Short Time Fourier Transform, Integral Wavelet Transform, and Wavelet Functions Associated With Splines
Tian Xiao He
Department of Mathematics
Illinois Wesleyan University
Bloomington, IL 61702-2900
the@sun.iwu.edu

Abstract

In this paper, we will discuss Short Time Fourier transforms, integral wavelets transforms, and wavelet series expansions associated with spline functions in shift-invariant spaces of B-splines. A recurrence relation formula and the corresponding algorithm about the B -wavelets will also be given.

1. Introduction

Let $N_{m}(x)$ be the cardinal B-spline function of order m , and $S\left(N_{m}(x)\right)$ be the shiftinvariant space of $N_{m}(x)$ that is defined as the span of the integer translations of $N_{m}(x)$. Thus, $s_{m} \in S\left(N_{m}(x)\right)$ can be written as

$$
\begin{equation*}
s_{m}(x)=\sum_{j} c_{j} N_{m}(x-j), \quad x \in R, j \in Z \tag{1}
\end{equation*}
$$

Throughout, we will always assume $\left\{c_{j}\right\} \in \ell_{2}$.
We will discuss Short Time Fourier transforms (STFT), integral wavelet transforms (IWT), and wavelet series expansions associated with $s_{m}(x)$ because of the following reasons. First, the basic function of a cardinal B-spline interpolation from $S\left(N_{m}(x)\right)$ can be expressed as $s_{m}(x)$; the wavelet function associated with $s_{m}(x)$ can then be used for numerical analysis. Second, by choosing a suitable $\left\{c_{j}\right\}$, we can obtain an $s_{m}(x)$ as a basic wavelet function although an $N_{m}(x)$ could not be attained that has this property. Third, we may use $s_{m}(x)$ as a scaling function to construct smooth and symmetric mother wavelet functions. Finally, orthogonalization of wavelet functions associated with $s_{m}(x)$ can be implemented by adjusting $\left\{c_{j}\right\}$.

In Section 2, we will give the size of time-frequency window of the STFT associated with the window function $s_{m}(x)$. The size of the window can be justified by its coefficient set $\left\{c_{j}\right\}$. In Section 3, we will give conditions under which an $s_{m}(x)$ can be a basic wavelet function for IWT. In Section 4, we will discuss wavelet functions associated with $s_{m}(x)$ that were derived in [5]. This type of wavelets can be considered as an extension of Bwavelets (cf. [1]). In Section 5, we will give two different approaches for orthogonalization of the wavelet functions associated with $s_{m}(x)$. The last section will give a recurrence algorithm of $s_{m}(x)$ based on the recurrence relation of B-wavelets.

2. Short Time Fourier Transforms

Let $\hat{s}_{m}(\omega)$ and $\hat{N}_{m}(\omega)$ be the Fourier transform of $s_{m}(x)$ and $N_{m}(x)$ respectively. Thus,

$$
\begin{equation*}
\hat{s}_{m}(\omega)=C\left(z^{2}\right) \hat{N}_{m}(\omega) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{N}_{m}(\omega)=\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{m} \tag{3}
\end{equation*}
$$

$z=e^{-i \omega / 2}$, and $C\left(z^{2}\right)=\sum_{j} c_{j} z^{2 j}=\sum_{j} c_{j} e^{-i \omega}$ is the symbol of $\left\{c_{j}\right\}$. It is obvious, if $m \geq 2$, both $x s_{m}(x)$ and $\omega \hat{s}_{m}(\omega) \in L^{2}(R)$. Thus, for $m \geq 2, s_{m}(x)$ defined by (1) can be considered as a window function for STFT

$$
\begin{equation*}
\left(G_{b} f\right)(\omega):=\int_{-\infty}^{\infty} e^{-i \omega t} f(t) \overline{s_{m}(t-b)} d t \tag{4}
\end{equation*}
$$

We will find the center t^{*} and the radius $\Delta_{s_{m}}$ of s_{m} and the center ω^{*} and the radius $\Delta_{\hat{s}_{m}}$ of \hat{s}_{m}, the fourier transform of s_{m}. Thus, the corresponding time-frequency window can be determined. Since the set of the arbitrary coefficient $\left\{c_{j}\right\}$ are involved, the size of window can be adjusted for certain purposes.

In order to find the centers and radiuses, we need the following lemmas.
Lemma 1. Let $\hat{N}_{m}(\omega)$ be the Fourier transform of the B-spline of order m, $N_{m}(x)$, shown in equation (3). Then

$$
\begin{equation*}
\overline{\hat{N}_{m}(\omega)}=\hat{N}_{m}(\omega) e^{i m \omega} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{N}_{m}^{\prime}(\omega)=m \hat{N}_{m-1}(\omega) \hat{N}_{1}^{\prime}(\omega) \tag{6}
\end{equation*}
$$

Proof. From equation (3), we obtain

$$
\hat{N}_{m}(\omega)=e^{-i m \omega / 2}\left(\frac{\sin \omega / 2}{\omega / 2}\right)^{m}
$$

Hence, equation (5) is obvious. Equation (6) can be derived immediately from the Fourier transform of the B-spline of order m: $\hat{N}_{m}(\omega)=\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{m}$.

Lemma 2. Let $N_{m}(x)$ be the B-spline of order m. Then

$$
\begin{align*}
\int_{-\infty}^{\infty} N_{m}(x) N_{m}(x+\ell) d x & =N_{2 m}(m-\ell) \tag{7}\\
\int_{-\infty}^{\infty} x N_{m}(x) N_{m}(x+\ell) d x & =\frac{m-\ell}{2} N_{2 m}(m-\ell) \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} N_{m}(x) N_{m}(x+\ell) d x=\frac{(m-\ell)^{2}}{2} N_{2 m}(m-\ell) . \tag{9}
\end{equation*}
$$

Proof. By using the Parseval Identity, the recurrence relation $N_{n+1}=N_{m} * N_{1}$, and Lemma 1, we can obtain expressions (7) and (8).

To prove the equation (9), we need an equation about the integral of $x^{2} N_{m}(x) N_{m}(x+$ $\ell)$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x^{2} N_{m}(x) N_{m}(x+\ell) d x \\
& =\frac{-1}{2 \pi} \int_{-\infty}^{\infty}\left(\hat{N}_{m}(\omega)\right)^{\prime \prime} \hat{N}_{m}(\omega) e^{i(m-\ell) \omega} d \omega \\
& =\frac{-1}{2 \pi} \int_{-\infty}^{\infty}\left[m(m-1) \hat{N}_{2 m-2}(\omega)\left(\hat{N}_{1}^{\prime}(\omega)\right)^{2}+m \hat{N}_{2 m-1}(\omega) \hat{N}_{1}^{\prime \prime}(\omega)\right] e^{i(m-\ell) \omega} d \omega \\
& =\frac{-1}{4 \pi} \int_{-\infty}^{\infty} \hat{N}_{2 m}^{\prime \prime}(\omega) e^{i(m-\ell) \omega} d \omega+\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[m \hat{N}_{m-1}(\omega) \hat{N}_{1}^{\prime}(\omega)\right]^{2} e^{i(m-\ell) \omega} d \omega \\
& =\frac{1}{2}(m-\ell)^{2} N_{2 m}(m-\ell)+\int_{-\infty}^{\infty}(m-\ell-x) x N_{m}(x) N_{m}(m-\ell-x) d x \\
& =\frac{1}{2}(m-\ell)^{2} N_{2 m}(m-\ell)+\int_{-\infty}^{\infty}(m-\ell) x N_{m}(x) N_{m}(x+\ell) d x \\
& -\int_{-\infty}^{\infty} x^{2} N_{m}(x) N_{m}(x+\ell)
\end{aligned}
$$

Hence, by solving the last equation for $\int_{-\infty}^{\infty} x^{2} N_{m}(x) N_{m}(x+\ell) d x$ and using equation (8), we obtain equation (9).

By using Lemma 2, we can find the center t^{*} and the radius $\Delta_{s_{m}}$ of s_{m} as follows.

$$
\begin{align*}
t^{*} & =\frac{1}{\left\|s_{m}\right\|^{2}} \int_{-\infty}^{\infty} x\left[s_{m}(t)\right]^{2} d t \\
& =\frac{1}{\left\|s_{m}\right\|^{2}} \sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}} \int_{-\infty}^{\infty} N_{m}(t-j) N_{m}\left(t-j^{\prime}\right) d t \\
& =\frac{1}{\left\|s_{m}\right\|^{2}} \sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}} \frac{m+j+j^{\prime}}{2} N_{2 m}\left(m+j^{\prime}-j\right), \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
\Delta_{s_{m}} & =\frac{1}{\left\|s_{m}\right\|^{2}}\left\{\int_{-\infty}^{\infty}\left(t-t^{*}\right)^{2}\left[s_{m}(t)\right]^{2} d t\right\}^{\frac{1}{2}} \\
& =\frac{1}{\left\|s_{m}\right\|^{2}}\left\{\sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}} \int_{-\infty}^{\infty}\left(t^{2}-2 t t^{*}+\left(t^{*}\right)^{2}\right) N_{m}(t-j) N_{m}\left(t-j^{\prime}\right) d t\right\}^{\frac{1}{2}} \\
& =\frac{1}{\left\|s_{m}\right\|^{2}}\left\{\sum_{j} \sum_{j^{\prime}} \frac{1}{2} c_{j} c_{j^{\prime}}\left[\left(m+j^{\prime}-t^{*}\right)^{2}+\left(j-t^{*}\right)^{2}\right] N_{2 m}\left(m+j^{\prime}-j\right)\right\}^{\frac{1}{2}} \tag{11}
\end{align*}
$$

where $\left\|s_{m}\right\|^{2}=\sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}} N_{2 m}\left(m+j^{\prime}-j\right)$.
To obtain ω^{*} and $\Delta_{\hat{s}_{m}}$, the center and the radius of \hat{s}_{m}, respectively, we need the following $\left\|\hat{s}_{m}(\omega)\right\|^{2}$ and Lemma 1.

$$
\left\|\hat{s}_{m}(\omega)\right\|^{2}=2 \pi\left\|s_{m}\right\|^{2}=2 \pi \sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}} N_{2 m}\left(m+j^{\prime}-j\right) .
$$

Thus,

$$
\begin{align*}
\omega^{*} & =\frac{1}{\left\|\hat{s}_{m}(\omega)\right\|^{2}} \int_{-\infty}^{\infty} \omega\left|\hat{s}_{m}(\omega)\right|^{2} d \omega \\
& =\sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}} \int_{-\infty}^{\infty} \omega \hat{N}_{m}(\omega) e^{-i j \omega} \hat{N}_{m}(\omega) e^{i j^{\prime} \omega} d \omega \\
& =\sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}}(2 \pi)(-i) N_{2 m}^{\prime}\left(m+j^{\prime}-j\right) \\
& =0 \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
\Delta_{\hat{s}_{m}} & =\frac{1}{\left\|\hat{s}_{m}(\omega)\right\|^{2}}\left\{\int_{-\infty}^{\infty} \omega^{2}\left|\hat{s}_{m}(\omega)\right|^{2} d \omega\right\}^{\frac{1}{2}} \\
& =\frac{1}{\left\|\hat{s}_{m}(\omega)\right\|^{2}}\left\{\sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}} \int_{-\infty}^{\infty} \omega^{2}\left(\hat{N}_{m}(\omega)\right)^{2} e^{i\left(m+j^{\prime}-j\right) \omega} d \omega\right\}^{\frac{1}{2}} \\
& =\frac{1}{\left\|\hat{s}_{m}(\omega)\right\|^{2}}\left\{\sum_{j} \sum_{j^{\prime}} c_{j} c_{j^{\prime}}(-2 \pi) N_{2 m}^{\prime \prime}\left(m+j^{\prime}-j\right)\right\}^{\frac{1}{2}} \\
& =\frac{\sqrt{2 \pi}}{\left\|\hat{s}_{m}(\omega)\right\|^{2}}\left\{\sum _ { j } \sum _ { j ^ { \prime } } c _ { j } c _ { j ^ { \prime } } \left[2 N_{2 m-2}\left(m+j^{\prime}-j-1\right)-N_{2 m-2}\left(m+j^{\prime}-j-2\right)\right.\right. \\
& \left.\left.-N_{2 m-2}\left(m+j^{\prime}-j\right)\right]\right\}^{\frac{1}{2}} . \tag{13}
\end{align*}
$$

Hence, we obtain the following theorem.
Theorem 1. $s_{m}(x), m \geq 2$, defines by (1) is a window function for Short Time Fourier Transform shown in (4), which possesses a time-frequency window

$$
\left[t^{*}+b-\Delta_{s_{m}}, t^{*}+b+\Delta_{s_{m}}\right] \times\left[\omega^{*}+\omega-\Delta_{\hat{s}_{m}}, \omega^{*}+\omega+\Delta_{\hat{s}_{m}}\right]
$$

with width $2 \Delta_{s_{m}}$ and window area $4 \Delta_{s_{m}} \delta_{\hat{s}_{m}}$. Here $t^{*}, \Delta_{s_{m}} *, \omega^{*}$, and $\Delta_{\hat{s}_{m}}$ are defined in (10), (11), (12), and (13), respectively.

3. Wavelet Transforms

From the well-known admissibility condition of basic wavelet functions for wavelet transforms, we can verify the following theorem.

Theorem 2. Let $C(z)=C\left(e^{-i \omega}\right)$ be the symbol of $\left\{C_{j}\right\}$, the coefficient set of the summation in (1). If both $C\left(z^{2}\right) / \omega^{1 / 2}=C\left(e^{-i \omega}\right) / \omega^{1 / 2}$ and $C\left(z^{-2}\right) / \omega^{1 / 2}=C\left(e^{i \omega}\right) / \omega^{1 / 2}$ are in $L^{2}(0,2 \pi)$, then $s_{m}(x)$ defined in (1) is a basic wavelet. Relative $s_{m}(x)$, the integral wavelet transform (IWT) on $L^{2}(R)$ is defined by

$$
\begin{equation*}
\left(W_{s_{m}} f\right)(b, a):=|a|^{-1 / 2} \int_{-\infty}^{\infty} f(t) \overline{s_{m}\left(\frac{t-b}{a}\right)} d t \tag{14}
\end{equation*}
$$

$f \in L^{2}(R)$, where $a, b \in R$ with $a \neq 0$.
Proof. It is sufficient to prove that $C_{s_{m}}=\int_{-\infty}^{\infty}\left|\hat{s}_{m}(\omega)\right|^{2} /|\omega| d \omega<\infty$. In fact, noting that $\sum_{k=-\infty}^{\infty}\left|\hat{N}_{m}(\omega+2 k \pi)\right|^{2} \leq 1$, we have

$$
\begin{aligned}
C_{s_{m}}= & \int_{-\infty}^{\infty} \frac{\left|C\left(z^{2}\right)\right|^{2}}{|\omega|}\left|\hat{N}_{m}(\omega)\right|^{2} d \omega \\
= & \sum_{k=-\infty}^{\infty} \int_{2 k \pi}^{(2 k+1) \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega|}\left|\hat{N}_{m}(\omega)\right|^{2} d \omega \\
= & \sum_{k=-\infty}^{\infty} \int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega+2 k \pi|}\left|\hat{N}_{m}(\omega+2 k \pi)\right|^{2} d \omega \\
\leq & \sum_{k \neq-1} \int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega|}\left|\hat{N}_{m}(\omega+2 k \pi)\right|^{2} d \omega+\int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega-2 \pi|}\left|\hat{N}_{m}(\omega-2 \pi)\right|^{2} d \omega \\
= & \int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega|} \sum_{k=-\infty}^{\infty}\left|\hat{N}_{m}(\omega+2 k \pi)\right|^{2} d \omega \\
& +\int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{2 \pi-\omega}\left|\hat{N}_{m}(\omega-2 \pi)\right|^{2} d \omega-\int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{\omega}\left|\hat{N}_{m}(\omega-2 \pi)\right|^{2} d \omega \\
\leq & \int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega|} d \omega+\int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{2 \pi-\omega} d \omega+\int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega|} d \omega \\
= & 2 \int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega|} d \omega+\int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{2 \pi-\omega} d \omega \\
= & 2 \int_{0}^{2 \pi} \frac{\left|C\left(e^{-i \omega}\right)\right|^{2}}{|\omega|} d \omega+\int_{0}^{2 \pi} \frac{\left|C\left(e^{i \omega}\right)\right|^{2}}{|\omega|} d \omega .
\end{aligned}
$$

In the last step of the above process, we use the integral substitution $\omega^{\prime}=2 \pi-\omega$ in the second integral. Thus, the proof is complete.

Corollary. If $s_{m}(x)$ defined by (1) is a basic function with the corresponding IWT on $L^{2}(R)$ shown in (14), then $C(1)=0$, i.e., $\sum_{j} c_{j}=0$.

4. Wavelet Series Expansions

Since $N_{m}(x)$ possesses the finite two-scale relation (cf. Chui's [1])

$$
\begin{equation*}
N_{m}(x)=\sum_{k=0}^{N} p_{m, k} N_{m}(2 x-k) \tag{15}
\end{equation*}
$$

where

$$
p_{m, k}= \begin{cases}2^{-m+1}\binom{m}{k}, & \text { for } 0 \leq k \leq m \\ 0, & \text { otherwise }\end{cases}
$$

$s_{m}(x)$ also possesses two-scale relation

$$
\begin{equation*}
s_{m}(x)=\sum_{k} \tilde{p}_{m, k} s_{m}(2 x-k) \tag{16}
\end{equation*}
$$

In order to give the coefficients $\left\{\tilde{p}_{m, k}\right\}_{k}$, we make Fourier transform on both sides of (15) and (16). Thus,

$$
\begin{equation*}
\hat{N}_{m}(\omega)=P_{m}(z) \hat{N}_{m}\left(\frac{\omega}{2}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{s}_{m}(\omega)=\tilde{P}_{m}(z) \hat{s}_{m}\left(\frac{\omega}{2}\right) \tag{18}
\end{equation*}
$$

where $P_{m}(z)=\frac{1}{2} \sum_{k} p_{m, k} z^{k}=\left(\frac{1+z}{2}\right)^{2}$ and $\tilde{P}_{m}(z)=\frac{1}{2} \sum_{k} \tilde{p}_{m, k} z^{k}$ are two-scale symbols of $\left\{p_{m, k}\right\}_{k}$ and $\left\{\tilde{p}_{m, k}\right\}_{k}$, respectively. Substituting (17) into expression (2), we have $\hat{s}_{m}(\omega)=$ $C\left(z^{2}\right) P_{m}(z) \hat{N}_{m}\left(\frac{\omega}{2}\right)$. On the other hand, from (2) we also have $\hat{s}_{m}\left(\frac{\omega}{2}\right)=C(z) \hat{N}_{m}\left(\frac{\omega}{2}\right)$. Thus, we have the following the relation between $\hat{s}_{m}(\omega)$ and $\hat{s}_{m}(\omega / 2)$:

$$
\begin{equation*}
\hat{s}_{m}(\omega)=\frac{C\left(z^{2}\right) P_{m}(z)}{C(z)} \hat{s}_{m}\left(\frac{\omega}{2}\right) \tag{19}
\end{equation*}
$$

Comparing (18) and (19), we obtain

$$
\begin{equation*}
\tilde{P}_{m}(z)=\frac{C\left(z^{2}\right) P_{m}(z)}{C(z)}=\frac{C\left(z^{2}\right)}{C(z)}\left(\frac{1+z}{2}\right)^{m} . \tag{20}
\end{equation*}
$$

Obviously, if $\mathrm{C}(\mathrm{z})$ is a finite symbol and $C(z) \mid C\left(z^{2}\right)$, the two-scale relation (15) is also of finite terms.

Next, we discuss the corresponding wavelet function $\psi_{s_{m}}(x)$ associated with the scaling function $s_{m}(x)$. First, we need

$$
\begin{equation*}
\psi_{s_{m}}(x)=\sum_{k} \tilde{q}_{m, k} s_{m}(2 x-k) \tag{21}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\hat{\psi}_{s_{m}}(\omega)=\tilde{Q}_{m}(z) \hat{s}_{m}\left(\frac{\omega}{2}\right) \tag{22}
\end{equation*}
$$

where $z=e^{-i \omega / 2}$, and $\tilde{Q}_{m}(z)$ is the two-scale symbol of $\left\{\tilde{q}_{m, k}\right\}_{k}$. In order to find $\left\{\tilde{q}_{m, k}\right\}_{k}$ or $\tilde{Q}_{m}(z)$, we consider the B-wavelet (cf. [1]) $\psi_{m}(x)$ associated with B-spline $N_{m}(x)$,

$$
\begin{equation*}
\psi_{m}(x)=\sum_{k} q_{m, k} N_{m}(2 x-k) \tag{23}
\end{equation*}
$$

where

$$
q_{m, k}= \begin{cases}\frac{(-1)^{k}}{2^{m-1}} \sum_{\ell=0}^{m}\binom{m}{\ell} N_{2 m}(k+1-\ell), & 0 \leq k \leq 3 m-2 \tag{24}\\ 0, & \text { otherwise }\end{cases}
$$

The Fourier transform of (23) is (cf. [1])

$$
\begin{equation*}
\hat{\psi}_{m}(\omega)=Q_{m}(z) \hat{N}_{m}\left(\frac{\omega}{2}\right) \tag{25}
\end{equation*}
$$

where $z=e^{-i \omega / 2}$, and $Q_{m}(z)$ is the two-scale symbol of $\left\{q_{m, k}\right\}_{k}$ with the following expression (cf. equation (6.2.3) in [1]).

$$
\begin{equation*}
Q_{m}(z)=-z^{-2}\left(\frac{1-z}{2}\right)^{m} \frac{K\left(z^{2}\right)}{E_{2 m-1}\left(z^{2}\right)} E_{2 m-1}(-z) \tag{26}
\end{equation*}
$$

where K is in Wiener's class W with $K(z) \neq 0$ for $|z|=1$ and $E_{2 m-1}(z)$ is $2 \mathrm{~m}-1$ order Euler-Frobenius polynomial

$$
E_{2 m-1}(z)=(2 m-1)!z^{-m+1} \sum_{-m+1}^{m-1} N_{2 m}(m+k) z^{k}
$$

We now derive the expression of $\tilde{Q}_{m}(z)$. From equations (6.2.2) in [1], we obtain

$$
\begin{equation*}
\tilde{Q}_{m}(z)=z^{-1} E_{s_{m}}(-z) \tilde{P}_{m}(-z) \frac{K\left(z^{2}\right)}{E_{s_{m}}\left(z^{2}\right)}, \quad|z|=1 \tag{27}
\end{equation*}
$$

where K is also in Wiener's class W with $K(z) \neq 0$ for $|z|=1, z=e^{-i \omega / 2}$, and

$$
\begin{aligned}
E_{s_{m}}(z) & =\sum_{k}\left\{\int_{-\infty}^{\infty} s_{m}(k+y) \overline{s_{m}(y)} d y\right\} z^{k} \\
& =\sum_{k=-\infty}^{\infty}\left|\hat{s}_{m}\left(\frac{\omega}{2}+2 \pi k\right)\right|^{2} .
\end{aligned}
$$

$E_{s_{m}}(z)$ can be expressed in terms of $E_{2 m-1}(z)$. In fact,

$$
\begin{aligned}
E_{s_{m}}(z) & =\sum_{k=-\infty}^{\infty}\left|\hat{\phi}_{m}\left(\frac{\omega}{2}+2 \pi k\right)\right|^{2} \\
& =\sum_{k=-\infty}^{\infty}|C(z)|^{2}\left|\hat{N}_{m}\left(\frac{\omega}{2}+2 \pi k\right)\right|^{2} \\
& =|C(z)|^{2} \sum_{k=-m+1}^{m-1} N_{2 m}(m+k) z^{k} \\
& =|C(z)|^{2} \frac{E_{2 m-1}(z)}{(2 m-1)!z^{m-1}} .
\end{aligned}
$$

Substituting the above expression of $E_{s_{m}}(z)$ and equation (20) into equation (27), we obtain

$$
\begin{aligned}
\tilde{Q}_{m}(z) & =(-1)^{m-1} z^{m-2} \frac{C(-z)}{C\left(z^{2}\right)}\left(\frac{1-\bar{z}}{2}\right)^{m} \frac{K\left(z^{2}\right)}{E_{2 m-1}\left(z^{2}\right)} E_{2 m-1}(-z) \\
& =-z^{-2} \frac{C(-z)}{C\left(z^{2}\right)}\left(\frac{1-z}{2}\right)^{m} \frac{K\left(z^{2}\right)}{E_{2 m-1}\left(z^{2}\right)} E_{2 m-1}(-z) .
\end{aligned}
$$

Thus, comparing the above expression of $\tilde{Q}_{m}(z)$ and expression (26) of $Q_{m}(z)$, we have

$$
\begin{equation*}
\tilde{Q}_{m}(z)=\frac{1}{(2 m-1)!} \frac{C(-z)}{C\left(z^{2}\right)}\left(\frac{1-z}{2}\right)^{m} E_{2 m-1}(-z)=\frac{C(-z)}{C\left(z^{2}\right)} Q_{m}(z) . \tag{28}
\end{equation*}
$$

Secondly, we will prove $\psi_{s_{m}}(x)$ defined by equations (21), (22), and (28) is indeed the wavelet function associated with $s_{m}(x)$. Therefore, we need to consider the following matrix.

$$
M_{\tilde{P}_{m} \tilde{Q}_{m}}=\left(\begin{array}{cc}
\tilde{P}_{m}(z) & \tilde{Q}_{m}(z) \\
\tilde{P}_{m}(-z) & \tilde{Q}_{m}(-z)
\end{array}\right) .
$$

Obviously, $\operatorname{det} M_{\tilde{P}_{m} \tilde{Q}_{m}}=P_{m}(z) Q_{m}(-z)-Q_{m}(z) P_{m}(-z)=\operatorname{det} M_{P_{m} Q_{m}}$, where $\operatorname{det} M_{P_{m} Q_{m}}$ is the determinant of the matrix $M_{P_{m} Q_{m}}$ associated with the B-wavelet ψ_{m}. Thus, $\operatorname{det} M_{\tilde{P}_{m} \tilde{Q}_{m}} \neq 0$ on the unit circle $|z|=1$ because $\operatorname{det} M_{P_{m} Q_{m}} \neq 0$ on $|z|=1$. It follows that $\psi_{s_{m}}$ is the wavelet function associated with s_{m}. That is, the family $\left\{\psi_{s_{m}}(\cdot-k): k \in Z\right\}$, which is governed by $\tilde{Q}_{m}(z)$ shown in equation (28), is a Riesz basis of W_{0}.

To derive the decomposition relation of $s_{m}(2 x-\ell)$, we define

$$
\tilde{G}(z)=\frac{\tilde{Q}_{m}(-z)}{\operatorname{det} M_{\tilde{P}_{m} \tilde{Q}_{m}}}=\frac{C(z)}{C\left(z^{2}\right)} \frac{Q_{m}(-z)}{\operatorname{det} M_{P_{m} Q_{m}}}=\frac{C(z)}{C\left(z^{2}\right)} G(z)
$$

and

$$
\tilde{H}(z)=-\frac{\tilde{P}_{m}(-z)}{\operatorname{det} M_{\tilde{P}_{m} \tilde{Q}_{m}}}=\frac{C\left(z^{2}\right)}{C(-z)}\left(-\frac{P_{m}(-z)}{\operatorname{det} M_{P_{m} Q_{m}}}\right)=\frac{C\left(z^{2}\right)}{C(-z)} H(z)
$$

where $G(z)=Q_{m}(-z) / \operatorname{det} M_{P_{m} Q_{m}}$ and $H(z)=-P_{m}(-z) / \operatorname{det} M_{P_{m} Q_{m}}$ are defined as equation (5.3.11) in [1].

It is also easy to prove that

$$
M_{\tilde{G} \tilde{H}}^{T} \cdot M_{\tilde{P}_{m} \tilde{Q}_{m}}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=M_{\tilde{P}_{m} \tilde{Q}_{m}} \cdot M_{\tilde{G} \tilde{H}}^{T}
$$

Also, $\tilde{Q}_{m}(z)$ and $\tilde{P}_{m}(z)$ satisfy the following conditions.

$$
\tilde{P}_{m}(1)=P_{m}(1)=1, \quad \tilde{P}_{m}(-1)=P_{m}(-1)=0, \quad \text { and } \quad \tilde{Q}_{m}(1)=Q_{m}(1)=0
$$

We write the expansions of $\tilde{G}(z)$ and $\tilde{H}(z)$ as follows:

$$
\tilde{G}(z)=\frac{1}{2} \sum_{n} \tilde{g}_{n} z^{n}
$$

and

$$
\tilde{H}(z)=\frac{1}{2} \sum_{n} \tilde{h}_{n} z^{n}
$$

Thus, the following decomposition relation holds for all $x \in R$.

$$
s_{m}(2 x-\ell)=\frac{1}{2} \sum_{-\infty}^{\infty}\left[\tilde{g}_{2 k-\ell} s_{m}(x-k)+\tilde{h}_{2 k-\ell} \psi_{s_{m}}(x-k)\right], \quad \ell \in Z
$$

Next, we will discuss the duals of $\psi_{s_{m}}$ and the algorithms of decomposition and reconstruction. Define

$$
\begin{array}{ll}
\tilde{G}^{*}(z):=\overline{\tilde{G}(z)}=\tilde{G}\left(\frac{1}{z}\right), & |z|=1 \\
\tilde{H}^{*}(z):=\overline{\tilde{H}(z)}=\tilde{H}\left(\frac{1}{z}\right), \quad|z|=1
\end{array}
$$

and

$$
\hat{\tilde{s}}_{m}(\omega):=\Pi_{k=1}^{\infty} \tilde{G}^{*}\left(e^{-i \omega / 2^{k}}\right)
$$

Thus, $\tilde{s}_{m}(x)$ is a dual scaling function of $s_{m}(x)$, and

$$
\tilde{\tilde{\psi}}_{m}(\omega):=\tilde{H}^{*}(z) \hat{\tilde{s}}_{m}(\omega)
$$

gives the dual wavelet function $\tilde{\psi}_{s_{m}}(\omega)(x)$. Hence, by using a similar argument as that in [1], we have the following theorem.

Theorem 3. Let $\left\{V_{j}\right\}$ be the MRA generated by $s_{m}(x)$. If $f_{j}(x) \in V_{j}$ and $g_{j}(x) \in W_{j}$ with

$$
f_{j}(x)=\sum_{k} c_{k}^{j} s_{m}\left(2^{j} x-k\right), \quad g_{j}(x)=\sum_{k} d_{k}^{j} \psi_{s_{m}}\left(2^{j} x-k\right) .
$$

Then we have the following decomposition algorithm

$$
c_{k}^{j-1}=\frac{1}{2} \sum_{\ell} \tilde{g}_{2 k-\ell} c_{\ell}^{j}, \quad d_{k}^{j-1}=\frac{1}{2} \sum_{\ell} \tilde{h}_{2 k-\ell} c_{\ell}^{j}
$$

and reconstruction algorithm

$$
c_{k}^{j}=\sum_{\ell}\left[\tilde{p}_{m, k-2 \ell} c_{\ell}^{j-1}+\tilde{q}_{m, k-2 \ell} d_{\ell}^{j-1}\right] .
$$

5. Orthogonal MRA Generated By $s_{m}(x)$

In this section, we discuss the orthogonal wavelets associated with certain $s_{m}(x)$. We call a scaling function ϕ an orthogonal scaling function if ϕ yields an orthogonal MRA; i.e., its corresponding mother wavelet function ψ gives a complete orthogonal system $\left\{\psi_{j, k}=2^{j / 2} \psi\left(2^{j} x-k\right)\right\}$ in $L^{2}(R)$. In the following we will give two approaches to construct orthogonal scaling functions with the form defined in (1) by using the similar argument shown in [10].

Theorem 4. Let $C(z)$ be the symbol of $\left\{c_{j}\right\}$, the set of coefficients shown in (1). If $\left|C\left(z^{2}\right)\right|^{2}=1 / \sum_{k}\left|\hat{N}_{m}(\omega+2 k \pi)\right|^{2}$, then the corresponding scaling function $s_{m}(x)=$ $\sum_{j} c_{j} N_{m}(x)$ is an orthogonal scaling function and its Fourier transform is

$$
\begin{aligned}
\hat{s}_{m}(\omega) & =\hat{N}_{m}(\omega) / \sum_{-m+1}^{m-1} N_{2 m}(m+k) e^{-i k \omega} \\
& =\hat{N}_{m}(\omega) / \sum_{-\infty}^{\infty}\left(\hat{N}_{m}(\cdot+m)\right)(\omega+2 k \pi)
\end{aligned}
$$

where $\hat{N}_{2 m}(\cdot+m)$ denotes the Fourier transform of $N_{2 m}(x+m)$ and this Fourier transform is evaluated at $\omega+2 k \pi$.

Proof. If

$$
\sum_{k}\left|\hat{s}_{m}(\omega+2 k \pi)\right|^{2}=\left|C\left(z^{2}\right)\right|^{2} \sum_{k}\left|\hat{N}_{m}(\omega+2 k \pi)\right|^{2}=1,
$$

then $s_{m}(x)$ generates an orthogonal MRA. Thus, we obtain that $\left|C\left(z^{2}\right)\right|^{2}=1 / \sum_{k} \mid \hat{N}_{m}(\omega+$ $2 k \pi)\left.\right|^{2}$. By using the Theorem 2.28, and identities (4.2.14) and (4.6.8) in [1], we may prove Theorem 4.

Theorem 5. Suppose that $s_{m}(x)$ defined in (1) satisfies $s_{m}(x)=0$ for $|x| \geq a$. If $C(1)=\frac{3 a}{\pi}$; i.e., $\sum_{j} c_{j}=\frac{3 a}{\pi}$, then the corresponding $s_{m}(x)$ yields an orthogonal scaling function $\phi_{s_{m}}(x)$ with its Fourier transform

$$
\hat{\phi}_{s_{m}}(\omega)=\left(\int_{\omega-\pi}^{\omega+\pi} s_{m}\left(\frac{3 a x}{\pi}\right) d x\right)^{\frac{1}{2}} .
$$

Proof. Suppose supp $s_{m}(x) \subset[-a, a]$. Thus, supp $s_{m}\left(\frac{3 a x}{\pi}\right) \subset\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$. It is obvious that $\phi_{s_{m}}(x)$ generates an orthogonal MRA if $\sum_{k \in Z}\left|\hat{\phi}_{s_{m}}(\omega+2 k \pi)\right|^{2}=1 . \sum_{k \in Z} \mid \hat{\phi}_{s_{m}}(\omega+$ $2 k \pi)\left.\right|^{2}=1$ can be simplified as follows:

$$
\begin{aligned}
\sum_{k \in Z}\left|\hat{\phi}_{s_{m}}(\omega+2 k \pi)\right|^{2} & =\sum_{k \in Z} \int_{\omega+\pi(2 k-1)}^{\omega+\pi(2 k+1)} s_{m}\left(\frac{3 a x}{\pi}\right) d x \\
& =\int_{-\infty}^{\infty} s_{m}\left(\frac{3 a x}{\pi}\right) d x \\
& =\int_{-\pi / 3}^{\pi / 3} s_{m}\left(\frac{3 a x}{\pi}\right) d x
\end{aligned}
$$

Thus, $\phi_{s_{m}}(x)$ generates an orthogonal MRA if

$$
\int_{-\pi / 3}^{\pi / 3} s_{m}\left(\frac{3 a x}{\pi}\right) d x=1
$$

On the other hand, from the definition of s_{m}, equation (1), we obtain

$$
\begin{aligned}
\int_{-\pi / 3}^{\pi / 3} s_{m}\left(\frac{3 a x}{\pi}\right) d x & =\sum_{j} c_{j} \int_{-\pi / 3}^{\pi / 3} N_{m}\left(\frac{3 a x}{\pi}-j\right) d x \\
& =\sum_{j} c_{j} \frac{\pi}{3 a} \int_{-a}^{a} N_{m}(x-j) d x \\
& =\frac{\pi}{3 a} \sum_{j} c_{j}
\end{aligned}
$$

Thus, if $\sum_{j} c_{j}=\frac{3 a}{\pi}$, the corresponding $\phi_{s_{m}}$ generates MRA.
Obviously, $\hat{\phi}_{s_{m}}^{2}(\omega)$ is a C^{m-1} continuous function that satisfies

$$
\hat{\phi}_{s_{m}}^{2}= \begin{cases}1 & |\omega|<\frac{2 \pi}{3} \\ g(|\omega|) & \frac{2 \pi}{3} \leq|\omega| \leq \frac{4 \pi}{3} \\ 0 & |\omega|>\frac{4 \pi}{3}\end{cases}
$$

where $g(\omega)$ and $g(-\omega)$ are symmetric about the origin and are defined on $\frac{2 \pi}{3} \leq \omega \leq \frac{4 \pi}{3}$ and $-\frac{4 \pi}{3} \leq \omega \leq-\frac{2 \pi}{3}$, respectively. For instance, if $s_{1}(x)=c_{0} N_{1}(x)+c_{-1} N_{1}(x+1)$, $c_{0}+c_{1}=\frac{3}{\pi}$, then $g(|\omega|)=\frac{3}{2 \pi}\left(\frac{4 \pi}{3}-|\omega|\right)$. If $s_{2}(x)=c_{0} N_{2}(x)+c_{-1} N_{2}(x+1)+c_{-2} N_{2}(x+2)$, $c_{0}+c_{-1}+c_{-2}=\frac{6}{\pi}$, then the Bernstein-Bézier expression of $g(\omega)$ is

$$
g(\omega)=\sum_{i+j=2} a_{i j} \frac{2!}{i!j!} u^{i} v^{j}
$$

where u and v are the corresponding barycentric coordinates of ω when $\omega \in\left[\frac{2 \pi}{3}, \pi\right]$ and $\left[\pi, \frac{4 \pi}{3}\right]$, respectively. The corresponding Bézier coefficients, $\left[a_{2,0}, a_{1,1}, a_{0,2}\right]$, of $g(\omega)$, are $\left[1,1, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 0,0\right]$ when $\omega \in\left[\frac{2 \pi}{3}, \pi\right]$ and $\omega \in\left[\pi, \frac{4 \pi}{3}\right]$, respectively. $g(-\omega)$ can be found by symmetry.

The $\phi_{s_{m}}$ is a Meyer type scaling function with dilation condition

$$
\hat{\phi}_{s_{m}}(\omega)=m_{0}\left(\frac{\omega}{2}\right) \hat{\phi}_{s_{m}}\left(\frac{\omega}{2}\right),
$$

where $m_{0}\left(\frac{\omega}{2}\right)$ is defined on $[-2 \pi, 2 \pi]$ as

$$
m_{0}\left(\frac{\omega}{2}\right)= \begin{cases}\hat{\phi}_{s_{m}}(\omega) & |\omega| \leq \frac{4 \pi}{3} \\ 0 & \frac{4 \pi}{3}<|\omega| \leq 2 \pi\end{cases}
$$

and is extended 4π periodically to all $\omega \in R$. Hence, the corresponding wavelet $\psi_{s_{m}}$ satisfies

$$
\hat{\psi}_{s_{m}}(\omega)=e^{-i \omega / 2} \overline{m_{0}\left(\frac{\omega}{2}+\pi\right)} \hat{\phi}\left(\frac{\omega}{2}\right) .
$$

6. Recurrence Algorithm of B-wavelets

In this section, we will give a recurrence relation of B-wavelets in terms of their orders and the corresponding algorithm. Hence, a recurrence algorithm for construction of wavelets derived in Section 3 can be given similarly.

Theorem 6. Let $\psi_{m}(x)$ be the B-wavelet associated with the B-spline of order m, $N_{m}(x)$. Then there exists the following recurrence relation formula between $\psi_{m}(x)$ and $\psi_{m+1}(x), m=1,2, \cdots$,

$$
\begin{equation*}
\psi_{m+1}(x)=\sum_{k=\max \{0, \ell-4 m+1\}}^{\ell+1} b_{m+1, k} \int_{x-(k+1) / 2}^{x-k / 2} \psi_{m}(t) d t \tag{29}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\psi_{m+1}^{\prime}(x)=\sum_{k=\max \{0, \ell-4 m+1\}}^{\ell+1} b_{m+1, k}\left[\psi_{m}\left(x-\frac{k}{2}\right)-\psi_{m}\left(x-\frac{k+1}{2}\right)\right], \tag{30}
\end{equation*}
$$

where $x \in\left[\frac{\ell}{2}, \frac{\ell+1}{2}\right], \ell=0,1, \cdots, 4 m+1$, and $\left\{b_{m+1, k}\right\}$ is the set of coefficients of the expansion of $2 \frac{Q_{m+1}(z)}{Q_{m}(z)}$ in terms of z , which can be determined by the following formulas.

$$
\begin{align*}
& b_{m+1,0}=\bar{N}_{m+1}(0) / \bar{N}_{m}(0) \tag{31}\\
& b_{m+1, j}=\left(\bar{N}_{m+1}(j)-\sum_{\ell=0}^{j-1}(-1)^{\ell} b_{m+1, \ell} \bar{N}_{m}(3 m-2-\ell)\right) / \bar{N}_{m}(0) \tag{32}
\end{align*}
$$

for $j=0,1, \cdots, 3 m-2$, and

$$
\begin{equation*}
b_{m+1, j}=\left(\bar{N}_{m+1}(j)-\sum_{\ell=j-3 m+2}^{j-1}(-1)^{\ell} b_{m+1, \ell} \bar{N}_{m}(j-\ell)\right) / \bar{N}_{m+1}(0) \tag{33}
\end{equation*}
$$

for $j=3 m-1,3 m, \cdots, 4 m+2$, where

$$
\begin{equation*}
\bar{N}_{m}(k)=\sum_{\ell=0}^{m}\binom{m}{\ell} N_{2 m}(k+1-\ell) . \tag{34}
\end{equation*}
$$

Proof. From equation (25), we have

$$
\hat{\psi}_{m+1}(\omega)=Q_{m+1}(z) \hat{N}_{m+1}\left(\frac{\omega}{2}\right)
$$

Dividing the above equation by equation (25) side by side, we obtain

$$
\begin{equation*}
\frac{\hat{\psi}_{m+1}(\omega)}{\hat{\psi}_{m}(\omega)}=\frac{Q_{m+1}(z)}{Q_{m}(z)} \frac{\hat{N}_{m+1}\left(\frac{\omega}{2}\right)}{\hat{N}_{m}\left(\frac{\omega}{2}\right)} . \tag{35}
\end{equation*}
$$

Noting that $\hat{N}_{m+1}\left(\frac{\omega}{2}\right) / \hat{N}_{m}\left(\frac{\omega}{2}\right) \hat{N}_{1}\left(\frac{\omega}{2}\right)$, we have

$$
\begin{equation*}
\hat{\psi}_{m+1}(\omega)=\frac{Q_{m+1}(z)}{Q_{m}(z)} \hat{\psi}_{m}(\omega) \hat{N}_{1}\left(\frac{\omega}{2}\right) \tag{36}
\end{equation*}
$$

In order to express $\psi_{m+1}(x)$ in terms of $\psi_{m}(x)$, we need to find the inverse Fourier transformation of $\hat{\psi}_{m}(\omega) \hat{N}_{1}(\omega / 2)$ and the expression of $Q_{m+1}(z) / Q_{m}(z)$. Define $\hat{\bar{\psi}}(\omega)=$ $\hat{\psi}_{m}(\omega) \hat{N}_{1}\left(\frac{\omega}{2}\right)$. It follows that $\bar{\psi}_{n}(x)=2 \psi_{m}(x) * N_{1}(2 x)$ or, equivalently,

$$
\begin{aligned}
\bar{\psi}_{m}(x) & =2 \int_{-\infty}^{\infty} N_{1}(2 t) \psi_{m}(x-t) d t \\
& =2 \int_{0}^{\frac{1}{2}} \psi_{m}(x-t) d t
\end{aligned}
$$

Hence, if we write $2 Q_{m+1}(z) / Q_{m}(z)=\sum_{k=0}^{\infty} b_{m+1, k} z^{k}$ formally, from equation (36) we obtain

$$
\begin{align*}
\psi_{m+1}(x) & =\frac{1}{2} \sum_{k=0}^{\infty} b_{m+1, k} \bar{\psi}_{m}\left(x-\frac{k}{2}\right) \\
& =\sum_{k=0}^{\infty} b_{m+1, k} \int_{0}^{\frac{1}{2}} \psi_{m}\left(x-\frac{k}{2}-t\right) d t \\
& =\sum_{k=0}^{\infty} b_{m+1, k} \int_{x-\frac{k+1}{2}}^{x-\frac{k}{2}} \psi_{m}(t) d t \tag{37}
\end{align*}
$$

We will now determine the range of the summation in expression (37). Since supp $\psi_{m}=[0,2 m-1]$, we need that $x-\frac{k}{2} \geq 0$ and $x-\frac{k+1}{2} \leq 2 m-1$; i.e., $k \leq 2 x$ and $k \geq 2 x-4 m+1$. Hence, if $x \in\left[\frac{\ell}{2}, \frac{\ell+1}{2}\right]$, then $k \leq \ell+1$ and $k \geq \ell-4 m+1$. Where $\ell=0,1, \cdots, 4 m+2$ because $\left[\frac{\ell}{2}, \frac{\ell+1}{2}\right] \subset \operatorname{supp} \psi_{m}=[0,2 m-1]$. Therefore, we obtain equation (29). Equation (29) can be written in a more general form as follows:

$$
\psi_{m+1}(x)=\sum_{k=0}^{4 m+2} b_{m+1, k} \int_{x-\frac{k+1}{2}}^{x-\frac{k}{2}} \psi_{m}(t) d t
$$

or, equivalently,

$$
\begin{equation*}
\psi_{m+1}^{\prime}(x)=\sum_{k=0}^{4 m+2} b_{m+1, k}\left[\psi_{m}\left(x-\frac{k}{2}\right)-\psi_{m}\left(x-\frac{k+1}{2}\right)\right] \tag{38}
\end{equation*}
$$

where $x \in[0,2 m+1]$.
In order to complete the proof of the theorem, we only need to prove that the following expansion of $2 Q_{m+1}(z) / Q_{m}(z)$ exists and to give the expression of $\left\{b_{m+1, k}\right\}$.

$$
\begin{equation*}
2 \frac{Q_{m+1}(z)}{Q_{m}(z)}=\sum_{k=0}^{\infty} b_{m+1, k} z^{k} \tag{39}
\end{equation*}
$$

In fact, from [1], $Q_{m}(z)=-z E_{m}(-z) \overline{P_{m}(-z)}$, where $E_{m}(-z)$ is the Euler-Frobenius Laurent polynomial with respect to N_{m} and $P_{m}(z)=\left(\frac{1+z}{2}\right)^{m}$. Hence, $Q_{m+1}(z) / Q_{m}(z)=$
$\left(\frac{1-\bar{z}}{2}\right) E_{m+1}(-z) / E_{m}(-z)$ is zero-free and pole-free on $|z|=1$. It follows that expansion (34) exists on $|z|=1$. To find $\left\{b_{m+1, k}\right\}$, we write

$$
Q_{m}(z)=\sum_{k=0}^{3 m-2} \frac{(-1)^{k}}{2^{m-1}} \sum_{\ell=0}^{m}\binom{m}{\ell} N_{2 m}(k+1-\ell) z^{k}
$$

and

$$
Q_{m+1}(z)=\sum_{k=0}^{3 m+1} \frac{(-1)^{k}}{2^{m}} \sum_{\ell=0}^{m+1}\binom{m+1}{\ell} N_{2 m+2}(k+1-\ell) z^{k}
$$

It follows from equation (39) that

$$
\begin{align*}
& \sum_{j=0}^{\infty} b_{m+1, j} z^{j} \sum_{k=0}^{3 m-2} \frac{(-1)^{k}}{2^{m-1}} \sum_{\ell=0}^{m}\binom{m}{\ell} N_{2 m}(k+1-\ell) z^{k} \\
& \quad=\sum_{k=0}^{3 m+1} \frac{(-1)^{k}}{2^{m-1}} \sum_{\ell=0}^{m+1}\binom{m+1}{\ell} N_{2(m+1)}(k+1-\ell) z^{k} . \tag{40}
\end{align*}
$$

On the left hand side of equation (40), we exchange the last two summations, then take transform $k+j=k^{\prime}$. Noting that supp $\psi_{m}=[0,2 m-1]$, we finally obtain

$$
\begin{gather*}
\sum_{k^{\prime}=0}^{3 m+1} \sum_{j=0}^{4 m+2} b_{m+1, j} \frac{(-1)^{k^{\prime}-j}}{2^{m-1}} \sum_{\ell=0}^{m}\binom{m}{\ell} N_{2 m}\left(k^{\prime}-j+1-\ell\right) z^{k^{\prime}} \\
=\sum_{k=0}^{3 m+4} \frac{(-1)^{k}}{2^{m-1}} \sum_{\ell=0}^{m+1}\binom{m+1}{\ell} N_{2(m+1)}(k+1-\ell) z^{k} . \tag{41}
\end{gather*}
$$

Hence, for $k=0,1, \cdots, 3 m+1$, we have

$$
\begin{align*}
\sum_{j=0}^{4 m+2} & (-1)^{j} b_{m+1, j} \sum_{\ell=0}^{m}\binom{m}{\ell} N_{2 m}(k-j+1-\ell) \\
& =\sum_{\ell=0}^{m+1}\binom{m+1}{\ell} N_{2(m+1)}(k+1-\ell) \tag{42}
\end{align*}
$$

System (43) can be written as the following matrix form:

$$
\begin{equation*}
A_{m} \mathbf{b}_{m+1}=\mathbf{n}_{m+1} \tag{43}
\end{equation*}
$$

where $\mathbf{b}_{m+1}=\left(b_{m+1,0},-b_{m+1,1}, b_{m+1,2}, \cdots,-b_{m+1,4 m+1}, b_{m+1,4 m+2}\right), A_{m}=\left[a_{k, j}\right]_{k, j=0}^{4 m+2}=$ $\left[\bar{N}_{m}(k-j)\right]_{k, j=0}^{4 m+2}, \mathbf{n}_{m+1}=\left(\bar{N}_{m+1}(0), \bar{N}_{m+1}(1), \cdots, \bar{N}_{m+1}(4 m+2)\right)$, and $\bar{N}_{m}(k)$ is defined as equation (34). It is easy to have $\bar{N}_{m}(0)=N_{2 m}(1)=1 /(2 m-1)!, \bar{N}_{m}(1)=$ $\sum_{\ell=0}^{m}\binom{m}{\ell} N_{2 m}(2-\ell)=N_{2 m}(2)+m N_{2 m}(1), \ldots$, and $\bar{N}_{m}(3 m-2)=\sum_{\ell=0}^{m}\binom{m}{\ell} N_{2 m}(3 m-$
$1-\ell)=N_{2 m}(2 m-1)=1 /(2 m-1)!$. Note that $\bar{N}_{m}(i)=0$ if $i<0$ or $i>3 m-2$. Matrix A_{m} in (43) is actually

$$
A_{m}=\left[\begin{array}{ccccccc}
\bar{N}_{m}(0) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\bar{N}_{m}(1) & \bar{N}_{m}(0) & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\bar{N}_{m}(3 m-2) & \bar{N}_{m}(3 m-3) & \cdots & \bar{N}_{m}(0) & 0 & \cdots & 0 \\
0 & \bar{N}_{m}(3 m-2) & \cdots & \bar{N}_{m}(1) & \bar{N}_{m}(0) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \bar{N}_{m}(3 m-2) & \bar{N}_{m}(3 m-3) & \cdots & \bar{N}_{m}(0)
\end{array}\right]
$$

Thus, \mathbf{b}_{m+1} can be solved and can be expressed as formulas (31)-(33).
If we express $\psi_{m}(x)$ using their Bézier coefficients, from equation (38) we obtain the following recurrence algorithm for constructing $\psi_{m}(x)$ by using the Bézier coefficients in their Bernstein-Bézier expressions.

$$
\begin{equation*}
a_{k+1}^{m+1}(\ell)=a_{k}^{m+1}(\ell)+\frac{1}{2 m} \sum_{j=0}^{4 m+2} b_{m+1, j}\left[a_{k}^{m}(\ell+j)-a_{k}^{m}(\ell+j-1)\right] \tag{44}
\end{equation*}
$$

where $a_{p}^{r}(q)$ is the $p^{t h}$ Bézier coefficient of $\psi_{r}(x)$ over the interval $\left[\frac{\ell}{2}, \frac{\ell+1}{2}\right]$. Here the order of arrangement for the Bézier coefficients is in terms of the increase in powers of the second coordinate of the barycentric coordinates in the Bernstein-Bézier polynomial expression of the wavelets.

References

1. C. Chui, "An Introduction to Wavelets", Academic Press, Boston, 1991.
2. C. Chui, "Multivariate Splines", CBMS-NSF Series in Applied Math. No.54, SIAM Publ., Philadelphia, 1988.
3. C. Chui, and T. X. He, Computation of minimal and quasi-minimal supported bivariate splines, J. Comp. Math., 8(1990), 109-117.
4. I. Daubechies, "Ten Lectures on Wavelets", CBMS-NSF Series in Appl. Math., SIAM Publ., Philadelphia, 1992.
5. T. X. He, Spline Interpolation and Its Wavelet Analysis, in "Approximation Theory VIII", C. Chui and L. Schumaker (eds.), World Scientific Publishing Co., Inc., 1995, 143150.
6. T. X. He, Construction of boundary quadrature formulas using wavelets, in "Wavelet Applications in Signal and Image Processing III", A. F. Laine and M. A. Unser (eds.), SPIE-The International Society for Optical Engineering, 1995, pages 825-836.
7. T. X. He, Spline wavelet transforms, in "Proceedings of International Conference on Scientific Computing \& Modeling", Charleston Illinois, S. K. Dey and J. Ziebarth (eds.), 1996, 139-142.
8. T. X. He, Spline wavelet transforms II, in "Wavelet Applications in Signal and Image Processing IV", M. A. Unser, A. Aldroubi, and A. L. Laine (eds.), SPIE-The International Society for Optical Engineering, 1996, pages 488-491.
9. Y. Meyer, "Ondelettes et Opérateurs", Herman, Paris, 1990.
10. G. G. Walter, "Wavelets and Other Orthogonal Systems with Applications", CRC Press, Ann Arbor, 1994.
