Q-Analogues of Symbolic Operators

Michael J. Dancs ${ }^{1}$ and Tian-Xiao He^{2}
1 College of Information and Mathematical Sciences
Clayton State University
Morrow, GA 30260-0285, USA
2 Department of Mathematics and Computer Science
Illinois Wesleyan University
Bloomington, IL 61702-2900, USA

August 1, 2012

Abstract

Here presented are q-extensions of several linear operators including a novel q-analogue of the the derivative operator D. Some q-analogues of the symbolic substitution rules given in [4] are obtained. As sample applications, we show how these q-substitution rules may be used to construct symbolic summation and series transformation formulas, including q-analogues of the classical Euler transformations for accelerating the convergence of alternating series.

AMS Subject Classification: 65B10, 39A70, 41A80, 05A15.
Key Words and Phrases: forward multiplicative shift, forward q-difference, forward logarithmic shift, symbolic summation operator, power series, generating function, Eulerian fraction, Eulerian polynomial, Eulerian numbers, Newton series, Evertt's symbolic expression, Gauss's symbolic expression.

1 Definitions, Basic Identities

Unless otherwise stated, we consider all operators to act on formal power series in the single variable t, with coefficients possibly depending on q. We assume $0<|q|<1$. Issues of convergence will be addressed in a later paper.

We will use 1 to denote the identity operator, and define the following operators:

1. $E_{q} f(t)=f(t q)$, (forward multiplicative shift),
2. $\Delta_{q} f(t)=f(t q)-f(t)$, (forward q-difference),
3. $L_{q} f(t)=t(\log q) f^{\prime}(t)$, (forward logarithmic shift).

The first two of these can be regarded as q-analogues of the ordinary (additive) shift and forward difference operators, respectively. L_{q} will play a role similar to that of the derivative D.

The operator inverse of E_{q} (which we denote as E_{q}^{-1}) clearly exists and is equal to $E_{q^{-1}}$. We define the central q-difference operator δ_{q} by

$$
\begin{equation*}
\delta_{q}=f\left(t q^{1 / 2}\right)-f\left(t q^{-1 / 2}\right) \tag{1.1}
\end{equation*}
$$

and note that $\delta_{q}=\Delta_{q} E_{q}^{-1 / 2}=\Delta / E_{q}^{1 / 2}, \quad \delta_{q}^{2 k}=\Delta_{q}^{2 k} E_{q}^{-k}$.
The q-operators above are linear and satisfy some familiar identities, for example, $E_{q}=1+\Delta_{q}$. The binomial identity

$$
\begin{equation*}
\Delta_{q}^{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} E_{q}^{k} \tag{1.2}
\end{equation*}
$$

can be established by induction, or by considering the operator expansion of $\left(1-E_{q}\right)^{n}$.

Treating these operators formally, we need only consider their effect on nonnegative integer powers of $t . E_{q}, \Delta_{q}$, and L_{q} are "diagonal" in the sense that each maps $t^{k} \mapsto M(q, k) t^{k}$, with the function M depending on the particular operator. For example, $\Delta_{q}\left[t^{k}\right]=\left(q^{k}-1\right) t^{k}$ for $k>0$, and $\Delta_{q}[1]=0$. Similarly, $L_{q}\left[t^{k}\right]=t^{k} \log \left(q^{k}\right)$.

With this observation, it is easy to verify many additional identities. For example, consider the alternating geometric series $\sum_{n=0}^{\infty}(-1)^{n} \Delta_{q}^{n}$ applied
to t^{k}. We have

$$
\begin{gathered}
\sum_{n=0}^{\infty}(-1)^{n} \Delta_{q}^{n}\left[t^{k}\right]=t^{k} \sum_{n=0}^{\infty}(-1)^{n}\left(q^{k}-1\right)^{n} \\
=t^{k} \frac{1}{1-\left(1-q^{k}\right)} \\
=t^{k} q^{-k}
\end{gathered}
$$

In other words, this formal power series gives the operator $E_{q^{-1}}$. Stated differently,

$$
\begin{equation*}
\left(1+\Delta_{q}\right)^{-1}=\left(E_{q}\right)^{-1}=E_{q^{-1}}=\sum_{n=0}^{\infty}(-1)^{n} \Delta_{q}^{n}, \tag{1.3}
\end{equation*}
$$

which is exactly the result we should expect. We may establish the following identities in similar fasion:

$$
\begin{gather*}
\left(1-\Delta_{q}\right)^{-1}=\sum_{n=0}^{\infty} \Delta_{q}^{n} \tag{1.4}\\
\log \left(1+\Delta_{q}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \Delta_{q}^{n}=L_{q} . \tag{1.5}\\
e^{L_{q}}=\sum_{n=0}^{\infty} \frac{1}{n!} L_{q}^{n}=E_{q} . \tag{1.6}
\end{gather*}
$$

In addition to these last two identities, L_{q} obeys the product rule

$$
\begin{equation*}
L_{q}[f(t) g(t)]=L_{q}[f(t)] g(t)+f(t) L_{q}[g(t)], \tag{1.7}
\end{equation*}
$$

so that L_{q} is a q-analogue of the ordinary derivative operator D.

2 Main Results

We begin with some q-analogues of the symbolic substitution rules in [4] (specifically, equations (2.4) and (2.5)):

Proposition 2.1. Let $F(t)$ have the formal power series expansion $F(t)=$ $\sum_{k \geq 0} f_{k} t^{k}$, with coefficients possibly dependent on q. We may obtain operational formulas according to the following rules:

1. The substitution $t \mapsto E_{q}$ leads to the symbolic formula

$$
\begin{equation*}
F\left(E_{q}\right)=\sum_{k=0}^{\infty} f_{k} E_{q}^{k} \tag{2.1}
\end{equation*}
$$

2. If $F(t)=G\left(t, e^{t}\right)$, the substitution $t \mapsto L_{q}$ leads to

$$
\begin{equation*}
G\left(L_{q}, E_{q}\right)=\sum_{k=0}^{\infty} f_{k} L_{q}^{k} \tag{2.2}
\end{equation*}
$$

3. If $F(t)=G(t, \log (1+t))$, the substitution $t \mapsto \Delta_{q}$ leads to

$$
\begin{equation*}
G\left(\Delta_{q}, L_{q}\right)=\sum_{k=0}^{\infty} f_{k} \Delta_{q}^{k} \tag{2.3}
\end{equation*}
$$

Note that each of the identities in equations (1.4)-(1.6) can be obtained from elementary Maclaurin series by applying one of these substitution rules. We now present a less trivial example.

For k a positive integer, let $\alpha_{k}(x)$ denote the Eulerian fraction (cf. [1] pg. 245). It is well-known that

$$
\begin{equation*}
\sum_{j=0}^{\infty} j^{k} x^{j}=\frac{A_{k}(x)}{(1-x)^{k+1}}=\alpha_{k}(x), \quad(|x|<1) \tag{2.4}
\end{equation*}
$$

where $A_{k}(x)$ is the k th Eulerian polynomial. Additionally, ([6], pg. 24) gives the formula

$$
\begin{equation*}
\left(1-x e^{t}\right)^{-1}=\sum_{k=0}^{\infty} \alpha_{k}(x) \frac{t^{k}}{k!} \tag{2.5}
\end{equation*}
$$

Substituting $t \mapsto L_{q}$ leads to the formal identity

$$
\begin{equation*}
\left(1-x E_{q}\right)^{-1}=\sum_{k=0}^{\infty} \frac{\alpha_{k}(x)}{k!} L_{q}^{k} . \tag{2.6}
\end{equation*}
$$

We can obtain additional identities in this fashion from other expansions of $\left(1-x e^{t}\right)^{-1}$. For example, if $x \neq 0$ and $x \neq 1$, we have the following
analogues of (3.1)-(3.4) in [3]):

$$
\begin{align*}
& \left(1-x E_{q}\right)^{-1}=\sum_{k=0}^{\infty} \frac{x^{k}}{(1-x)^{k+1}} \Delta_{q}^{k} \tag{2.7}\\
& \left(1-x E_{q}\right)^{-1}=\sum_{k=0}^{\infty}\left(\frac{x}{(1-x)^{2}}\right)^{k+1}\left(x^{-1} \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}-\frac{\Delta^{2 k}}{E_{q}^{k+1}}\right) \tag{2.8}\\
& \left(1-x E_{q}\right)^{-1}=1+\sum_{k=0}^{\infty}\left(\frac{x}{(1-x)^{2}}\right)^{k+1}\left(\frac{\Delta_{q}^{2 k}}{E_{q}^{k-1}}-x \frac{\Delta^{2 k}}{E_{q}^{k}}\right) \tag{2.9}
\end{align*}
$$

Direct proofs of (2.6)-(2.9) are given in $\S 5$ below.
Proposition 2.2. For a given function $f(t)$, define $F_{q}(x)=\sum_{k \geq 0} f\left(q^{k}\right) x^{k}$. If $x \neq 0$ and $x \neq 1$,

$$
\begin{align*}
& F_{q}(x)=\sum_{k=0}^{\infty} \frac{\alpha_{k}(x)}{k!} L_{q}^{k} f(1) \tag{2.10}\\
& F_{q}(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{(1-x)^{k+1}} \Delta_{q}^{k} f(1) \tag{2.11}\\
& F_{q}(x)=\sum_{k=0}^{\infty}\left(\frac{x}{(1-x)^{2}}\right)^{k+1}\left(x^{-1} \delta_{q}^{2 k} f(1)-\delta_{q}^{2 k} f\left(q^{-1}\right)\right) \tag{2.12}\\
& F_{q}(x)=1+\sum_{k=0}^{\infty}\left(\frac{x}{(1-x)^{2}}\right)^{k+1}\left(\delta_{q}^{2 k} f(q)-x \delta_{q}^{2 k} f(1)\right) \tag{2.13}
\end{align*}
$$

Proof. Clearly, these follow by applying the operators in equations (2.6)(2.9) to the function $f(t)$ and then evaluating at $t=1$.

3 Some Applications

As an application, taking $f(t)=\frac{1}{\log _{q}(t+1)}, x=-1$ in (2.11) leads to

$$
\begin{aligned}
\sum_{k \geq 0}(-1)^{k} \frac{1}{k+1} & =\sum_{k \geq 0} \frac{(-1)^{k}}{2^{k+1}} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} \frac{1}{j+1} \\
& =\sum_{k=0}^{\infty} \frac{1}{(k+1) 2^{k+1}} \sum_{j=0}^{k}(-1)^{j}\binom{k+1}{j+1} \\
& =\sum_{k=0}^{\infty} \frac{1}{(k+1) 2^{k+1}}=\sum_{k=1}^{\infty} \frac{1}{k 2^{k}}
\end{aligned}
$$

which gives

$$
\ln 2=\frac{1}{2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}+\frac{1}{4 \cdot 2^{4}}+\cdots
$$

The rate of convergence of this series is $O\left(1 / 2^{n}\right)$, much faster than

$$
\ln 2=\sum_{k \geq 0}(-1)^{k} \frac{1}{k+1}
$$

whose convergence rate is $O(1 / n)$.
As for a second application, we may substitute $x=-1$ in Proposition 2.2, obtaining the following series transformation formulas:

$$
\begin{align*}
& \sum_{k \geq 0}(-1)^{k} f\left(q^{k}\right)=\sum_{k=0}^{\infty} \frac{\alpha_{k}(-1)}{k!} L_{q}^{k} f(1) \tag{3.14}\\
& \sum_{k \geq 0}(-1)^{k} f\left(q^{k}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k+1}} \Delta_{q}^{k} f(1) \tag{3.15}\\
& \sum_{k \geq 0}(-1)^{k} f\left(q^{k}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{4^{k+1}}\left(\delta_{q}^{2 k} f(1)+\delta_{q}^{2 k} f\left(q^{-1}\right)\right) \tag{3.16}\\
& \sum_{k \geq 1}(-1)^{k} f\left(q^{k}\right)=1+\sum_{k=0}^{\infty}\left(\frac{-1}{4}\right)^{k+1}\left(\delta_{q}^{2 k} f(q)+\delta_{q}^{2 k} f(1)\right) \tag{3.17}
\end{align*}
$$

Thes four identities appear to be novel, and could be used to accelerate slowly convergent alternating series $\sum_{k=1}^{\infty}(-1)^{k} f\left(q^{k}\right)$. We consider them as q-analogues of the ordinary Euler transformations.

4 Extensions of the Main Results

All operational formulas presented in Proposition 2.1 can be extended and the corresponding symbolic substitution formulas established accordingly with an analogous form of 2.2 . For example, we may consider a generating function of the form

$$
\sum_{k \geq 0} f_{k} t^{k}=F\left(t, e^{t}, e^{\alpha t}\right)
$$

Letting $t \mapsto L_{q}$ gives

$$
\sum_{k \geq 0} f_{k} L_{q}^{k}=F\left(L_{q}, E_{q}, E_{q}^{\alpha}\right)
$$

Applying this to the well-known identity

$$
\sum_{k \geq 0} \frac{4^{k}}{(2 k)!} B_{2 k} t^{2 k}=t \operatorname{coth} t=t \frac{e^{t}+e^{-t}}{e^{t}-e^{-t}}
$$

with B_{n} being the nth Bernoulli number, we obtain

$$
\sum_{k \geq 0} \frac{4^{k}}{(2 k)!} B_{2 k} L_{q}^{2 k}=L_{q} \frac{E_{q}+E_{q}^{-1}}{E_{q}-E_{q}^{-1}}
$$

Hence, we obtain a symbolic formula

$$
\begin{equation*}
\sum_{k \geq 0} \frac{4^{k}}{(2 k)!} B_{2 k} L_{q}^{2 k-1}\left(E_{q}-E_{q}^{-1}\right)=E_{q}+E_{q}^{-1} \tag{4.18}
\end{equation*}
$$

Applying this to an infinitely differentiable function $f(t)$ at $t=1$ yields

$$
\begin{equation*}
\sum_{k \geq 0} \frac{4^{k}}{(2 k)!} B_{2 k} L_{q}^{2 k-1}\left(E_{q}-E_{q}^{-1}\right) f(1)=\left(E_{q}+E_{q}^{-1}\right) f(1) \tag{4.19}
\end{equation*}
$$

Similarly, using the symbolic relation

$$
L_{q} \frac{E_{q}+E_{q}^{-1}}{E_{q}-E_{q}^{-1}}=L_{q}\left(1+\Delta_{q}^{-1}-\left(E_{q}+1\right)^{-1}\right)
$$

we obtain another operational formula

$$
-1+\sum_{k \geq 0} \frac{4^{k}}{(2 k)!} B_{2 k} L_{q}^{2 n-1}+\left(E_{q}^{-1}+1\right)^{-1}=\Delta_{q}^{-1}
$$

from which one may construct a series transformation formula.
Another extension is a q-analogue of the symbolic formulas presented in [2], which is actually a Newton series type extension of the symbolic expansions given in [4]. Consider

$$
\left(1+E_{q}\right)^{x} f(1)=\sum_{k \geq 0}\binom{x}{k} E_{q}^{k} f(1)=\sum_{k \geq 0} f\left(q^{k}\right) \frac{(x)_{k}}{k!},
$$

where $(x)_{k}=x(x-1) \cdots(x-k+1)$. We have

$$
\begin{align*}
\left(1+E_{q}\right)^{x}= & 2^{x} \sum_{k=0}^{\infty} \frac{(x)_{k}}{2^{k} k!} \Delta_{q}^{k}, \tag{4.20}\\
\left(1+E_{q}\right)^{x}= & \sum_{k=0}^{\infty}\binom{x}{k}\left[{ }_{2} F_{1}(k-x, 2 k+1 ; k+1 ;-1)\right. \\
& \left.+\frac{x-k}{k+1}{ }_{2} F_{1}(k+1-x, 2 k+2 ; k+2 ;-1) E_{q}^{-1} \Delta_{q}\right] \delta_{q}^{2 k}, \\
\left(1+E_{q}\right)^{x}= & 1+\sum_{k=0}^{\infty}\binom{x}{k+1}\left[{ }_{2} F_{1}(k+1-x, 2 k+2 ; k+2 ;-1) E_{q}\right. \tag{4.21}\\
& \left.-\frac{x-k-1}{k+2}{ }_{2} F_{1}(k+2-x, 2 k+2 ; k+3 ;-1)\right] \delta_{q}^{2 k} \cdot(4.2 \tag{4.22}
\end{align*}
$$

Finally, we present an extension of (2.6) using Bell polynomials (see, for example, pg. 134 in [1]) as follows.

$$
\begin{equation*}
\left(1+E_{q}\right)^{x}=2^{x} \sum_{k=0}^{\infty} P_{k}^{(x)}\left(\frac{1}{2}, \frac{1}{2}, \cdots,\right) \frac{L_{q}^{k}}{k!}, \tag{4.23}
\end{equation*}
$$

where the values of potential Bell polynomials at $(1 / 2,1 / 2, \ldots)$ are defined by

$$
\begin{equation*}
P_{k}^{(x)}\left(\frac{1}{2}, \frac{1}{2}, \cdots,\right)=\sum_{\ell=0}^{\infty} \ell^{k} \frac{(x)_{\ell}}{\ell!} \tag{4.24}
\end{equation*}
$$

For a given function $f(t)$, define $F_{q}(x)=\sum_{k>0} f\left(q^{k}\right)(x)_{k} / k$!, from (4.20)(4.23) we obtain series transformation formulas by simply applying (4.20)(4.22) to f.

$$
\begin{align*}
F_{q}(x)= & 2^{x} \sum_{k=0}^{\infty} \frac{(x)_{k}}{2^{k} k!} \Delta_{q}^{k} f(1) \tag{4.25}\\
F_{q}(x)= & \sum_{k=0}^{\infty}\binom{x}{k}\left[{ }_{2} F_{1}(k-x, 2 k+1 ; k+1 ;-1)\right. \\
& \left.+\frac{x-k}{k+1}{ }_{2} F_{1}(k+1-x, 2 k+2 ; k+2 ;-1) E_{q}^{-1} \Delta_{q}\right] \delta_{q}^{2 k} f(1), \tag{4.26}
\end{align*}
$$

$$
F_{q}(x)=1+\sum_{k=0}^{\infty}\binom{x}{k+1}\left[{ }_{2} F_{1}(k+1-x, 2 k+2 ; k+2 ;-1) E_{q}\right.
$$

$$
\begin{equation*}
\left.-\frac{x-k-1}{k+2}{ }_{2} F_{1}(k+2-x, 2 k+2 ; k+3 ;-1)\right] \delta_{q}^{2 k} f(1) \cdot(\tag{4.27}
\end{equation*}
$$

$$
\begin{equation*}
F_{q}(x)=2^{x} \sum_{k=0}^{\infty} P_{k}^{(x)}\left(\frac{1}{2}, \frac{1}{2}, \cdots,\right) \frac{L_{q}^{k}}{k!} \tag{4.28}
\end{equation*}
$$

As an example, substituting $f(t)=t^{n}$ into (4.28) yields the series transformation formula

$$
\sum_{k=0}^{\infty} t^{k} \frac{(x)_{k}}{k!}=2^{x} \sum_{j=0}^{\infty} P_{j}^{(x)}\left(\frac{1}{2}, \frac{1}{2}, \cdots\right) \frac{n^{j}}{j!}
$$

5 Selected Proofs

Here we present the proofs of (2.6)-(2.9) in the sense of symbolic calculus, viz., every series expansion is considered as a formal series.

Equation (2.7) may be derived as follows:

$$
\begin{aligned}
\left(1-x E_{q}\right)^{-1} & =\left(1-x\left(1+\Delta_{q}\right)\right)^{-1} \\
& =(1-x)^{-1}\left(1-\frac{x \Delta_{q}}{1-x}\right) \\
& =\sum_{k=0}^{\infty} \frac{x^{k} \Delta_{q}^{k}}{(1-x)^{k+1}}
\end{aligned}
$$

For proving (2.6), it suffices to make use of $E=e^{L_{q}}$ and (2.4). Indeed we have

$$
\begin{aligned}
& \left(1-x E_{q}\right)^{-1}=\left(1-x e^{L_{q}}\right)^{-1}=\sum_{k=0}^{\infty} x^{k} e^{k L_{q}} \\
= & \sum_{k=0}^{\infty} x^{k} \sum_{j=0}^{\infty} \frac{\left(k L_{q}\right)^{j}}{j!}=\sum_{j=0}^{\infty}\left(\sum_{k=0}^{\infty} x^{k} k^{j}\right) \frac{L_{q}^{j}}{j!}=\sum_{j=0}^{\infty} \alpha_{j}(x) \frac{L_{q}^{j}}{j!} .
\end{aligned}
$$

To prove (2.8) and (2.9), we first establish the following lemma.
Lemma 5.1. Let $\beta=1+\alpha$ with $0<\alpha<1$, and let x be any real number. We have symbolic identities involving the first Gauss series:

$$
\begin{equation*}
\beta^{x}=\sum_{k=0}^{\infty}\left[\binom{x+k}{2 k} \frac{\alpha^{2 k}}{\beta^{k}}+\binom{x+k}{2 k+1} \frac{\alpha^{2 k+1}}{\beta^{k}}\right] \tag{5.29}
\end{equation*}
$$

and a modified q-form of Gauss's first symbolic expression (cf §127 of [5]):

$$
\begin{align*}
E_{q}^{x} & =\sum_{k=0}^{\infty}\left[\binom{x+k}{2 k} \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}+\binom{x+k}{2 k+1} \frac{\Delta_{q}^{2 k+1}}{E_{q}^{k}}\right] \\
& =\sum_{k=0}^{\infty}\left[\binom{x+k}{2 k} \delta_{q}^{2 k}+\binom{x+k}{2 k+1} \Delta_{q} \delta_{q}^{2 k}\right] . \tag{5.30}
\end{align*}
$$

Proof. Starting from Newton's formula:

$$
\beta^{x}=\sum_{k=0}^{\infty}\binom{x}{k} \alpha^{k} .
$$

We multiply $\frac{\alpha+1}{\beta}=1$ to the summation from the term α up and obtain

$$
\begin{aligned}
\beta^{x} & =1+\binom{x}{1} \frac{\alpha}{\beta}+\binom{x}{1} \frac{\alpha^{2}}{\beta}+\sum_{k=2}^{\infty}\binom{x}{k} \frac{\alpha^{k}(1+\alpha)}{\beta} \\
& =1+\binom{x}{1} \frac{\alpha}{\beta}+\binom{x+1}{2} \frac{\alpha^{2}}{\beta}+\sum_{k=2}^{\infty} \frac{\alpha^{k+1}}{\beta}\left[\binom{x}{k}+\binom{x}{k+1}\right] \\
& =1+\binom{x}{1} \frac{\alpha}{\beta}+\binom{x+1}{2} \frac{\alpha^{2}}{\beta}+\sum_{k=2}^{\infty}\binom{x+1}{k+1} \frac{\alpha^{k+1}}{\beta} \\
& =1+\binom{x}{1} \frac{\alpha}{\beta}+\binom{x+1}{2} \frac{\alpha^{2}}{\beta}+\binom{x+1}{3} \frac{\alpha^{3}}{\beta}+\sum_{k=3}^{\infty}\binom{x+1}{k+1} \frac{\alpha^{k+1}}{\beta}
\end{aligned}
$$

Repeating the operation on the series from the term α^{3} up yields

$$
\begin{aligned}
\beta^{x}= & 1+\binom{x}{1} \frac{\alpha}{\beta}+\binom{x+1}{2} \frac{\alpha^{2}}{\beta}+\binom{x+1}{3} \frac{\alpha^{3}}{\beta^{2}}+\binom{x+1}{3} \frac{\alpha^{4}}{\beta^{2}} \\
& +\sum_{k=3}^{\infty}\binom{x+1}{k+1} \frac{\alpha^{k+1}(1+\alpha)}{\beta^{2}} \\
= & 1+\binom{x}{1} \frac{\alpha}{\beta}+\binom{x+1}{2} \frac{\alpha^{2}}{\beta}+\binom{x+1}{3} \frac{\alpha^{3}}{\beta^{2}}+\binom{x+2}{4} \frac{\alpha^{4}}{\beta^{2}} \\
& +\sum_{k=3}^{\infty}\binom{x+2}{k+2} \frac{\alpha^{k+2}}{\beta^{2}} .
\end{aligned}
$$

The above operation is repeated from α^{5} up, and so on. We obtain

$$
\begin{equation*}
\beta^{x}=\sum_{k=0}^{\infty}\left[\binom{x+k}{2 k} \frac{\alpha^{2 k}}{\beta^{k}}+\binom{x+k}{2 k+1} \frac{\alpha^{2 k+1}}{\beta^{k}}\right] . \tag{5.31}
\end{equation*}
$$

Substituting $\beta=E_{q}$ and $\alpha=\Delta_{q}$ into the above identity, we obtain the desired result.
(2.7) and (2.8) can be proved using the first Gauss symbolic expression (5.30) and the following q-form of the Everett's symbolic expression (cf [5], §129), respectively.

$$
\begin{align*}
E^{x} & =\sum_{k=0}^{\infty}\left[\binom{x+k}{2 k+1} \frac{\Delta_{q}^{2 k}}{E_{q}^{k-1}}-\binom{x+k-1}{2 k+1} \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}\right] \\
& =\sum_{k=0}^{\infty}\left[\binom{x+k}{2 k+1} E_{q} \delta_{q}^{2 k}-\binom{x+k-1}{2 k+1} \delta_{q}^{2 k}\right] . \tag{5.32}
\end{align*}
$$

Indeed, using (5.30) and noting the identity

$$
\sum_{m=k}^{\infty}\binom{m}{k} x^{m}=\frac{x^{k}}{(1-x)^{k+1}}, \quad(|x|<1)
$$

one may derive (2.7) as follows:

$$
\begin{gathered}
\left(1-x E_{q}\right)^{-1}=\sum_{j=0}^{\infty}\left(x E_{q}\right)^{j} \\
=\sum_{k=0}^{\infty}\left\{\left(\sum_{j=0}^{\infty}\binom{j+k}{2 k} x^{j}\right) \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}+\left(\sum_{j=0}^{\infty}\binom{j+k}{2 k+1} x^{j}\right) \frac{\Delta_{q}^{2 k+1}}{E_{q}^{k+1}}\right\} \\
=\sum_{k=0}^{\infty}\left\{\frac{x^{k}}{(1-x)^{2 k+1}} \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}+\frac{x^{k+1}}{(1-x)^{2 k+2}} \frac{\Delta_{q}^{2 k+1}}{E_{q}^{k+1}}\right\} \\
=\sum_{k=0}^{\infty}\left(\frac{x}{(1-x)^{2}}\right)^{k+1}\left(\frac{1-x}{x} \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}+\frac{\Delta_{q}^{2 k+1}}{E_{q}^{k+1}}\right) \\
=\sum_{k=0}^{\infty}\left(\frac{x}{(1-x)^{2}}\right)^{k+1}\left(x^{-1} \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}-\frac{\Delta_{q}^{2 k}}{E_{q}^{k+1}}\right)
\end{gathered}
$$

(2.8) can be proved similarly using (5.32). However, it can also be verified by a direct symbolic computations. In fact we have

$$
\begin{aligned}
& \text { RHS of }(2.8)=1+\frac{x}{(1-x)^{2}} \sum_{k=0}^{\infty}\left(\frac{x}{(1-x)^{2}}\right)^{k}\left(\frac{\Delta_{q}^{2}}{E_{q}}\right)^{k}\left(E_{q}-x\right) \\
= & 1+\frac{x}{(1-x)^{2}} \frac{E_{q}-x}{1-\frac{x}{(1-x)^{2}} \frac{\Delta_{q}^{2}}{E_{q}}}=1+\frac{x\left(E_{q}-x\right)}{(1-x)^{2}-x \frac{\Delta_{q}^{2}}{E_{q}}} \\
= & 1+\frac{E_{q} x\left(E_{q}-x\right)}{(1-x)^{2} E_{q}-x\left(E_{q}-1\right)^{2}}=1+\frac{E_{q} x}{1-x E_{q}} \\
= & \left(1-x E_{q}\right)^{-1}=\text { LHS of }(2.8) .
\end{aligned}
$$

This complete the proofs of (2.6)-(2.8).
The proof of (4.20) is straightforward:

$$
\begin{aligned}
\left(1+E_{q}\right)^{x} & =\left(2+\Delta_{q}\right)^{x}=2^{x}\left(1+\frac{\Delta}{2}\right)^{x} \\
& =2^{x} \sum_{k \geq 0} \frac{(x)_{k}}{k!2^{k}} \Delta_{q}^{k}
\end{aligned}
$$

To prove (4.21), we use (5.30) as follows:

$$
\begin{aligned}
\left(1+E_{q}\right)^{x}= & 1+\sum_{j \geq 1}\binom{x}{j} E_{q}^{j} \\
= & 1+\sum_{j \geq 1}\binom{x}{j} \sum_{k \geq 0}\left[\binom{k+j}{2 k} \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}+\binom{k+j}{2 k+1} \frac{\Delta_{q}^{2 k+1}}{E_{q}^{k+1}}\right] \\
= & \sum_{k \geq 0}\left[\frac{\Delta_{q}^{2 k}}{E_{q}^{k}} \sum_{j \geq k}\binom{x}{j}\binom{k+j}{2 k}+\frac{\Delta_{q}^{2 k+1}}{E_{q}^{k+1}} \sum_{j \geq k+1}\binom{x}{j}\binom{k+j}{2 k+1}\right] \\
= & \sum_{k \geq 0}\left[\binom{x}{k}{ }_{2} F_{1}(k-x, 2 k+1 ; k+1 ;-1) \frac{\Delta_{q}^{2 k}}{E_{q}^{k}}\right. \\
& \left.+\binom{x}{k+1}{ }_{2} F_{1}(k+1-x, 2 k+2 ; k+2 ;-1) \frac{\Delta_{q}^{2 k}}{E_{q}^{k+1}}\right]
\end{aligned}
$$

which implies (4.21). (4.22) can be proved similarly using Everett's symbolic expression (5.32).

For (4.23), we first have

$$
\begin{align*}
\left(1+E_{q}\right)^{x} & =\left(1+e^{L_{q}}\right)^{x}=\sum_{j \geq 0}\binom{x}{j} e^{j L_{q}} \tag{5.33}\\
& =\sum_{j \geq 0}\binom{x}{j} \sum_{k \geq 0} \frac{\left(j L_{q}\right)^{k}}{k!}=\sum_{k \geq 0}\left(\sum_{j \geq 0} \frac{(k)_{j} j^{k}}{j!}\right) \frac{L_{q}^{k}}{k!} . \tag{5.34}
\end{align*}
$$

Using (5.24), we may write the part in the parenthesis of the rightmost term as $2^{x} P_{k}^{(x)}(1 / 2,1 / 2, \ldots)$ to finish.

References

[1] L. Comtet, Advanced Combinatorics, Dordrecht: Reidel, 1974 (Chapters 1, 3).
[2] Q. Fang, M. Xu, and T. Wang, A symbolic operator approach to Newton series, manuscript, 2009.
[3] T.-X. He, L. C. Hsu, P. J.-S. Shiue, and D. C. Torney, A symbolic operator approach to several summation formulas for power series, J. Comput. Appl. Math., 177(2005), 17-33.
[4] T.-X. He, L. C. Hsu, and P. J.-S. Shiue, Symbolization of generating functions; an application of the Mullin-Rota theory of binomial enumeration, Computers and Mathematics with Applications. 54 (2007), 664-678.
[5] Ch. Jordan, Calculus of Finite Differences, Chelsea, 1965.
[6] X.H. Wang, L.C. Hsu, A summation formula for power series using Eulerian fractions, Fibonacci Quarterly 41 (2003), 23-30.

