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Abstract
In this paper, we will discuss Short Time Fourier transforms, integral wavelets trans-
forms, and wavelet series expansions associated with spline functions in shift-invariant
spaces of B-splines. A recurrence relation formula and the corresponding algorithm about
the B-wavelets will also be given.

1. Introduction
Let N,,(x) be the cardinal B-spline function of order m, and S(N,,(z)) be the shift-
invariant space of N,,(z) that is defined as the span of the integer translations of N, (z).
Thus, s,, € S(N,,(z)) can be written as

sm(x):chNm(a:—j), rEeER,jE. (1)

Throughout, we will always assume {c;} € /5.

We will discuss Short Time Fourier transforms (STFT), integral wavelet transforms
(IWT), and wavelet series expansions associated with s,,(z) because of the following rea-
sons. First, the basic function of a cardinal B-spline interpolation from S(N,,(x)) can
be expressed as s,,(z); the wavelet function associated with s,,(x) can then be used for
numerical analysis. Second, by choosing a suitable {c;} , we can obtain an s,,(x) as a
basic wavelet function although an N,,(x) could not be attained that has this property.
Third, we may use s,,(x) as a scaling function to construct smooth and symmetric mother
wavelet functions. Finally, orthogonalization of wavelet functions associated with s, (z)
can be implemented by adjusting {c;}.

In Section 2, we will give the size of time-frequency window of the STFT associated
with the window function s,,(x). The size of the window can be justified by its coefficient
set {c;}. In Section 3, we will give conditions under which an s,,(x) can be a basic wavelet
function for IWT. In Section 4, we will discuss wavelet functions associated with s,,(z)
that were derived in [5]. This type of wavelets can be considered as an extension of B-
wavelets (cf. [1]). In Section 5, we will give two different approaches for orthogonalization
of the wavelet functions associated with s,,(x). The last section will give a recurrence
algorithm of s,,(x) based on the recurrence relation of B-wavelets.



2. Short Time Fourier Transforms

Let 4 (w) and Ny, (w) be the Fourier transform of s,(z) and N,,(z) respectively.
Thus,

Sm(w) = C(ZQ)Nm(W)a (2)
where ’
Non(w) = (%) , (3)

z = e /2 and C(2?) = > cjz? = > cje” ™ is the symbol of {c¢;}. It is obvious, if
m > 2, both xs,,(r) and ws,,(w) € L*(R). Thus, for m > 2, s,,(x) defined by (1) can be
considered as a window function for STFT

oo

(Gof)(w) = / e (8)sm(t — B)dt. (4)

— o0

We will find the center ¢* and the radius Ay, of s, and the center w* and the radius
Ag, of ,,, the fourier transform of s,,. Thus, the corresponding time-frequency window
can be determined. Since the set of the arbitrary coefficient {c,} are involved, the size of
window can be adjusted for certain purposes.

In order to find the centers and radiuses, we need the following lemmas.

Lemma 1. Let N,,(w) be the Fourier transform of the B-spline of order m, N, (x),
shown in equation (3). Then

N (w) = Ny (w)e™ (5)
and
Ny (@) = mNp 1 (0) V] (w). (6)

Proof. From equation (3), we obtain

R . i 2\ ™
N,, — ,—imw/2 Slnw/ )
(@) = emar2 (2

Hence, equation (5) is obvious. Equation (6) can be derived immediately from the Fourier

transform of the B-spline of order m: N,, (w) = (1_eﬂ'w>

w

Lemma 2. Let N,,(z) be the B-spline of order m. Then

/_ N () Now (1 + £)d = Now (m — ), (1)
/_Oo 2N () Ny (z + 0)da = m; € Ny (m — 0), (8)

and



/ h 22Ny () Ny (2 4 0)dx = MNgm(m —0). (9)

— 00
Proof. By using the Parseval Identity, the recurrence relation N, 11 = N, * N1, and
Lemma 1, we can obtain expressions (7) and (8).
To prove the equation (9), we need an equation about the integral of 2N, ()N, (x+
0).

/OO 22Ny (2) Ny (2 + £)dax

— 00

-1 o0 N "o .
=5 - (Nm (w)) Ny (w)e ™ =O%
—1

= 5= [ (m — 1) Napy—2(w) (N{ (w))2 + M Nay—1 (W) N (w)]e 0% duy

1 [ N - .
_ 1 / N @)™ 0t o [ s (@)K ()P0
™ — 00

- 5(m 0)2Noy (m — £) + /_Oo(m = )N ()N (m — £ — 2)da
= %(m — 0)*> Ny (m — 0) + /_O;(m — 0)xNp, () Ny (x 4+ £)dx

_ /OO 22N, (2)Now (2 + £)

— 00

Hence, by solving the last equation for [*_ 22Ny, (2) Ny, (z 4+ €)dz and using equation
(8), we obtain equation (9).
By using Lemma 2, we can find the center ¢t* and the radius A, of s,, as follows.

R /OO 2l ()] 2dt

[5ml* J-oc
1 > . .
- m 22 e [Nt nta =
m+j+ 3’
HS ”2 ZZCJ Cj TN%n(m"i_] _.7) (10)

and

1 OO *\2 2 %
Bom = W{/ (t =) [sm(t)]dt}
||8 ||2{ZZCJCJ / — 2tt* + ( *)Q)Nm(t_j)Nm(t—j’)dt}%

- ||3m||2.{ZZ §Cj0j’[(m+j' —t*)2 4+ (j — t*)?] Ny (m + 5 _j)}% (11)



where [[s,,[|2 = 32, 3" ¢jcjr Nag (m + 5" — j).
To obtain w* and Aj; , the center and the radius of 3,,, respectively, we need the
following ||3,,(w)||?* and Lemma 1.

13 (@)I* = 2llsml® = 20 ) > " ¢jej Nowm(m + 5 = j).

i 7

Thus,

1 /OO . 9
W= ———— W8 m (W) |“dw
18m (W) 17 —oo
= Zchcj// W, (w)e™ % N, (w)eH ™ duw
—}:}:%% (2m) (=) NG, (m + ' — )

_ 0 (12)

and

S = ol P
m;w |2{ZZC]CJ/ w (Nm(w))zei(mﬂl_j)wdw}%

(1w ||2{ZZC]CJ 271' N// (m—l—j/_])}%

27r y y . .
B W{ZZ%/PMWW +7 = —1) = Noma(m+j" —j—2)
" j

— Nopa(m + §' — )]}2. (13)

Hence, we obtain the following theorem.

Theorem 1. s,,(z), m > 2, defines by (1) is a window function for Short Time
Fourier Transform shown in (4), which possesses a time-frequency window

[t +b— A5 " +b+ A | X [w +w—A;, ,w" +w+ Ag, ]

with width 2A =~ and window area 4A;, J;, . Here t*, A, *, w*, and A; are defined in

(10), (11), (12), and (13), respectively.



3. Wavelet Transforms

From the well-known admissibility condition of basic wavelet functions for wavelet
transforms, we can verify the following theorem.

Theorem 2. Let C(z) = C(e™™) be the symbol of {C;}, the coefficient set of the
summation in (1). If both C(2?)/w'/? = C(e™™)/w'/? and C(272)/w!/? = C(e™)/w'/?
are in L2(0,27), then s,,(z) defined in (1) is a basic wavelet. Relative s,,(z), the integral
wavelet transform (IWT) on L?(R) is defined by

(W £)00) = o2 [ fiogsn (50 ). (1)

f € L3(R), where a,b € R with a # 0.
Proof. It is sufficient to prove that Cs,, = [ w)|?*/|w|dw < co. In fact, noting

that 205 [N (w + 2k7)|? < 1, we have

o'} 2112
Csm :/ ‘C(Z )’ |Nm(w)|2dw

w]
o (2k+1)7 —iw\|2
_ Z / M\Nm(w)|2dw
2km |w|

27 ’C —zw 9
Z \w—l—Qk ‘ |N (w+ 2km)|*dw

2m —iw 2 —iw)|2
Z/ u|N (w + 2km)| dw-l—/ M|Nm(w—2w)|2dw

o o] o =211
27 —fw\ |2 X
:/ IO ™ R+ 2hm) P
0 |w] e — oo
27 —w\ 1|2 27 —tw) |2
—|—/ M|Nm(w—2w)|2dw—/ m|]\fm(u)—27r)|2dw
0 2T — w 0 w
27 —iw) |2 27 —iw) |2 2 —iw) |2
< [Tl Ry, MO, [TIOCE,
0 |w] 0 2T —w 0 |w]
27 —iw)|2 27 —iw)|2
0 |w] 0 2r—w
27 —iw) |2 2 w2
9 / G, o / [CE)F .
0 |w] 0 |w]

In the last step of the above process, we use the integral substitution w’ = 27 — w in the
second integral. Thus, the proof is complete.

Corollary. If s,,(z) defined by (1) is a basic function with the corresponding IWT
on L*(R) shown in (14), then C(1) =0, i.e., > ¢; =0



4. Wavelet Series Expansions

Since N,,(x) possesses the finite two-scale relation (cf. Chui’s [1])

N

Np(2) =3 pmpNm (22 — k), (15)
k=0

where
I ian (7,?), for 0 < k <m;
Pm,k = .
0, otherwise,

Sm(x) also possesses two-scale relation

Sm(x) = Zﬁmksm@x — k). (16)
k

In order to give the coefficients {pp, r }x, we make Fourier transform on both sides of (15)
and (16). Thus,

Nn(@) = Pr(2) N (5) (17)

and

); (18)

where P,(z) = 23, pmp2" = (izz)z and Py, (z) = 2 31 Pm,k2" are two-scale symbols of
{Pm.k i and {pm, i }r, respectively. Substituting (17) into expression (2), we have §,, (w) =
C(2%) P (2) Ny (%). On the other hand, from (2) we also have §,, (%) = C(Z)Nm(g) Thus,
we have the following the relation between §,,(w) and §,,(w/2):

Sm(w) = o) Sm(5)- (19)
Comparing (18) and (19), we obtain

~ _C(ZA)Pu(z)  C(2%) (1+2\"

P =S5 = (57 2

Obviously, if C(z) is a finite symbol and C(2)|C(z?), the two-scale relation (15) is also of
finite terms.

Next, we discuss the corresponding wavelet function 1,  (x) associated with the scaling
function s,,(x). First, we need

wsm (ZZJ) = Z Qm,kSM(2x - k)a (21)
k

or equivalently,

Qﬁsm (W) = Qm(2)3m(5), (22)



where z = e~/ and Q,,(2) is the two-scale symbol of {G, x}x. In order to find {Gm.x }x
or Qm(z), we consider the B-wavelet (cf. [1]) ¥y, (z) associated with B-spline N,,(z),

x) = Z Gm.xNm (22 — k), (23)
k
where
(=1)F 5~m  (m
qu:{zm—_l Vo (M Nam(k+1—10), 0<k<3m-—2, (24)
7 0, otherwise.
The Fourier transform of (23) is (cf. [1])
5 S
V(W) = Qm(z)Nm(§)7 (25)

where z = e7™/2 and Q,,(z) is the two-scale symbol of {g,, 1} with the following ex-
pression (cf. equation (6.2.3) in [1]).
1- z)m K(2?)

Qum(z) = =272 < 9 Eom—1(22)

where K is in Wiener’s class W with K(z) # 0 for |z| = 1 and Es,,—1(z) is 2m-1 order
Euler-Frobenius polynomial

Egm_l(—z), (26)

m—1

Eom1(2) = (2m — 1)1z Y Ny (m + k)2F
—m+1

We now derive the expression of Q,,(z). From equations (6.2.2) in [1], we obtain
K(2?)
ESTYL (22) ’
where K is also in Wiener’s class W with K (z) # 0 for |z| = 1, z = e~*/2, and

Z{/ b+ )5 (@)}

Z |sm + 27k)|2.

k=—o0

Qm(2> = ZﬁlEsm(_z)Pm(_Z) |Z| =1, (27)

Es, (2) can be expressed in terms of Ea,,_1(z). In fact,

Z ’(bm +27Tk?)|

k=—o0

= Z 1C(2) 2| N ( +27rk)|
k=—o0
m—1
—|CEE Y Nam(m+ k)2
k=—m+1
Eym-1(2)
(2m — 1)lzm—1"

=|C(2)f*

7



Substituting the above expression of Ej (z) and equation (20) into equation (27), we
obtain

O (2) = (—1)n-1zm-2C(=2) (1—z)m K(22) B s(—2)

C(ZQ) 2 Egm_l(ZQ)
LO0(—2) ([1—-2\" K(2?)
) ( 2 ) B2 (8) 2 (72)
Thus, comparing the above expression of Q,,(z) and expression (26) of Q,,(z), we have
~ B 1 C(—2) [1-2\" _ C(—2)
@m(2) = (2m — 1)! C(22) ( 2 ) Bam-1(=2) = C(22) @m(2): (28)

Secondly, we will prove 1, (z) defined by equations (21), (22), and (28) is indeed
the wavelet function associated with s,,(x). Therefore, we need to consider the following
matrix.

M~ ~ — < ij(z Qm(z) )
P =\ Po(-2) Qui-2))
Obviously, det Mp 5 = Pn(2)Qm(—2)—Qm(2)Pn(—2) = det Mp,,q,,, where det Mp,,q,,
is the determinant of the matrix Mp, o, associated with the B-wavelet 1,,. Thus,
det Mp 5 7 0on the unit circle [z| = 1 because det Mp,,q,, # 0on |z| = 1. It follows that
s, 1s the wavelet function associated with s,,. That is, the family {¢s, (- — k) : k € Z},
which is governed by Q,,(z) shown in equation (28), is a Riesz basis of Wj.
To derive the decomposition relation of s,,(2z — ¢), we define

Oz = Om(=2) _ C() Qu(z2) _ C()
det Mlz.m@m C(Z2) det MPQO C('ZQ)

and

7y —_ Pn(=2)  _CGP) ( Pu(=2) \ _ C()
H(z) = det Mp, o C(—2) < detMmem) - H(z),

where G(z) = Qm(—=2)/det Mp, ¢, and H(z) = —P,(—z)/det Mp, q, are defined as
equation (5.3.11) in [1].
It is also easy to prove that

T _ (1 0) _ T
Méy - Mp, g, = (0 1) =Mp, 5, Mag-
Also, Qun(2) and Py, (2) satisfy the following conditions.
Pn(1)=Pn(1)=1, P,(-1)=P,(-1)=0, and Qmn(l)=Qmn(1)=0.
We write the expansions of G(z) and H(z) as follows:
. . .
G(z) = 2 ;gnz

and



1 7 .n
Thus, the following decomposition relation holds for all x € R.

s (22— 0) = % S [farcesm(@ — k) + hoi_pthn, (2~ B)] . €€ 2

— 00

Next, we will discuss the duals of 1, and the algorithms of decomposition and
reconstruction. Define

and

Vi (W) 1= H*(2)5(w)

gives the dual wavelet function ¢, (w)(x). Hence, by using a similar argument as that in
[1], we have the following theorem.
Theorem 3. Let {V;} be the MRA generated by s,,(x). If f;(z) € V; and g;(x) € W;

with ‘
fj(ac):Zchstjx— , Zd Vs, (272 — k).
k

Then we have the following decomposition algorithm

1 .
o 252921@40%, dt = Zh2k 0},

¢
and reconstruction algorithm

A= [Prk2ec ™ + 20t}

L



5. Orthogonal MRA Generated By s,,(z)

In this section, we discuss the orthogonal wavelets associated with certain s,,(x).
We call a scaling function ¢ an orthogonal scaling function if ¢ yields an orthogonal
MRA; i.e., its corresponding mother wavelet function v gives a complete orthogonal system
{¢jx = 2/%p(27x—k)} in L?(R). In the following we will give two approaches to construct
orthogonal scaling functions with the form defined in (1) by using the similar argument
shown in [10].

Theorem 4. Let C(z) be the symbol of {c;}, the set of coefficients shown in (1).
If |C(z*)> = 1/, [N (w + 2kn)|?, then the corresponding scaling function s,,(r) =
>_; ¢ Nim () is an orthogonal scaling function and its Fourier transform is

m—1

$m(@) = Nin(w)/ > Nog(m + k)e '+
—m+1

/Z( )(w+2k7r)

where Na,y, (-4 m) denotes the Fourier transform of Na,, (z+m) and this Fourier transform
is evaluated at w + 2km.
Proof. If

D m(w + 2km) [P = [C(2P) D [Non (w + 2km)| =
k k

then s,,(z) generates an orthogonal MRA. Thus, we obtain that |C/(22)|> = 1/ 3, | N (w+
2km)|?. By using the Theorem 2.28, and identities (4.2.14) and (4.6.8) in [1], we may prove
Theorem 4.

Theorem 5. Suppose that s,,(x) defined in (1) satisfies s,,(z) = 0 for |z| > a. If
C(1) = 32; ie, > = 30 then the corresponding s,,(z) yields an orthogonal scaling
function ¢, (z) with its Fourier transform

1
w—+m 2
- 3
b= ([ on () )
w—Tr ™
Proof. Suppose supp s,,(z) C [—a,a]. Thus, supp s, (22) C [—% z]. It is obvious

that ¢, (x) generates an orthogonal MRA if }~, _, s, (w+2km)2=1. 3, ez bs. (w+
2k7)|? = 1 can be simplified as follows:

2 wHm(2k+1)
St X [ ()
s

kezZ kez /wtm(2k—1)

:/ . (3aaz> i
oo s
/3
:/ Sm, (3a_x> dx.
—7/3 ™

10



Thus, ¢s,, () generates an orthogonal MRA if

/3
/ Sm, (3(1—:”> dr = 1.
—7/3 ™

On the other hand, from the definition of s,,, equation (1), we obtain

/3 /3
/ Sm (3a_x) dr = E c;j N, (3a_x — j) dx
—7/3 ™ P —7/3 ™

Thus, if ) ;6= 3?“, the corresponding ¢ = generates MRA.

Obviously, g%m (w) is a C™~! continuous function that satisfies

) 1 w| < 2&
0:, =q 9w F < |W| <%
0 |w| > 4ir
where g(w) and g(—w) are symmetric about the origin and are defined on 2f < w < 4%
and - < w < -2, respectlvely For instance, if s1(z) = coNi(x) + c_1N1(z + )
co+c1 = 2, then g(|w|) o (4 — |w]). If s2(z) = coNa(x) +c—1 No(x+1)+c_oNa(z+2),
co+c_1+c_og= 2, then the Bernstein-Bézier expression of g(w) is
Z alj—u i,
1+j=2
Where u and v are the corresponding barycentric coordinates of w when w € [2°, 7] and
[, ] respectlvely The correspondlng Bézier coefﬁc’lents [a2,0,a1,1,a0,2], of g( ), are
[1, 1, 3] and [3,0,0] when w € [2, 7] and w € [m, 4F], respectively. g(—w) can be found by

symmetry.
The ¢, is a Meyer type scaling function with dilation condition

Do (@) =m0 (5) s, ().

where mg (%) is defined on [—2m, 27] as

m°<2> {gﬁsm() Mz\w|<2w

and is extended 4m periodically to all w € R. Hence, the corresponding wavelet 1

satisfies
)= (B Jo(2)

11



6. Recurrence Algorithm of B-wavelets

In this section, we will give a recurrence relation of B-wavelets in terms of their
orders and the corresponding algorithm. Hence, a recurrence algorithm for construction
of wavelets derived in Section 3 can be given similarly.

Theorem 6. Let 1,,(x) be the B-wavelet associated with the B-spline of order m,
Ny (x). Then there exists the following recurrence relation formula between ., (z) and

¢m+1(3§), m = 1727"'5

041 A
AT EID DI e 29)
k=max{0,—4m+1} xz—(k+1)/2

or, equivalently,
41
k k+1
Yy (2) = > bt 1,k {wm (x - —) Yrm ( - T)} , (30)
k=max{0,—4m+1}

where z € [£,552], £ = 0,1,---,4m + 1, and {bp+1} is the set of coefficients of the

expansion of 29m+1(2) ip terms of z, which can be determined by the following formulas.

m (2)
0), (31)

bm+1,j = ( Vint1(5) = D (=1 bmi1,e N (3m — 2 — 5)) /N (0), (32)
(=0
for j=0,1,---,3m — 2, and
j—1
bnt1,j = | Nms1(j) — Z (=) bims 16N (G = £) | /N 41(0), (33)
t=j—3m+2
for j =3m —1,3m,---,4m + 2, where
_ m m
N (k) = Nop(k+1—1). 34
0= (7 ontts +1-1 (31)

Proof. From equation (25), we have
w

D1 () = @t ()N (3)

Dividing the above equation by equation (25) side by side, we obtain

A

@Em+1(w) _ Qm+1(2) 1(%> 35
in@) QD) Nu(3) &

Noting that Nm+1(§)/Nm(§)N1(%), we have
dal) = LG R (), (36)

Qm(2)
12



In order to express ¥, +1(z) in terms of v,,(z), we need to find the inverse Fourier
transformation of 9, (w)N1(w/2) and the expression of Qum41(2)/Qm(z). Define 1(w) =
Vm (W)N1(%). It follows that ¢, (x) = 2¢, () * N1(2z) or, equivalently,

P () = 2 /_ N8 (e — Dt

:2/051/;m(a:—t)dt

Hence, if we write 2Q+1(2)/Qm(2) = Yoo bm+1,£2" formally, from equation (36) we
obtain

wm—&-l me—i—l kwm - _)

2
S s [ vnte—
k=0 0

2

= me—i-l,k/ - Y (t)dt. (37)
k=0

2

We will now determine the range of the summation in expression (37). Since supp

Y = [0,2m — 1], we need that m—% > Oandx—% < 2m —1; ie., k < 2z and

k > 2z —4m + 1. Hence, if z € [§,42], then k < ¢+ 1 and k > ¢ — 4m + 1. Where
L €—|—1

¢ = 0,1,---,4m + 2 because [5, =] C suppm = [0,2m — 1]. Therefore, we obtain

equation (29). Equation (29) can be written in a more general form as follows:

4m+2

Vg1 (2 Z btk / _;wm(t)dt

2

or, equivalently,

4m—+2 k + 1

Psa ()= 3 sl (0= 5)~bmlz — 210 (39)

where z € [0,2m + 1].
In order to complete the proof of the theorem, we only need to prove that the following
expansion of 2Q,,+1(2)/Qm(z) exists and to give the expression of {by,+1.1}-

Qm+1 )Z Z bm+1 k;Z (39)

In fact, from [1], Q. (2) = —2E,,(—2) Py (—2), where E,,(—z) is the Euler-Frobenius
Laurent polynomial with respect to NV,,, and P,,(z) = (%z)m Hence, Qn+1(2)/Qm(2) =

13



(152) Ept1(—2)/En(—2) is zero-free and pole-free on |z| = 1. It follows that expansion

(34) exists on |z| = 1. To find {by,41,%}, we write

Qm(z) = Z 2m 1 ( )Ngmk—i—l—£)

k=0
and

3m+1 . Lk m+1 m
Qm+1(2): Z ( 1) Z( ZI)NQm+Q(k+1_€)2k

k=0 £=0

7=0 k=0
3m+1 k m—+1
-1 m—+1
k=0 £=0

On the left hand side of equation (40), we exchange the last two summations, then take
transform k + j = k’. Noting that supp i, = [0,2m — 1], we finally obtain

ESeY )k T & m / . K’
Z me-l—lj om— 1 Z(K)sz(k —]+1—£)Z
=0 ;=0 =0
3m+4 L m+1
(—1) m+1
- Z om—1 Z / Nomy1y(k+1— 0)2F (41)
k=0 =0
Hence’ for k = 07 ]-7 e 73m + ]-, we have
4m—+2
Z - m+1gz< )sz —j+1-19)
=0
m—+1
m—+1
= Z ( i )NQ(erl)(k +1-1). (42)

£=0

System (43) can be written as the following matrix form:

Ambm+1 = Nm41, (43)
here b b ~b b o, —b b A = lag 37140 =
where D41 = ( m~+1,0, m—+1,1, Ym+1,2, s m—+1,4m+1, m+1,4m—|—2)7 m [ak ]]kJ‘ZO -

[Nk = DI B = (Nons1(0), Nowa (1), N (dm + 2)), and Ny (k) s de-
fined as equation (34). It is easy to have N,,(0) = Napm(1) = 1/(2m — 1), Ny, (1) =
Zznzo (?)N2m<2 - E) == N2m(2) + mNZm(1)7 ) and Nm(3m - 2) ZZ 0 (TZ) (3m -

14



1—4) = Noy,(2m —1) = 1/(2m — 1)!. Note that N,,(i) = 0if i < 0 or i > 3m — 2. Matrix
A, in (43) is actually

Nm(o) 0 0 0 0
N (1) Ny (0) 0 0 0
A= | B(3m—2) ]Ym(?ﬂ:n—?;) - V... (0) 0 0
0 Np(3m—2) - Np(1) Nn(0) -~ 0
5 5 - Nm(ST:n—Q) Np(B3m—3) - Np(0) ]

Thus, b,,+1 can be solved and can be expressed as formulas (31)-(33).

If we express ¥, (x) using their Bézier coefficients, from equation (38) we obtain the
following recurrence algorithm for constructing ,,(x) by using the Bézier coefficients in
their Bernstein-Bézier expressions.

4m—+2

m m ]‘ m . m .

O = a0+ 5 D b laP () — el (C+j =D, (49)
7=0

where al(q) is the p*" Bézier coefficient of ¥, (z) over the interval [£, &1]. Here the order
of arrangement for the Bézier coefficients is in terms of the increase in powers of the second
coordinate of the barycentric coordinates in the Bernstein-Bézier polynomial expression of

the wavelets.
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