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Abstract

Here presented are q-extensions of several linear operators in-
cluding a novel q-analogue of the the derivative operator D. Some
q-analogues of the symbolic substitution rules given in [4] are ob-
tained. As sample applications, we show how these q-substitution
rules may be used to construct symbolic summation and series
transformation formulas, including q-analogues of the classical Eu-
ler transformations for accelerating the convergence of alternating
series.
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1 Definitions, Basic Identities

Unless otherwise stated, we consider all operators to act on formal power
series in the single variable t, with coefficients possibly depending on q.
We assume 0 < |q| < 1. Issues of convergence will be addressed in a later
paper.

We will use 1 to denote the identity operator, and define the following
operators:

1. Eqf(t) = f(tq), (forward multiplicative shift),

2. ∆qf(t) = f(tq)− f(t), (forward q-difference),

3. Lqf(t) = t(log q)f ′(t), (forward logarithmic shift).

The first two of these can be regarded as q-analogues of the ordinary (ad-
ditive) shift and forward difference operators, respectively. Lq will play a
role similar to that of the derivative D.

The operator inverse of Eq (which we denote as E−1
q ) clearly exists and

is equal to Eq−1 . We define the central q-difference operator δq by

δq = f(tq1/2)− f(tq−1/2) (1.1)

and note that δq = ∆qE
−1/2
q = ∆/E

1/2
q , δ2k

q = ∆2k
q E

−k
q .

The q-operators above are linear and satisfy some familiar identities,
for example, Eq = 1 + ∆q. The binomial identity

∆n
q =

n∑
k=0

(−1)n−k
(
n

k

)
Ek
q (1.2)

can be established by induction, or by considering the operator expansion
of (1− Eq)n.

Treating these operators formally, we need only consider their effect
on nonnegative integer powers of t. Eq, ∆q, and Lq are “diagonal” in the
sense that each maps tk 7→ M(q, k)tk, with the function M depending on
the particular operator. For example, ∆q[t

k] = (qk − 1)tk for k > 0, and
∆q[1] = 0. Similarly, Lq[t

k] = tk log(qk).
With this observation, it is easy to verify many additional identities.

For example, consider the alternating geometric series
∞∑
n=0

(−1)n∆n
q applied
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to tk. We have

∞∑
n=0

(−1)n∆n
q [tk] = tk

∞∑
n=0

(−1)n(qk − 1)n

= tk 1
1−(1−qk)

= tkq−k.

In other words, this formal power series gives the operator Eq−1 . Stated
differently,

(1 + ∆q)
−1 = (Eq)

−1 = Eq−1 =
∞∑
n=0

(−1)n∆n
q , (1.3)

which is exactly the result we should expect. We may establish the follow-
ing identities in similar fasion:

(1−∆q)
−1 =

∞∑
n=0

∆n
q . (1.4)

log(1 + ∆q) =
∞∑
n=1

(−1)n+1

n
∆n
q = Lq. (1.5)

eLq =
∞∑
n=0

1

n!
Lnq = Eq. (1.6)

In addition to these last two identities, Lq obeys the product rule

Lq [f(t)g(t)] = Lq[f(t)]g(t) + f(t)Lq[g(t)], (1.7)

so that Lq is a q-analogue of the ordinary derivative operator D.

2 Main Results

We begin with some q-analogues of the symbolic substitution rules in [4]
(specifically, equations (2.4) and (2.5)):

Proposition 2.1. Let F (t) have the formal power series expansion F (t) =∑
k≥0

fkt
k, with coefficients possibly dependent on q. We may obtain opera-

tional formulas according to the following rules:
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1. The substitution t 7→ Eq leads to the symbolic formula

F (Eq) =
∞∑
k=0

fkE
k
q . (2.1)

2. If F (t) = G(t, et), the substitution t 7→ Lq leads to

G(Lq, Eq) =
∞∑
k=0

fkL
k
q . (2.2)

3. If F (t) = G(t, log(1 + t)), the substitution t 7→ ∆q leads to

G(∆q, Lq) =
∞∑
k=0

fk∆
k
q . (2.3)

Note that each of the identities in equations (1.4)-(1.6) can be obtained
from elementary Maclaurin series by applying one of these substitution
rules. We now present a less trivial example.

For k a positive integer, let αk(x) denote the Eulerian fraction (cf. [1]
pg. 245). It is well-known that

∞∑
j=0

jkxj =
Ak(x)

(1− x)k+1
= αk(x), (|x| < 1), (2.4)

where Ak(x) is the kth Eulerian polynomial. Additionally, ([6], pg. 24)
gives the formula

(1− xet)−1 =
∞∑
k=0

αk(x)
tk

k!
. (2.5)

Substituting t 7→ Lq leads to the formal identity

(1− xEq)−1 =
∞∑
k=0

αk(x)

k!
Lkq . (2.6)

We can obtain additional identities in this fashion from other expan-
sions of (1−xet)−1. For example, if x 6= 0 and x 6= 1, we have the following
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analogues of (3.1)-(3.4) in [3]):

(1− xEq)−1 =
∞∑
k=0

xk

(1− x)k+1
∆k
q (2.7)

(1− xEq)−1 =
∞∑
k=0

(
x

(1− x)2

)k+1
(
x−1

∆2k
q

Ek
q

− ∆2k

Ek+1
q

)
(2.8)

(1− xEq)−1 = 1 +
∞∑
k=0

(
x

(1− x)2

)k+1
(

∆2k
q

Ek−1
q

− x∆2k

Ek
q

)
(2.9)

Direct proofs of (2.6)-(2.9) are given in §5 below.

Proposition 2.2. For a given function f(t), define Fq(x) =
∑
k≥0

f(qk)xk.

If x 6= 0 and x 6= 1,

Fq(x) =
∞∑
k=0

αk(x)

k!
Lkqf(1) (2.10)

Fq(x) =
∞∑
k=0

xk

(1− x)k+1
∆k
qf(1) (2.11)

Fq(x) =
∞∑
k=0

(
x

(1− x)2

)k+1

(x−1δ2k
q f(1)− δ2k

q f(q−1)) (2.12)

Fq(x) = 1 +
∞∑
k=0

(
x

(1− x)2

)k+1

(δ2k
q f(q)− xδ2k

q f(1)) (2.13)

Proof. Clearly, these follow by applying the operators in equations (2.6)-
(2.9) to the function f(t) and then evaluating at t = 1.

5



3 Some Applications

As an application, taking f(t) = 1
logq(t+1)

, x = −1 in (2.11) leads to

∑
k≥0

(−1)k
1

k + 1
=

∑
k≥0

(−1)k

2k+1

k∑
j=0

(
k

j

)
(−1)k−j

1

j + 1

=
∞∑
k=0

1

(k + 1)2k+1

k∑
j=0

(−1)j
(
k + 1

j + 1

)

=
∞∑
k=0

1

(k + 1)2k+1
=
∞∑
k=1

1

k2k
,

which gives

ln 2 =
1

2
+

1

2 · 22
+

1

3 · 23
+

1

4 · 24
+ · · · .

The rate of convergence of this series is O(1/2n), much faster than

ln 2 =
∑
k≥0

(−1)k
1

k + 1
,

whose convergence rate is O(1/n).
As for a second application, we may substitute x = −1 in Proposition

2.2, obtaining the following series transformation formulas:

∑
k≥0

(−1)kf(qk) =
∞∑
k=0

αk(−1)

k!
Lkqf(1) (3.14)

∑
k≥0

(−1)kf(qk) =
∞∑
k=0

(−1)k

2k+1
∆k
qf(1) (3.15)

∑
k≥0

(−1)kf(qk) =
∞∑
k=0

(−1)k

4k+1
(δ2k
q f(1) + δ2k

q f(q−1)) (3.16)

∑
k≥1

(−1)kf(qk) = 1 +
∞∑
k=0

(
−1

4

)k+1

(δ2k
q f(q) + δ2k

q f(1)) (3.17)

Thes four identities appear to be novel, and could be used to accelerate
slowly convergent alternating series

∑∞
k=1(−1)kf(qk). We consider them

as q-analogues of the ordinary Euler transformations.
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4 Extensions of the Main Results

All operational formulas presented in Proposition 2.1 can be extended and
the corresponding symbolic substitution formulas established accordingly
with an analogous form of 2.2. For example, we may consider a generating
function of the form ∑

k≥0

fkt
k = F (t, et, eαt).

Letting t 7→ Lq gives ∑
k≥0

fkL
k
q = F (Lq, Eq, E

α
q ).

Applying this to the well-known identity∑
k≥0

4k

(2k)!
B2kt

2k = t coth t = t
et + e−t

et − e−t
,

with Bn being the nth Bernoulli number, we obtain

∑
k≥0

4k

(2k)!
B2kL

2k
q = Lq

Eq + E−1
q

Eq − E−1
q

.

Hence, we obtain a symbolic formula∑
k≥0

4k

(2k)!
B2kL

2k−1
q (Eq − E−1

q ) = Eq + E−1
q . (4.18)

Applying this to an infinitely differentiable function f(t) at t = 1 yields

∑
k≥0

4k

(2k)!
B2kL

2k−1
q (Eq − E−1

q )f(1) = (Eq + E−1
q )f(1). (4.19)

Similarly, using the symbolic relation

Lq
Eq + E−1

q

Eq − E−1
q

= Lq
(
1 + ∆−1

q − (Eq + 1)−1
)
,

we obtain another operational formula
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−1 +
∑
k≥0

4k

(2k)!
B2kL

2n−1
q + (E−1

q + 1)−1 = ∆−1
q ,

from which one may construct a series transformation formula.
Another extension is a q-analogue of the symbolic formulas presented

in [2], which is actually a Newton series type extension of the symbolic
expansions given in [4]. Consider

(1 + Eq)
xf(1) =

∑
k≥0

(
x

k

)
Ek
q f(1) =

∑
k≥0

f(qk)
(x)k
k!

,

where (x)k = x(x− 1) · · · (x− k + 1). We have

(1 + Eq)
x = 2x

∞∑
k=0

(x)k
2kk!

∆k
q , (4.20)

(1 + Eq)
x =

∞∑
k=0

(
x

k

)[
2F1 (k − x, 2k + 1; k + 1;−1)

+
x− k
k + 1

2F1 (k + 1− x, 2k + 2; k + 2;−1)E−1
q ∆q

]
δ2k
q ,

(4.21)

(1 + Eq)
x = 1 +

∞∑
k=0

(
x

k + 1

)[
2F1 (k + 1− x, 2k + 2; k + 2;−1)Eq

−x− k − 1

k + 2
2F1 (k + 2− x, 2k + 2; k + 3;−1)

]
δ2k
q .(4.22)

Finally, we present an extension of (2.6) using Bell polynomials ( see,
for example, pg. 134 in [1]) as follows.

(1 + Eq)
x = 2x

∞∑
k=0

P
(x)
k

(
1

2
,
1

2
, · · · ,

)
Lkq
k!
, (4.23)

where the values of potential Bell polynomials at (1/2, 1/2, . . .) are defined
by

P
(x)
k

(
1

2
,
1

2
, · · · ,

)
=
∞∑
`=0

`k
(x)`
`!
. (4.24)
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For a given function f(t), define Fq(x) =
∑
k≥0

f(qk)(x)k/k!, from (4.20)-

(4.23) we obtain series transformation formulas by simply applying (4.20)-
(4.22) to f .

Fq(x) = 2x
∞∑
k=0

(x)k
2kk!

∆k
qf(1), (4.25)

Fq(x) =
∞∑
k=0

(
x

k

)
[ 2F1 (k − x, 2k + 1; k + 1;−1)

+
x− k
k + 1

2F1 (k + 1− x, 2k + 2; k + 2;−1)E−1
q ∆q

]
δ2k
q f(1),

(4.26)

Fq(x) = 1 +
∞∑
k=0

(
x

k + 1

)
[ 2F1 (k + 1− x, 2k + 2; k + 2;−1)Eq

−x− k − 1

k + 2
2F1 (k + 2− x, 2k + 2; k + 3;−1)

]
δ2k
q f(1).(4.27)

Fq(x) = 2x
∞∑
k=0

P
(x)
k

(
1

2
,
1

2
, · · · ,

)
Lkq
k!
. (4.28)

As an example, substituting f(t) = tn into (4.28) yields the series
transformation formula

∞∑
k=0

tk
(x)k
k!

= 2x
∞∑
j=0

P
(x)
j

(
1

2
,
1

2
, · · ·

)
nj

j!
.

5 Selected Proofs

Here we present the proofs of (2.6)-(2.9) in the sense of symbolic calculus,
viz., every series expansion is considered as a formal series.

Equation (2.7) may be derived as follows:
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(1− xEq)−1 = (1− x(1 + ∆q))
−1

= (1− x)−1

(
1− x∆q

1− x

)
=
∞∑
k=0

xk∆k
q

(1− x)k+1
.

For proving (2.6), it suffices to make use of E = eLq and (2.4). Indeed
we have

(1− xEq)−1 = (1− xeLq)−1 =
∞∑
k=0

xkekLq

=
∞∑
k=0

xk
∞∑
j=0

(kLq)
j

j!
=
∞∑
j=0

(
∞∑
k=0

xkkj

)
Ljq
j!

=
∞∑
j=0

αj(x)
Ljq
j!
.

To prove (2.8) and (2.9), we first establish the following lemma.

Lemma 5.1. Let β = 1 +α with 0 < α < 1, and let x be any real number.
We have symbolic identities involving the first Gauss series:

βx =
∞∑
k=0

[(
x+ k

2k

)
α2k

βk
+

(
x+ k

2k + 1

)
α2k+1

βk

]
(5.29)

and a modified q-form of Gauss’s first symbolic expression (cf §127 of [5]):

Ex
q =

∞∑
k=0

[(
x+ k

2k

)
∆2k
q

Ek
q

+

(
x+ k

2k + 1

)
∆2k+1
q

Ek
q

]

=
∞∑
k=0

[(
x+ k

2k

)
δ2k
q +

(
x+ k

2k + 1

)
∆qδ

2k
q

]
. (5.30)

Proof. Starting from Newton’s formula:

βx =
∞∑
k=0

(
x

k

)
αk.

We multiply α+1
β

= 1 to the summation from the term α up and obtain
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βx = 1 +

(
x

1

)
α

β
+

(
x

1

)
α2

β
+
∞∑
k=2

(
x

k

)
αk(1 + α)

β

= 1 +

(
x

1

)
α

β
+

(
x+ 1

2

)
α2

β
+
∞∑
k=2

αk+1

β

[(
x

k

)
+

(
x

k + 1

)]
= 1 +

(
x

1

)
α

β
+

(
x+ 1

2

)
α2

β
+
∞∑
k=2

(
x+ 1

k + 1

)
αk+1

β

= 1 +

(
x

1

)
α

β
+

(
x+ 1

2

)
α2

β
+

(
x+ 1

3

)
α3

β
+
∞∑
k=3

(
x+ 1

k + 1

)
αk+1

β
.

Repeating the operation on the series from the term α3 up yields

βx = 1 +

(
x

1

)
α

β
+

(
x+ 1

2

)
α2

β
+

(
x+ 1

3

)
α3

β2
+

(
x+ 1

3

)
α4

β2

+
∞∑
k=3

(
x+ 1

k + 1

)
αk+1(1 + α)

β2

= 1 +

(
x

1

)
α

β
+

(
x+ 1

2

)
α2

β
+

(
x+ 1

3

)
α3

β2
+

(
x+ 2

4

)
α4

β2

+
∞∑
k=3

(
x+ 2

k + 2

)
αk+2

β2
.

The above operation is repeated from α5 up, and so on. We obtain

βx =
∞∑
k=0

[(
x+ k

2k

)
α2k

βk
+

(
x+ k

2k + 1

)
α2k+1

βk

]
. (5.31)

Substituting β = Eq and α = ∆q into the above identity, we obtain the
desired result.

(2.7) and (2.8) can be proved using the first Gauss symbolic expression
(5.30) and the following q-form of the Everett’s symbolic expression (cf [5],
§129), respectively.
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Ex =
∞∑
k=0

[(
x+ k

2k + 1

)
∆2k
q

Ek−1
q

−
(
x+ k − 1

2k + 1

)
∆2k
q

Ek
q

]

=
∞∑
k=0

[(
x+ k

2k + 1

)
Eqδ

2k
q −

(
x+ k − 1

2k + 1

)
δ2k
q

]
. (5.32)

Indeed, using (5.30) and noting the identity

∞∑
m=k

(
m

k

)
xm =

xk

(1− x)k+1
, (|x| < 1).

one may derive (2.7) as follows:

(1− xEq)−1 =
∞∑
j=0

(xEq)
j

=
∞∑
k=0

{(
∞∑
j=0

(
j + k

2k

)
xj

)
∆2k
q

Ek
q

+

(
∞∑
j=0

(
j + k

2k + 1

)
xj

)
∆2k+1
q

Ek+1
q

}

=
∞∑
k=0

{
xk

(1− x)2k+1

∆2k
q

Ek
q

+
xk+1

(1− x)2k+2

∆2k+1
q

Ek+1
q

}

=
∞∑
k=0

(
x

(1− x)2

)k+1
(

1− x
x

∆2k
q

Ek
q

+
∆2k+1
q

Ek+1
q

)

=
∞∑
k=0

(
x

(1− x)2

)k+1
(
x−1

∆2k
q

Ek
q

−
∆2k
q

Ek+1
q

)
.

(2.8) can be proved similarly using (5.32). However, it can also be verified
by a direct symbolic computations. In fact we have
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RHS of (2.8) = 1 +
x

(1− x)2

∞∑
k=0

(
x

(1− x)2

)k (∆2
q

Eq

)k
(Eq − x)

= 1 +
x

(1− x)2

Eq − x
1− x

(1−x)2
∆2

q

Eq

= 1 +
x(Eq − x)

(1− x)2 − x∆2
q

Eq

= 1 +
Eqx(Eq − x)

(1− x)2Eq − x(Eq − 1)2
= 1 +

Eqx

1− xEq
= (1− xEq)−1 = LHS of (2.8).

This complete the proofs of (2.6)-(2.8).
The proof of (4.20) is straightforward:

(1 + Eq)
x = (2 + ∆q)

x = 2x
(

1 +
∆

2

)x
= 2x

∑
k≥0

(x)k
k!2k

∆k
q .

To prove (4.21), we use (5.30) as follows:

(1 + Eq)
x = 1 +

∑
j≥1

(
x

j

)
Ej
q

= 1 +
∑
j≥1

(
x

j

)∑
k≥0

[(
k + j

2k

)
∆2k
q

Ek
q

+

(
k + j

2k + 1

)
∆2k+1
q

Ek+1
q

]

=
∑
k≥0

[
∆2k
q

Ek
q

∑
j≥k

(
x

j

)(
k + j

2k

)
+

∆2k+1
q

Ek+1
q

∑
j≥k+1

(
x

j

)(
k + j

2k + 1

)]

=
∑
k≥0

[(
x

k

)
2F1(k − x, 2k + 1; k + 1;−1)

∆2k
q

Ek
q

+

(
x

k + 1

)
2F1(k + 1− x, 2k + 2; k + 2;−1)

∆2k
q

Ek+1
q

]
,

which implies (4.21). (4.22) can be proved similarly using Everett’s sym-
bolic expression (5.32).
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For (4.23), we first have

(1 + Eq)
x =

(
1 + eLq

)x
=
∑
j≥0

(
x

j

)
ejLq (5.33)

=
∑
j≥0

(
x

j

)∑
k≥0

(jLq)
k

k!
=
∑
k≥0

(∑
j≥0

(k)jj
k

j!

)
Lkq
k!
. (5.34)

Using (5.24), we may write the part in the parenthesis of the rightmost

term as 2xP
(x)
k (1/2, 1/2, . . .) to finish.
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