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Abstract
In this paper, we will discuss Short Time Fourier transforms, integral wavelets trans-

forms, and wavelet series expansions associated with spline functions in shift-invariant
spaces of B-splines. A recurrence relation formula and the corresponding algorithm about
the B-wavelets will also be given.

1. Introduction
Let Nm(x) be the cardinal B-spline function of order m, and S(Nm(x)) be the shift-

invariant space of Nm(x) that is defined as the span of the integer translations of Nm(x).
Thus, sm ∈ S(Nm(x)) can be written as

sm(x) =
∑

j

cjNm(x− j), x ∈ R, j ∈ Z. (1)

Throughout, we will always assume {cj} ∈ `2.
We will discuss Short Time Fourier transforms (STFT), integral wavelet transforms

(IWT), and wavelet series expansions associated with sm(x) because of the following rea-
sons. First, the basic function of a cardinal B-spline interpolation from S(Nm(x)) can
be expressed as sm(x); the wavelet function associated with sm(x) can then be used for
numerical analysis. Second, by choosing a suitable {cj} , we can obtain an sm(x) as a
basic wavelet function although an Nm(x) could not be attained that has this property.
Third, we may use sm(x) as a scaling function to construct smooth and symmetric mother
wavelet functions. Finally, orthogonalization of wavelet functions associated with sm(x)
can be implemented by adjusting {cj}.

In Section 2, we will give the size of time-frequency window of the STFT associated
with the window function sm(x). The size of the window can be justified by its coefficient
set {cj}. In Section 3, we will give conditions under which an sm(x) can be a basic wavelet
function for IWT. In Section 4, we will discuss wavelet functions associated with sm(x)
that were derived in [5]. This type of wavelets can be considered as an extension of B-
wavelets (cf. [1]). In Section 5, we will give two different approaches for orthogonalization
of the wavelet functions associated with sm(x). The last section will give a recurrence
algorithm of sm(x) based on the recurrence relation of B-wavelets.
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2. Short Time Fourier Transforms

Let ŝm(ω) and N̂m(ω) be the Fourier transform of sm(x) and Nm(x) respectively.
Thus,

ŝm(ω) = C(z2)N̂m(ω), (2)
where

N̂m(ω) =
(

1− e−iω

iω

)m

, (3)

z = e−iω/2, and C(z2) =
∑

j cjz
2j =

∑
j cje

−iω is the symbol of {cj}. It is obvious, if
m ≥ 2, both xsm(x) and ωŝm(ω) ∈ L2(R). Thus, for m ≥ 2, sm(x) defined by (1) can be
considered as a window function for STFT

(Gbf)(ω) :=
∫ ∞

−∞
e−iωtf(t)sm(t− b)dt. (4)

We will find the center t∗ and the radius ∆sm of sm and the center ω∗ and the radius
∆ŝm of ŝm, the fourier transform of sm. Thus, the corresponding time-frequency window
can be determined. Since the set of the arbitrary coefficient {cj} are involved, the size of
window can be adjusted for certain purposes.

In order to find the centers and radiuses, we need the following lemmas.
Lemma 1. Let N̂m(ω) be the Fourier transform of the B-spline of order m, Nm(x),

shown in equation (3). Then

N̂m(ω) = N̂m(ω)eimω (5)
and

N̂ ′
m(ω) = mN̂m−1(ω)N̂ ′

1(ω). (6)

Proof. From equation (3), we obtain

N̂m(ω) = e−imω/2

(
sinω/2
ω/2

)m

.

Hence, equation (5) is obvious. Equation (6) can be derived immediately from the Fourier

transform of the B-spline of order m: N̂m(ω) =
(

1−e−iω

iω

)m

.

Lemma 2. Let Nm(x) be the B-spline of order m. Then∫ ∞

−∞
Nm(x)Nm(x+ `)dx = N2m(m− `), (7)∫ ∞

−∞
xNm(x)Nm(x+ `)dx =

m− `

2
N2m(m− `), (8)

and
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∫ ∞

−∞
x2Nm(x)Nm(x+ `)dx =

(m− `)2

2
N2m(m− `). (9)

Proof. By using the Parseval Identity, the recurrence relation Nn+1 = Nm ∗N1, and
Lemma 1, we can obtain expressions (7) and (8).

To prove the equation (9), we need an equation about the integral of x2Nm(x)Nm(x+
`). ∫ ∞

−∞
x2Nm(x)Nm(x+ `)dx

=
−1
2π

∫ ∞

−∞

(
N̂m(ω)

)′′
N̂m(ω)ei(m−`)ωdω

=
−1
2π

∫ ∞

−∞
[m(m− 1)N̂2m−2(ω)

(
N̂ ′

1(ω)
)2

+mN̂2m−1(ω)N̂ ′′
1 (ω)]ei(m−`)ωdω

=
−1
4π

∫ ∞

−∞
N̂ ′′

2m(ω)ei(m−`)ωdω +
1
2π

∫ ∞

−∞
[mN̂m−1(ω)N̂ ′

1(ω)]2ei(m−`)ωdω

=
1
2
(m− `)2N2m(m− `) +

∫ ∞

−∞
(m− `− x)xNm(x)Nm(m− `− x)dx

=
1
2
(m− `)2N2m(m− `) +

∫ ∞

−∞
(m− `)xNm(x)Nm(x+ `)dx

−
∫ ∞

−∞
x2Nm(x)Nm(x+ `)

Hence, by solving the last equation for
∫∞
−∞ x2Nm(x)Nm(x+ `)dx and using equation

(8), we obtain equation (9).
By using Lemma 2, we can find the center t∗ and the radius ∆sm

of sm as follows.

t∗ =
1

‖sm‖2

∫ ∞

−∞
x[sm(t)]2dt

=
1

‖sm‖2

∑
j

∑
j′

cjcj′

∫ ∞

−∞
Nm(t− j)Nm(t− j′)dt

=
1

‖sm‖2

∑
j

∑
j′

cjcj′
m+ j + j′

2
N2m(m+ j′ − j), (10)

and

∆sm
=

1
‖sm‖2

{
∫ ∞

−∞
(t− t∗)2[sm(t)]2dt} 1

2

=
1

‖sm‖2
{
∑

j

∑
j′

cjcj′

∫ ∞

−∞
(t2 − 2tt∗ + (t∗)2)Nm(t− j)Nm(t− j′)dt} 1

2

=
1

‖sm‖2
{
∑

j

∑
j′

1
2
cjcj′ [(m+ j′ − t∗)2 + (j − t∗)2]N2m(m+ j′ − j)} 1

2 , (11)
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where ‖sm‖2 =
∑

j

∑
j′ cjcj′N2m(m+ j′ − j).

To obtain ω∗ and ∆ŝm
, the center and the radius of ŝm, respectively, we need the

following ‖ŝm(ω)‖2 and Lemma 1.

‖ŝm(ω)‖2 = 2π‖sm‖2 = 2π
∑

j

∑
j′

cjcj′N2m(m+ j′ − j).

Thus,

ω∗ =
1

‖ŝm(ω)‖2

∫ ∞

−∞
ω|ŝm(ω)|2dω

=
∑

j

∑
j′

cjcj′

∫ ∞

−∞
ωN̂m(ω)e−ijωN̂m(ω)eij′ωdω

=
∑

j

∑
j′

cjcj′(2π)(−i)N ′
2m(m+ j′ − j)

= 0 (12)
and

∆ŝm
=

1
‖ŝm(ω)‖2

{
∫ ∞

−∞
ω2|ŝm(ω)|2dω} 1

2

=
1

‖ŝm(ω)‖2
{
∑

j

∑
j′

cjcj′

∫ ∞

−∞
ω2
(
N̂m(ω)

)2

ei(m+j′−j)ωdω} 1
2

=
1

‖ŝm(ω)‖2
{
∑

j

∑
j′

cjcj′(−2π)N ′′
2m(m+ j′ − j)} 1

2

=
√

2π
‖ŝm(ω)‖2

{
∑

j

∑
j′

cjcj′ [2N2m−2(m+ j′ − j − 1)−N2m−2(m+ j′ − j − 2)

−N2m−2(m+ j′ − j)]} 1
2 . (13)

Hence, we obtain the following theorem.
Theorem 1. sm(x), m ≥ 2, defines by (1) is a window function for Short Time

Fourier Transform shown in (4), which possesses a time-frequency window

[t∗ + b−∆sm , t
∗ + b+ ∆sm ]× [ω∗ + ω −∆ŝm , ω

∗ + ω + ∆ŝm ]

with width 2∆sm
and window area 4∆sm

δŝm
. Here t∗, ∆sm

∗, ω∗, and ∆ŝm
are defined in

(10), (11), (12), and (13), respectively.
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3. Wavelet Transforms

From the well-known admissibility condition of basic wavelet functions for wavelet
transforms, we can verify the following theorem.

Theorem 2. Let C(z) = C(e−iω) be the symbol of {Cj}, the coefficient set of the
summation in (1). If both C(z2)/ω1/2 = C(e−iω)/ω1/2 and C(z−2)/ω1/2 = C(eiω)/ω1/2

are in L2(0, 2π), then sm(x) defined in (1) is a basic wavelet. Relative sm(x), the integral
wavelet transform (IWT) on L2(R) is defined by

(Wsm
f)(b, a) := |a|−1/2

∫ ∞

−∞
f(t)sm

(
t− b

a

)
dt, (14)

f ∈ L2(R), where a, b ∈ R with a 6= 0.
Proof. It is sufficient to prove that Csm =

∫∞
−∞ |ŝm(ω)|2/|ω|dω <∞. In fact, noting

that
∑∞

k=−∞ |N̂m(ω + 2kπ)|2 ≤ 1, we have

Csm =
∫ ∞

−∞

|C(z2)|2

|ω|
|N̂m(ω)|2dω

=
∞∑

k=−∞

∫ (2k+1)π

2kπ

|C(e−iω)|2

|ω|
|N̂m(ω)|2dω

=
∞∑

k=−∞

∫ 2π

0

|C(e−iω)|2

|ω + 2kπ|
|N̂m(ω + 2kπ)|2dω

≤
∑

k 6=−1

∫ 2π

0

|C(e−iω)|2

|ω|
|N̂m(ω + 2kπ)|2dω +

∫ 2π

0

|C(e−iω)|2

|ω − 2π|
|N̂m(ω − 2π)|2dω

=
∫ 2π

0

|C(e−iω)|2

|ω|

∞∑
k=−∞

|N̂m(ω + 2kπ)|2dω

+
∫ 2π

0

|C(e−iω)|2

2π − ω
|N̂m(ω − 2π)|2dω −

∫ 2π

0

|C(e−iω)|2

ω
|N̂m(ω − 2π)|2dω

≤
∫ 2π

0

|C(e−iω)|2

|ω|
dω +

∫ 2π

0

|C(e−iω)|2

2π − ω
dω +

∫ 2π

0

|C(e−iω)|2

|ω|
dω

=2
∫ 2π

0

|C(e−iω)|2

|ω|
dω +

∫ 2π

0

|C(e−iω)|2

2π − ω
dω

=2
∫ 2π

0

|C(e−iω)|2

|ω|
dω +

∫ 2π

0

|C(eiω)|2

|ω|
dω.

In the last step of the above process, we use the integral substitution ω′ = 2π − ω in the
second integral. Thus, the proof is complete.

Corollary. If sm(x) defined by (1) is a basic function with the corresponding IWT
on L2(R) shown in (14), then C(1) = 0, i.e.,

∑
j cj = 0.
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4. Wavelet Series Expansions

Since Nm(x) possesses the finite two-scale relation (cf. Chui’s [1])

Nm(x) =
N∑

k=0

pm,kNm(2x− k), (15)

where

pm,k =
{

2−m+1
(
m
k

)
, for 0 ≤ k ≤ m;

0, otherwise,

sm(x) also possesses two-scale relation

sm(x) =
∑

k

p̃m,ksm(2x− k). (16)

In order to give the coefficients {p̃m,k}k, we make Fourier transform on both sides of (15)
and (16). Thus,

N̂m(ω) = Pm(z)N̂m(
ω

2
) (17)

and
ŝm(ω) = P̃m(z)ŝm(

ω

2
), (18)

where Pm(z) = 1
2

∑
k pm,kz

k =
(

1+z
2

)2 and P̃m(z) = 1
2

∑
k p̃m,kz

k are two-scale symbols of
{pm,k}k and {p̃m,k}k, respectively. Substituting (17) into expression (2), we have ŝm(ω) =
C(z2)Pm(z)N̂m(ω

2 ). On the other hand, from (2) we also have ŝm(ω
2 ) = C(z)N̂m(ω

2 ). Thus,
we have the following the relation between ŝm(ω) and ŝm(ω/2):

ŝm(ω) =
C(z2)Pm(z)

C(z)
ŝm(

ω

2
). (19)

Comparing (18) and (19), we obtain

P̃m(z) =
C(z2)Pm(z)

C(z)
=
C(z2)
C(z)

(
1 + z

2

)m

. (20)

Obviously, if C(z) is a finite symbol and C(z)|C(z2), the two-scale relation (15) is also of
finite terms.

Next, we discuss the corresponding wavelet function ψsm(x) associated with the scaling
function sm(x). First, we need

ψsm(x) =
∑

k

q̃m,ksm(2x− k), (21)

or equivalently,
ψ̂sm(ω) = Q̃m(z)ŝm(

ω

2
), (22)
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where z = e−iω/2, and Q̃m(z) is the two-scale symbol of {q̃m,k}k. In order to find {q̃m,k}k

or Q̃m(z), we consider the B-wavelet (cf. [1]) ψm(x) associated with B-spline Nm(x),

ψm(x) =
∑

k

qm,kNm(2x− k), (23)

where

qm,k =
{

(−1)k

2m−1

∑m
`=0

(
m
`

)
N2m(k + 1− `), 0 ≤ k ≤ 3m− 2,

0, otherwise.
(24)

The Fourier transform of (23) is (cf. [1])

ψ̂m(ω) = Qm(z)N̂m(
ω

2
), (25)

where z = e−iω/2, and Qm(z) is the two-scale symbol of {qm,k}k with the following ex-
pression (cf. equation (6.2.3) in [1]).

Qm(z) = −z−2

(
1− z

2

)m
K(z2)

E2m−1(z2)
E2m−1(−z), (26)

where K is in Wiener’s class W with K(z) 6= 0 for |z| = 1 and E2m−1(z) is 2m-1 order
Euler-Frobenius polynomial

E2m−1(z) = (2m− 1)!z−m+1
m−1∑
−m+1

N2m(m+ k)zk.

We now derive the expression of Q̃m(z). From equations (6.2.2) in [1], we obtain

Q̃m(z) = z−1Esm
(−z)P̃m(−z) K(z2)

Esm
(z2)

, |z| = 1, (27)

where K is also in Wiener’s class W with K(z) 6= 0 for |z| = 1, z = e−iω/2, and

Esm(z) =
∑

k

{
∫ ∞

−∞
sm(k + y)sm(y)dy}zk

=
∞∑

k=−∞

|ŝm(
ω

2
+ 2πk)|2.

Esm(z) can be expressed in terms of E2m−1(z). In fact,

Esm(z) =
∞∑

k=−∞

|φ̂m(
ω

2
+ 2πk)|2

=
∞∑

k=−∞

|C(z)|2|N̂m(
ω

2
+ 2πk)|2

= |C(z)|2
m−1∑

k=−m+1

N2m(m+ k)zk

= |C(z)|2 E2m−1(z)
(2m− 1)!zm−1

.
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Substituting the above expression of Esm(z) and equation (20) into equation (27), we
obtain

Q̃m(z) = (−1)m−1zm−2C(−z)
C(z2)

(
1− z̄

2

)m
K(z2)

E2m−1(z2)
E2m−1(−z)

= −z−2C(−z)
C(z2)

(
1− z

2

)m
K(z2)

E2m−1(z2)
E2m−1(−z).

Thus, comparing the above expression of Q̃m(z) and expression (26) of Qm(z), we have

Q̃m(z) =
1

(2m− 1)!
C(−z)
C(z2)

(
1− z

2

)m

E2m−1(−z) =
C(−z)
C(z2)

Qm(z). (28)

Secondly, we will prove ψsm(x) defined by equations (21), (22), and (28) is indeed
the wavelet function associated with sm(x). Therefore, we need to consider the following
matrix.

MP̃mQ̃m
=
(
P̃m(z) Q̃m(z)
P̃m(−z) Q̃m(−z)

)
.

Obviously, detMP̃mQ̃m
= Pm(z)Qm(−z)−Qm(z)Pm(−z) = detMPmQm

, where detMPmQm

is the determinant of the matrix MPmQm associated with the B-wavelet ψm. Thus,
detMP̃mQ̃m

6= 0 on the unit circle |z| = 1 because detMPmQm 6= 0 on |z| = 1. It follows that
ψsm

is the wavelet function associated with sm. That is, the family {ψsm
(· − k) : k ∈ Z},

which is governed by Q̃m(z) shown in equation (28), is a Riesz basis of W0.
To derive the decomposition relation of sm(2x− `), we define

G̃(z) =
Q̃m(−z)

detMP̃mQ̃m

=
C(z)
C(z2)

Qm(−z)
detMPmQm

=
C(z)
C(z2)

G(z)

and

H̃(z) = − P̃m(−z)
detMP̃mQ̃m

=
C(z2)
C(−z)

(
− Pm(−z)
detMPmQm

)
=

C(z2)
C(−z)

H(z),

where G(z) = Qm(−z)/detMPmQm
and H(z) = −Pm(−z)/detMPmQm

are defined as
equation (5.3.11) in [1].

It is also easy to prove that

MT
G̃H̃

·MP̃mQ̃m
=
(

1 0
0 1

)
= MP̃mQ̃m

·MT
G̃H̃

.

Also, Q̃m(z) and P̃m(z) satisfy the following conditions.

P̃m(1) = Pm(1) = 1, P̃m(−1) = Pm(−1) = 0, and Q̃m(1) = Qm(1) = 0.

We write the expansions of G̃(z) and H̃(z) as follows:

G̃(z) =
1
2

∑
n

g̃nz
n

and
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H̃(z) =
1
2

∑
n

h̃nz
n.

Thus, the following decomposition relation holds for all x ∈ R.

sm(2x− `) =
1
2

∞∑
−∞

[
g̃2k−`sm(x− k) + h̃2k−`ψsm

(x− k)
]
, ` ∈ Z.

Next, we will discuss the duals of ψsm
and the algorithms of decomposition and

reconstruction. Define

G̃∗(z) := G̃(z) = G̃

(
1
z

)
, |z| = 1,

H̃∗(z) := H̃(z) = H̃

(
1
z

)
, |z| = 1,

and
ˆ̃sm(ω) := Π∞

k=1G̃
∗(e−iω/2k

).

Thus, s̃m(x) is a dual scaling function of sm(x), and

ˆ̃
ψm(ω) := H̃∗(z)ˆ̃sm(ω)

gives the dual wavelet function ψ̃sm(ω)(x). Hence, by using a similar argument as that in
[1], we have the following theorem.

Theorem 3. Let {Vj} be the MRA generated by sm(x). If fj(x) ∈ Vj and gj(x) ∈Wj

with
fj(x) =

∑
k

cjksm(2jx− k), gj(x) =
∑

k

dj
kψsm

(2jx− k).

Then we have the following decomposition algorithm

cj−1
k =

1
2

∑
`

g̃2k−`c
j
` , dj−1

k =
1
2

∑
`

h̃2k−`c
j
` ,

and reconstruction algorithm

cjk =
∑

`

[
p̃m,k−2`c

j−1
` + q̃m,k−2`d

j−1
`

]
.
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5. Orthogonal MRA Generated By sm(x)

In this section, we discuss the orthogonal wavelets associated with certain sm(x).
We call a scaling function φ an orthogonal scaling function if φ yields an orthogonal
MRA; i.e., its corresponding mother wavelet function ψ gives a complete orthogonal system
{ψj,k = 2j/2ψ(2jx−k)} in L2(R). In the following we will give two approaches to construct
orthogonal scaling functions with the form defined in (1) by using the similar argument
shown in [10].

Theorem 4. Let C(z) be the symbol of {cj}, the set of coefficients shown in (1).
If |C(z2)|2 = 1/

∑
k |N̂m(ω + 2kπ)|2, then the corresponding scaling function sm(x) =∑

j cjNm(x) is an orthogonal scaling function and its Fourier transform is

ŝm(ω) = N̂m(ω)/
m−1∑
−m+1

N2m(m+ k)e−ikω

= N̂m(ω)/
∞∑
−∞

(
N̂m(·+m)

)
(ω + 2kπ),

where N̂2m(·+m) denotes the Fourier transform of N2m(x+m) and this Fourier transform
is evaluated at ω + 2kπ.

Proof. If ∑
k

|ŝm(ω + 2kπ)|2 = |C(z2)|2
∑

k

|N̂m(ω + 2kπ)|2 = 1,

then sm(x) generates an orthogonal MRA. Thus, we obtain that |C(z2)|2 = 1/
∑

k |N̂m(ω+
2kπ)|2. By using the Theorem 2.28, and identities (4.2.14) and (4.6.8) in [1], we may prove
Theorem 4.

Theorem 5. Suppose that sm(x) defined in (1) satisfies sm(x) = 0 for |x| ≥ a. If
C(1) = 3a

π ; i.e.,
∑

j cj = 3a
π , then the corresponding sm(x) yields an orthogonal scaling

function φsm
(x) with its Fourier transform

φ̂sm(ω) =
(∫ ω+π

ω−π

sm

(
3ax
π

)
dx

) 1
2

.

Proof. Suppose supp sm(x) ⊂ [−a, a]. Thus, supp sm( 3ax
π ) ⊂ [−π

3 ,
π
3 ]. It is obvious

that φsm(x) generates an orthogonal MRA if
∑

k∈Z |φ̂sm(ω + 2kπ)|2 = 1.
∑

k∈Z |φ̂sm(ω +
2kπ)|2 = 1 can be simplified as follows:∑

k∈Z

|φ̂sm(ω + 2kπ)|2 =
∑
k∈Z

∫ ω+π(2k+1)

ω+π(2k−1)

sm

(
3ax
π

)
dx

=
∫ ∞

−∞
sm

(
3ax
π

)
dx

=
∫ π/3

−π/3

sm

(
3ax
π

)
dx.
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Thus, φsm(x) generates an orthogonal MRA if∫ π/3

−π/3

sm

(
3ax
π

)
dx = 1.

On the other hand, from the definition of sm, equation (1), we obtain∫ π/3

−π/3

sm

(
3ax
π

)
dx =

∑
j

cj

∫ π/3

−π/3

Nm

(
3ax
π

− j

)
dx

=
∑

j

cj
π

3a

∫ a

−a

Nm(x− j)dx

=
π

3a

∑
j

cj .

Thus, if
∑

j cj = 3a
π , the corresponding φsm generates MRA.

Obviously, φ̂2
sm

(ω) is a Cm−1 continuous function that satisfies

φ̂2
sm

=

 1 |ω| < 2π
3 ,

g(|ω|) 2π
3 ≤ |ω| ≤ 4π

3 ,
0 |ω| > 4π

3 ,

where g(ω) and g(−ω) are symmetric about the origin and are defined on 2π
3 ≤ ω ≤ 4π

3
and − 4π

3 ≤ ω ≤ − 2π
3 , respectively. For instance, if s1(x) = c0N1(x) + c−1N1(x + 1),

c0+c1 = 3
π , then g(|ω|) = 3

2π

(
4π
3 − |ω|

)
. If s2(x) = c0N2(x)+c−1N2(x+1)+c−2N2(x+2),

c0 + c−1 + c−2 = 6
π , then the Bernstein-Bézier expression of g(ω) is

g(ω) =
∑

i+j=2

aij
2!
i!j!

uivj ,

where u and v are the corresponding barycentric coordinates of ω when ω ∈ [ 2π
3 , π] and

[π, 4π
3 ], respectively. The corresponding Bézier coefficients, [a2,0, a1,1, a0,2], of g(ω), are

[1, 1, 1
2 ] and [ 12 , 0, 0] when ω ∈ [ 2π

3 , π] and ω ∈ [π, 4π
3 ], respectively. g(−ω) can be found by

symmetry.
The φsm

is a Meyer type scaling function with dilation condition

φ̂sm
(ω) = m0

(ω
2

)
φ̂sm

(ω
2

)
,

where m0

(
ω
2

)
is defined on [−2π, 2π] as

m0

(ω
2

)
=
{
φ̂sm

(ω) |ω| ≤ 4π
3 ,

0 4π
3 < |ω| ≤ 2π

and is extended 4π periodically to all ω ∈ R. Hence, the corresponding wavelet ψsm

satisfies
ψ̂sm(ω) = e−iω/2m0

(ω
2

+ π
)
φ̂
(ω

2

)
.
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6. Recurrence Algorithm of B-wavelets

In this section, we will give a recurrence relation of B-wavelets in terms of their
orders and the corresponding algorithm. Hence, a recurrence algorithm for construction
of wavelets derived in Section 3 can be given similarly.

Theorem 6. Let ψm(x) be the B-wavelet associated with the B-spline of order m,
Nm(x). Then there exists the following recurrence relation formula between ψm(x) and
ψm+1(x), m = 1, 2, · · · ,

ψm+1(x) =
`+1∑

k=max{0,`−4m+1}

bm+1,k

∫ x−k/2

x−(k+1)/2

ψm(t)dt, (29)

or, equivalently,

ψ′m+1(x) =
`+1∑

k=max{0,`−4m+1}

bm+1,k

[
ψm

(
x− k

2

)
− ψm

(
x− k + 1

2

)]
, (30)

where x ∈ [ `
2 ,

`+1
2 ], ` = 0, 1, · · · , 4m + 1, and {bm+1,k} is the set of coefficients of the

expansion of 2Qm+1(z)
Qm(z) in terms of z, which can be determined by the following formulas.

bm+1,0 = N̄m+1(0)/N̄m(0), (31)

bm+1,j =

(
N̄m+1(j)−

j−1∑
`=0

(−1)`bm+1,`N̄m(3m− 2− `)

)
/N̄m(0), (32)

for j = 0, 1, · · · , 3m− 2, and

bm+1,j =

N̄m+1(j)−
j−1∑

`=j−3m+2

(−1)`bm+1,`N̄m(j − `)

 /N̄m+1(0), (33)

for j = 3m− 1, 3m, · · · , 4m+ 2, where

N̄m(k) =
m∑

`=0

(
m

`

)
N2m(k + 1− `). (34)

Proof. From equation (25), we have

ψ̂m+1(ω) = Qm+1(z)N̂m+1(
ω

2
).

Dividing the above equation by equation (25) side by side, we obtain

ψ̂m+1(ω)

ψ̂m(ω)
=
Qm+1(z)
Qm(z)

N̂m+1(ω
2 )

N̂m(ω
2 )

. (35)

Noting that N̂m+1(ω
2 )/N̂m(ω

2 )N̂1(ω
2 ), we have

ψ̂m+1(ω) =
Qm+1(z)
Qm(z)

ψ̂m(ω)N̂1(
ω

2
). (36)
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In order to express ψm+1(x) in terms of ψm(x), we need to find the inverse Fourier
transformation of ψ̂m(ω)N̂1(ω/2) and the expression of Qm+1(z)/Qm(z). Define ˆ̄ψ(ω) =
ψ̂m(ω)N̂1(ω

2 ). It follows that ψ̄n(x) = 2ψm(x) ∗N1(2x) or, equivalently,

ψ̄m(x) = 2
∫ ∞

−∞
N1(2t)ψm(x− t)dt

= 2
∫ 1

2

0

ψm(x− t)dt.

Hence, if we write 2Qm+1(z)/Qm(z) =
∑∞

k=0 bm+1,kz
k formally, from equation (36) we

obtain

ψm+1(x) =
1
2

∞∑
k=0

bm+1,kψ̄m(x− k

2
)

=
∞∑

k=0

bm+1,k

∫ 1
2

0

ψm(x− k

2
− t)dt

=
∞∑

k=0

bm+1,k

∫ x− k
2

x− k+1
2

ψm(t)dt. (37)

We will now determine the range of the summation in expression (37). Since supp
ψm = [0, 2m − 1], we need that x − k

2 ≥ 0 and x − k+1
2 ≤ 2m − 1; i.e., k ≤ 2x and

k ≥ 2x − 4m + 1. Hence, if x ∈ [ `
2 ,

`+1
2 ], then k ≤ ` + 1 and k ≥ ` − 4m + 1. Where

` = 0, 1, · · · , 4m + 2 because [ `
2 ,

`+1
2 ] ⊂ suppψm = [0, 2m − 1]. Therefore, we obtain

equation (29). Equation (29) can be written in a more general form as follows:

ψm+1(x) =
4m+2∑
k=0

bm+1,k

∫ x− k
2

x− k+1
2

ψm(t)dt

or, equivalently,

ψ′m+1(x) =
4m+2∑
k=0

bm+1,k[ψm(x− k

2
)− ψm(x− k + 1

2
)], (38)

where x ∈ [0, 2m+ 1].
In order to complete the proof of the theorem, we only need to prove that the following

expansion of 2Qm+1(z)/Qm(z) exists and to give the expression of {bm+1,k}.

2
Qm+1(z)
Qm(z)

=
∞∑

k=0

bm+1,kz
k. (39)

In fact, from [1], Qm(z) = −zEm(−z)Pm(−z), where Em(−z) is the Euler-Frobenius
Laurent polynomial with respect to Nm and Pm(z) =

(
1+z
2

)m. Hence, Qm+1(z)/Qm(z) =

13



(
1−z̄
2

)
Em+1(−z)/Em(−z) is zero-free and pole-free on |z| = 1. It follows that expansion

(34) exists on |z| = 1. To find {bm+1,k}, we write

Qm(z) =
3m−2∑
k=0

(−1)k

2m−1

m∑
`=0

(
m

`

)
N2m(k + 1− `)zk

and

Qm+1(z) =
3m+1∑
k=0

(−1)k

2m

m+1∑
`=0

(
m+ 1
`

)
N2m+2(k + 1− `)zk.

It follows from equation (39) that

∞∑
j=0

bm+1,jz
j

3m−2∑
k=0

(−1)k

2m−1

m∑
`=0

(
m

`

)
N2m(k + 1− `)zk

=
3m+1∑
k=0

(−1)k

2m−1

m+1∑
`=0

(
m+ 1
`

)
N2(m+1)(k + 1− `)zk. (40)

On the left hand side of equation (40), we exchange the last two summations, then take
transform k + j = k′. Noting that suppψm = [0, 2m− 1], we finally obtain

3m+1∑
k′=0

4m+2∑
j=0

bm+1,j
(−1)k′−j

2m−1

m∑
`=0

(
m

`

)
N2m(k′ − j + 1− `)zk′

=
3m+4∑
k=0

(−1)k

2m−1

m+1∑
`=0

(
m+ 1
`

)
N2(m+1)(k + 1− `)zk. (41)

Hence, for k = 0, 1, · · · , 3m+ 1, we have

4m+2∑
j=0

(−1)jbm+1,j

m∑
`=0

(
m

`

)
N2m(k − j + 1− `)

=
m+1∑
`=0

(
m+ 1
`

)
N2(m+1)(k + 1− `). (42)

System (43) can be written as the following matrix form:

Ambm+1 = nm+1, (43)

where bm+1 = (bm+1,0,−bm+1,1, bm+1,2, · · · ,−bm+1,4m+1, bm+1,4m+2), Am = [ak,j ]4m+2
k,j=0 =

[N̄m(k − j)]4m+2
k,j=0 , nm+1 = (N̄m+1(0), N̄m+1(1), · · · , N̄m+1(4m + 2)), and N̄m(k) is de-

fined as equation (34). It is easy to have N̄m(0) = N2m(1) = 1/(2m − 1)!, N̄m(1) =∑m
`=0

(
m
`

)
N2m(2 − `) = N2m(2) +mN2m(1), ..., and N̄m(3m − 2) =

∑m
`=0

(
m
`

)
N2m(3m −
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1− `) = N2m(2m− 1) = 1/(2m− 1)!. Note that N̄m(i) = 0 if i < 0 or i > 3m− 2. Matrix
Am in (43) is actually

Am =



N̄m(0) 0 · · · 0 0 · · · 0
N̄m(1) N̄m(0) · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
N̄m(3m− 2) N̄m(3m− 3) · · · N̄m(0) 0 · · · 0

0 N̄m(3m− 2) · · · N̄m(1) N̄m(0) · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · N̄m(3m− 2) N̄m(3m− 3) · · · N̄m(0)


.

Thus, bm+1 can be solved and can be expressed as formulas (31)-(33).
If we express ψm(x) using their Bézier coefficients, from equation (38) we obtain the

following recurrence algorithm for constructing ψm(x) by using the Bézier coefficients in
their Bernstein-Bézier expressions.

am+1
k+1 (`) = am+1

k (`) +
1

2m

4m+2∑
j=0

bm+1,j [am
k (`+ j)− am

k (`+ j − 1)] , (44)

where ar
p(q) is the pth Bézier coefficient of ψr(x) over the interval [ `

2 ,
`+1
2 ]. Here the order

of arrangement for the Bézier coefficients is in terms of the increase in powers of the second
coordinate of the barycentric coordinates in the Bernstein-Bézier polynomial expression of
the wavelets.
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