling functions (the original gener-
ators) and wavelets (the generators of the corresponding complementary
spaces) that possess the largest possible regularities and required vanishing
moments. Since the biorthogonality and orthogonality imply the stability
of the integer translates of the generators, we obtain simpler and sufficient
conditions of the stability of a refinable generator with the largest possible
regularities and required vanishing moments.

§2. Stable Generators of Shift Invariant Spaces

In [13] we have the following result. For the reader’s convenience, we
include a simpler alternative proof here.

Lemma 5. Let ¢ € ® be defined as in Definition 1; i.e.,
b=1]mbt' 27,
j=1
where mY (€) € M is defined by (3) and (4):

= (L) kg

and F(&) = e~ €Y% a;e=¢ N,k € Z, and k' € 7Z, where F(0) = 1.
If F(m) # —1 and the coefficients of F(§) satisfy

k
(k+1)Y a2 <2V, ©)
j=0
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then ¢ is in Ly(IR). In addition, (9) can be replaced by the weaker condi-
tion

C({a;}, k) < 22771, 9)'

where C({a;}, k) equals k _5_ a2 if k > 1 and equals a3 if k = 0.

Proof: We first prove that ¢ € Ly(IR); i.e.,
C({a;}, k) < 2271,

implies ¢ = [1;2, my (279€) is in L*(R). Tt is sufficient to prove the
boundedness of the following integral

/ $(o)Pde
[&|>m

O N 2
() () —i2 ¢ .
:Z/ H (Hef) F(279¢)| de¢
=1 2[71

n<|¢]<2¢n j=1
1 —e %

o0

B gz::l/ﬂ_lﬂfmﬁzlﬂ i
(o) 1 o0

<cy F(2776) P
62:; 20-1p<|¢|<L2¢trn |§|2N ]]1
1

oSk
; 22N Jaerngigi<atn ;
2 2l -Lr<|g|<2tn

We now prove the boundedness of the last integral in (10). Denote

rr=[e (§) (8 o[r () 1 (§47)

Hence, for any 2m-periodic continuous function f, we have

2N oo

[[1F@ ) Pdg
j=1

—~

1

[F@TIGP ] 1F@ ¢ P
j=1

[F(277¢)Pdg. (10)

]~

j=1

l
2~ F(27i¢)| d
Lo oI e e o

= [ 7@ < VERIT e < VERIFl T (12
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Let p(T) be the spectral radius of the operator 7. Since F'(0) = 1 and
F(m) # —1, it can be shown as follows that p(T) > 0 (see also [6]).
Considering the Fourier expansion

k
IFE)P =) bee™™,
=k
where k is a positive integer and b; = Z?;J)t' Ap—t|—jak—j (t = =k, -, k),
we find that the matrix of T restricted to

k
Ep=/{ Z e (c_p, ..., cp) € O 1Y

——k
is
- by 0 0 0 7
br—2  brp—1 by, 0
Mrp = (2bi—2j)ij=—k,.k =2 | bop  b_g41 b_py2 -+ by |. (13)
0 0 b_p - bp_sa
[ 0 0 0 cev by

Noting that |F(0)]2=Y5__, by =1and |F(m)|]2 =35 _ (~1)by = a #
—1, it follows that

D by = bapp1 = (a+1)/2,
¢ ¢

and for the vector v = (1,...,1) € C** 1,
Tu=uM = (a+ 1)u.

Thus, T has at least one eigenvalue o + 1 # 0.
For every € > 0, there is an integer £(¢) such that

1Tl < (p(T) + &), £>e).
It follows from (10) that

£(e) &)

/|€|> BOPdE < S AN T 0 S AN (p(T) + o)
-y =1

L=£(e)+1
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so p(T) must be estimated if we are to choose an € > 0 small enough for
the series to converge. Regardless of how small an € > 0 is chosen, the
contribution

£(e) £(e)

CYy 4Tt <O )y 47N |T||f

e=1 e=1

is finite, although possibly very large.
To evaluate p(T'), we consider the matrix of T', Mp, which was given

in (13). It is clear that p(T) = p(Mr). We write My = 2H, where

H = (bi—zj)i,j:_k,...,k-

Obviously, bg can be written as

k=8|
bg = Z U—|g|—jOk—js B ==k, -,k
5=0

Hence, bg = b_g, for all 8 = —k,---, k. It is also clear that by is an
eigenvalue of H with multiplicity 2. To estimate bounds of the eigenvalues
of H, we establish

|bﬂ|§b07 B:_k77k

In fact,
k—|p]
sl < Y lap)—jan—;]
j=0
k—|B|
1 2 1 2
< D (501 T 50k-g]
j=0
1 k 1k:—,3
SIS
Jj=B Jj=0
k
<> ai_; = bo.
5=0

It is obvious that the spectral radius of H is by if &K = 0. For k > 1,
the characteristic polynomial of H is (b — A)(b_x — A) multiplied by the
characteristic polynomial of the core matrix, H., which consists of all rows
and columns of H except its first and last rows and columns. Hence, the
spectral radius of H is

p(H) = max{b, p(Hc)} < max{bg, || He[|1}
k—1
=max{bg, » |bi—gjl:j=—k+1,-- k—1} <kby.
i=—k+1
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Therefore, p(T') = 2p(H) < 2C({a;}, k). Here, C({a;},k) equals
k‘Z?:O a? if k> 1 and equals o if &k = 0. If C({a;},k) < 92N-1  then
p(T) < 22V so we choose

(22N — p(1))

€ =

(NN

Thus
p(T) +e < 22V,

and we obtain the estimate

Je

The tail of the series is a convergent geometric series, thus completing the
proof of ¢ € Ly(R) if condition (9)’, C({a;},k) < 2*N~1 holds. Since
C({a;}, k) <(k+1) Z?:o a?, the proof is complete. O

T e > ETAY
3() s Oy M 3 ('”T> -

£=L(e)+1

We now discuss the stability of ¢. From [15], we obtain a necessary
and sufficient condition for a refinable function defined as in Definition 1
to be stable.

Lemma 6. The function ¢ defined in Definition 1 is stable if and only if
F (&) satisfies the following two conditions.

(i) F (&) does not have any symmetric zeroes on T = [0, 27);

(ii) For any odd integer m > 1 and a primitive mth root w = e~#2nm/m
of unity (i.e., n is an integer relatively prime to m), there exists an
integer d, 0 < d < ord,, 2, such that F (—2d+1n7r/m) # 0, where

p = ord,, 2 is the smallest positive integer with 2P = 1(mod m).
In addition, if ¢ is stable, then |¢(€)|? and

F© =[] |7 (277 +2m)) [P/ T] |7 (270)

. 2
I152, \Z’Z:o age” 2 (2T
= (14)

2
k . _
J§ ‘26:0 age"*277¢
have no roots in T.

Proof: By using Lemma 6.6 of [5] and Theorem 1 of [15], we obtain that
¢ is stable. In addition, since

2N oo

B(&) [TI7 el (15)

‘2 1= e
= i
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we have

e+ 2| = A do)] ——

(€ + 27mu)2N’

where F'(¢) is defined as (14). Therefore,
[6.9] = 3 [ote + 2mu)|

uEZ

50| FO©™ Y

uEZ

1
(€ + 2mu)2N”

By using formula (4.2.7) in [6], we can rewrite the last expression as

PO S gy rem|  as)

[(‘3’ “3] - sin?N (£/2)

1G]

where By (€) is the Fourier transform of the B-spline of order N. In
addition, the sum on the right-hand side of (16) can be evaluated by using
formula (4.2.10) in [6]:

o0 . _
9 _Sln2N§ J2N-1

Z ‘éN(2E+27ru) = BN — 1)l deav T cot €.

U=—00

Therefore, noting that ¢ is stable and applying Theorem 4 to the above
[QAS, qAS], we immediately know that |$(&)[2, F(€) # 0 for all ¢ € T. This
completes the proof. O

Combining Lemmas 5 and 6, we obtain the following result.

Theorem 7. Let ¢ € & be defined as in Definition 1. If F (&) satisfies
F(m) # —1, conditions (i) and (ii) in Lemma 6, and (9) or (9)’, then the
corresponding ¢ is in Lo(IR) and is stable.

Remark. Obviously, the stability condition described in Lemma 6 is not
easy to check. We will give a simpler sufficient condition in the next
section.

Let V; = span{¢(2’t — k) : k € ZZ}. Following [11], for any ¢ €
Ly(IR), we define the (natural) dual ¢ by its Fourier transform
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where we interpret 0/0 = 0. Thus, for ¢ given in Theorem 7, from (16),
the dual function’s Fourier transform is

¢A5 sinzN(f/2)

[é’ QE] (5/2)2N$F(€) D e oo By (& + 2mu)

<

R

The properties of the dual function ¢ can be found in [6,12].

It is clear that S(¢) C Vi = span{¢(2 - —k) : k € 7ZZ}. We now
consider the complementary space of S(¢) in V;, which is generated by a
function ¢ € Vi. We say that a function f € Ly(T) is in W, the Wiener
Algebra, if its Fourier series Y., ., fre”"** satisfies {fi} € ¢1(Z). From
[11], we can establish the following theorem.

Theorem 8. Let ¢ € ® satisfy all conditions of Theorem 7, where ® is
defined in Definition 1, and let ¢ € Vi := span{¢(2 - —k) : k € 7ZZ} have
the symbol m1(£) € W, the Wiener Algebra, such that

ma ()] +ma (€ +m)|* >0, €€T. (17)

Then 1) is stable (i.e., a stable generator for S(1))).

Proof: Since ¢ € Vi, using the two-scale relation of v yields
S £ NPl
0] © =3 | (§+i) | o5+

my <g + 27ri> b <g + 27ri>

2
mi <§+7r+27ri> ¢3<§+7r+2m'>

2 2

2 2

2

| (G () 2 5)] b (5 +-)
()0

From Theorem 7, ¢ is in Ly(IR) and is stable. Thus, Theorem 4 shows
there exist 0 < A < B < oo such that

2
X

A< [Qg,é] < B a.e.

Thus we can bound the auto-correlation of 1 by

AML() < |$,9] (©) < BM (),
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2
o5

Since m1 (&) € (T), from condition (17) we have

where

A :=min My(§) > 0.
¢eT

On the other hand, B := ||m1(§)||C(T) < oo. Therefore,
0<AA< [1/3,1/3] () < BB <0, a.e.

By using Theorem 4, we have proved that v is a stable generator for S(v).
O

§3. Applications of Stable Refinable Generators

Obviously, the stability condition given in Lemma 6 is not easy to apply.
Recalling Cohen’s following result (see [7]), we can give a simpler and
sufficient condition for the stability of the integer translates of a refinable
generator. In [7], Cohen showed that a refinable generator ¢ with ¢(0) = 1
has orthonormal integer translates (i.e., {¢(- — k) }xez is an orthonormal
set) if and only if ¢ is a stable and pseudo-scaling generator. Hence, by
extension of the results given in the author’s paper [13] on the biorthogonal
refinable generators, we can find stable refinable generators that possess
the largest possible regularities and required vanishing moments.
Biorthogonal refinable generators defined by Definition 1 were dis-
cussed in [13]. Similarly, from Cohen and Daubechies’ result in [8], the
biorthogonality of the integer translates implies the stability of the trans-
late system. The biorthogonal system associated with the integer trans-
lates of ¢ € ® is the set of the integer translates of another refinable

generator ¢ € ®. Here, o(t) = 3, hnd(2t — n) or equivalently, ¢(¢) =

mo(€/2)p(€/2) with mg(€) = 271 Yo hne~ ™ e M, which is defined in
Definition 1. Therefore, we can write

: i\ N
(e =i © = (L) Fe. (18)

where

2
F(&) = e ™Y ajet,
§=0



Stable Generators of SI Spaces 315

Here, all coefficients of F(£) are real, F(0) = 1; N and k are positive
integers; and k' € 7Z. Hence, the corresponding ¢ and ¢ can be written as

~ e_i§/2 N ~
b0 = () P,

N o—i€/2\ N _ N
(2575 femic, (19

We also define the corresponding ¢ and 1; by

DE) = 2o (E/2+ MBE/2) $() = e mo(€/2 + M)$(€/2), (20)

or, equivalently,

P(x) = (1) hop 1620 —n)

Bla) = S (~1)"  ho 1622 — ). (21)

n

Similar to ¢, ¢ is also a B-spline of order N if F(ﬁ) = 1. Since van-
ishing moment conditions [ z*¢(z)dz =0, £ =0,1,---, L, are equivalent
to (i‘l—é@k:o =0,¢=0,1,---,L, we immediatNely know that the~max—
imum orders of vanishing moment for ¢ and ¢ are N — 1 and N — 1,
respectively. Therefore, the vanishing moments of ¢ and ¢ are completely

controlled by the exponents of their respective “spline factors,” (IL;‘Q)

e\ N
and (H'e 6) . In addition, as we pointed out at the beginning of this

paper, the regularities of ¢ and ¢ are justified by the factors F(¢) and
F (), respectively, and are independent of their vanishing moments.
~ From Lemma 5, if ¢ € ® and the coefficients of the corresponding
F (&) satisfy
k
(k+1)) a2 < 22N (22)
7=0

and F(r) # —1, then ¢ € La(RR). i i
In addition, from [8], the stability of ¢, ¢, ¥, and 1) are implied by
their biorthogonality. In fact, [8] gave the following results.

Lemma 9. [8] If ¢, ¢ € Lo(IR) satisfy ((t), ¢p(t — n)) = 6,0, then {p(t —
k) eez and {¢(t — k)}pem are stable; ie., they are stable bases (Riesz
bases) in the subspace that they generate. In addition, the corresponding
biorthogonal wavelet functions 1 and 1 are also stable; i.e., they are stable
bases (Riesz bases) in the subspace that they generate.
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Hence, from the following result established in [13], we can construct

biorthogonal (stable) refinable generators with the largest possible regu-
larities and required vanishing moments by using the algorithm shown in
[13].
Theorem 10. [13] Let ¢, bed be defined in Definition 1; that is ¢ =
HJ ,m{(279¢) and ¢ = HJ L (277¢), where m{Y () and mi (§) are
as in (3) and (18). Suppose F(m) # —1, F(m) # —1; the coefficients of
F (&) and F(§) satisfy respectively conditions (9) and (22); and

N ~  _ oN4+N-1
Zzz<j_g_k/> <]+2n—£—k’>aea2_2 6n07 (23)

J=w£=0 j—q

where p = min{k’,k'}; v = max{N + k + k’,N—f k+ k'}; 6,0 is the
Kronecker symbol; and n = 0,£1,42,---; then ¢,¢ € Lz(R) are stable
and (p(t), p(t —i)) = 6, for all i € ZZ. The corresponding biorthogonal
wavelets ¢ and 1 defined as (20) or (21) are in C® and C%, respectively.
Here a and & satisfy

k
1
a>N—§10g2 (k+1) z;a ,
]:

and

v>N—Zlog, | (k+1)

N =

k
j=0

S,

respectively. Equivalently, the Sobolev exponents

N 2
ai=supfs 205 [ (1416 [d(6)] de <o)

and

3©)| de < o)

a:=sup{s>0: / (14 %)
R
satisfy (24).

If we consider the case of (5 = ¢ in Theorem 10, then we obtain the
following result.

Theorem 11. Let ¢ € ® be defined by Definition 1. If F' also satisfies
F(m) # —1 and its coefficients satisfy condition (9) and

Ntk+k' & k& N
Z ZZ (J —i- k') <j +2n — £ — k’) agag = 2"N"16,0,  (25)

j=k' £=0 j—q
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where 0, is the Kronecker symbol and n = 0,4+1,42,---, then ¢ € Lo(IR)
and is a stable pseudo-scaling generator. In addition, The corresponding

1 defined as (20) or (21) is an orthogonal wavelet in C*. Here « is more
than

k
1
N = Slog, | (k+1) )Y a?
7=0
The regularity of ¢ (i.e., the Sobolev exponent of ¢),

~ 2
B(e)| de < oo},

a:=sup{s >0: /R(1 +1¢1%)°

satisfies
1 k
2
a>N—§10g2 (k+1) anj
]:

Here, the condition (9) can be replaced by the following weaker condition:

C’({aj}, k) < 22N—17 (9)/

where C'({a;}, k) equals k ZJ 003 if k> 1 and equals af if k = 0. Hence,

the corresponding regularities of 1 is determined by 1 € co , where o/
is more than N — }log, (2C({a;},k)). And the regularity of ¢ is @ >
N — Llog, (2C({a,}, k).

Proof: Let ¢ € ® be the function defined by Definition 1 that satisfies
F(m) # —1and (9). Then, from Lemma 5, ¢ is in La(IR). Noting Theorem
10, we have that (9) and (25) imply

(6(1), ¢t = 1)) = Gno,

which is equivalent to ¢ being a stable refinable pseudo-scaling generator
(see [7]). To prove that the generator ¢ of the complementary space of
S(¢) is an orthogonal wavelet, it is sufficient (see [14]) to prove that it
satisfies

% ‘@b (23'5)‘2 —1  ae (26)

and

D (28 ) (2(E+2qm) =0 aee, (27)

7>0

for all ¢ € 27Z + 1; i.e., for all odd integers, ¢q. First,
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Z ‘w 235 ‘ — ‘mo (2j_1g+7r)‘2 ‘q@(%—lg)‘z
JEZL

N, 2
= Jim 3 o (e + ) [ (27|

j=—n

~ i Y [ ()] 6 @)
j=-n

= lim qu (2—n—1§)‘2 _ ‘@(2"5) 2] :

. 2
Since ¢ € Lo(IR), lim ‘¢(2”§)‘ = 0 for a.e. {. From the condition
n— 00
F(0) =1, we have lim |mg (27"¢)| = 1. Hence, taking limit n — oo on
n—>00

both sides of equation ¢(€) = mg(€/2)$(£/2) and noting that

n— 00

lim [$(6)| = tim T |mo(2~7¢)] # 0,
j=1

we obtain

lim |¢ (27"¢)| =

which shows Zjez ‘7,5 (2 £
ondly, for any odd integer ¢,

= 1. Therefore, (26) holds for our 7. Sec-

> 4 (27€) (27 (€ + 2qm))

720

_ Zeizj—lgmo (29-1¢ + W)Qg (23'—1£) %

§>0

e’ emg (271 + m) (27-1€ + 2 gr)
+ e Gy (27T + m)d (271€) ei2 g (2-1€)d (216 + grr)
=" |mo (2772 + )| § (2972€) ¢ (201 + 2m)

§>0

—mo 27TE+ m)$ (271€) mo (271¢) § (271E + )
=3 [1=[mo (T[] 6 (2771) $ (@1 + 27m) — (e + 2m)

3>0
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=" (3 (271) & (216 + 29m) — §(27€) ) (20 + 2+1m)]
7>0
— $(&)P(& + 2)
== lim $(2"¢) ¢ (27¢ + 2+1m) =0,

where $(2j_1£+ 2iqr) = ¢§(2j_1§+ 2i7) for all ¢ € 27ZZ 4+ 1 because
mo(&) is 2r— periodic. Therefore, (27) also holds, and the proof of Theo-
rem 11 is complete. O

Remark. From Theorem 11, we immediately know that a refinable gen-
erator ¢ € ® defined by Definition 1 is a stable pseudo-scaling generator
if its corresponding F'(¢) satisfies F'(7) # —1 and equations (9) and (25).

We now give a general algorithm to construct the pseudo-scaling gen-
erator ¢ such that it possesses the largest possible regularity and the
required vanishing moments. In fact, this method can be described as
an optimization problem of finding suitable F'(£), or, equivalently, a suit-
able coefficient set a = {ag,---,a}, of F(£), such that Z?:o a? is the
minimum under all conditions shown in Theorem 11. Thus, the above
optimization problem can be written as follows:

k
main Za?, (28)
j=0
2
k
subject to Z(—1)3a3+1 > 0, (29)
j=0
k
> ai <22V (k4 1), (30)
=0
T ) (502
— /- ¢ — /- e
st — J+2n—0—F —\J {— k'
— 22N—15 0
n=041,42,--, (31)

where the objective function (28) gives the largest possible regularity, con-
dition (29) is from the definition of F'(w) # —1, and conditions (30) and
(31) come from conditions (9) and (25) of Theorem 11.

Problem (28)—(31) can be written in a form without the inequality

conditions by defining parameters s,t # 0 as s = 22V =1 /(k+1) _Z?:o a’
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_ 2
and t? = (Z?ZO(—I)J% +1> , respectively. Hence, the optimization

problem becomes
mam Z a; + — +

k
subject to t? = Z(—l)jaj +1

j=0
N+k+k' k N k N
J;, (;% <j+2n—€—k’>a£> z—:o <] —g—lﬂ’)alZ
— 92N-15
n=0,+£1,£2 -,

As examples, we choose N = 1 and k = k¥’ = 0. Then the solution
of problem (28)—(31) is ap = 1, and we obtain the Haar function. If we
choose N = 2, k =1, and k' = 0, then the solutions of the problem are

ay = %ﬁ and a; = 1%‘/5 Hence, the corresponding ¢ is defined by

$(&) = H;il mo(277€), where

1+3 ey (14 e
mo () = (T—e)(—5—
2 2
In addition, the regularity of ¢ is more than 2 —1log,(4)/2 =1 and ¢ € C*.
Finally, we discuss the error of Ly approximation from S(¢). Denote

(5@, = inf |If ~ g,

where ¢ is a stable function. Since ¢ defined in Theorem 7 is compactly
supported and has N vanishing moments (i.e., accuracy N), it has ap-
proximation order N. In addition, from [4], the approximation coefficient
is

C’é,v = % Z ‘qg(m)(%ru)r.

uF#0
Therefore, for any function f € W' T}(IR), the Sobolev space,

E(f,5()"), = CyIfllwymy + O (BNF),
where S(¢)" := {f(-/h)|f € S(¢)}.
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