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Abstract
This paper deals with the summation problem of power series
of the form Sb

a(f ;x) =
∑

a≤k≤b f(k)xk, where 0 ≤ a < b ≤ ∞,
and {f(k)} is a given sequence of numbers with k ∈ [a, b) or
f(t) is a differentiable function defined on [a, b). We present a
symbolic summation operator with its various expansions, and
construct several summation formulas with estimable remainders
for Sb

a(f ;x), by the aid of some classical interpolation series due
to Newton, Gauss and Everett, respectively.
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1 Introduction

It is known that the symbolic operations ∆ (difference), E (displace-
ment) and D (derivative) play an important role in the Calculus of
Finite Differences as well as in certain topics of Computational Meth-
ods. For various classical results, see, e.g., Jordan [7], Milne-Thomson
[8], etc. Certainly, the theoretical basis of the symbolic methods could
be found within the theory of formal power series, inasmuch as all the
symbolic expressions treated are expressible as power series in ∆ , E or
D, and all the operations employed are just the same as those applied
to formal power series. For some easily accessible references on formal
series, we may recommend Bourbaki [2], Comtet [3] and Wilf [11].

Recall that the operators ∆ , E and D may be defined via the
following relations:

∆f(t) = f(t + 1)− f(t), Ef(t) = f(t + 1), Df(t) =
d

dt
f(t).

Using the number 1 as an identity operator, viz. 1f(t) = f(t), one can
observe that these operators satisfy the formal relations

E = 1 + ∆ = eD, ∆ = E − 1 = eD − 1, D = log(1 + ∆).

Powers of these operators are defined in the usual way. In particular,
one may define for any real number x , Exf(t) = f(t + x).

Note that Ekf(0) =
[
Ekf(t)

]
t=0

= f(k), so that any power series of

the form
∑∞

k=0 f(k)xk could be written symbolically as

∑
k≥0

f(k)xk =
∑
k≥0

xkEkf(0) =
∑
k≥0

(xE)kf(0) = (1− xE)−1f(0).

This shows that the symbolic operator (1 − xE)−1 with parameter x
can be applied to f(t) (at t = 0) to yield a power series or a generating
function for {f(k)}.

We shall show in §3 that (1−xE)−1 could be expanded into series in
various ways to derive various symbolic operational formulas as well as
summation formulas for

∑
k≥0 f(k)xk. Note that the closed form rep-

resentation of series has been studied extensively. See, for example, [9]
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which presents a unified treatment of summation of series using func-
tion theoretic method. Some consequences of the summation formulas
as well as the examples will be shown in §4, can be useful for compu-
tational purpose, accelerating the series convergence. In Section 5, we
shall give the remainders of the summation formulas.

2 Preliminaries

We shall need several definitions as follows.

Definition 2.1 The expression f(t) ∈ Cm
[a,b) (m ≥ 1) means that f(t)

is a real function continuous together with its mth derivative on [a, b).

Definition 2.2 〈x, x0, x1, · · · , xn〉 represents a least interval containing
x and the numbers x0, x1, · · · , xn.

Definition 2.3 αk(x) is called an Eulerian fraction and may be ex-
pressed in the form (cf. Comtet [3])

αk(x) =
Ak(x)

(1− x)k+1
, (x 6= 1),

where Ak(x) is the kth degree Eulerian polynomial having the expression

Ak(x) =
k∑

j=1

A(k, j)xj, A0(x) ≡ 1

with the A(k, j) being known as Eulerian numbers, expressible as

A(k, j) =

j∑
i=0

(−1)i

(
k + 1

i

)
(j − i)k, (1 ≤ j ≤ k).

Definition 2.4 δ is Sheppard central difference operator defined by the
relation δf(t) = f

(
t + 1

2

)
− f

(
t− 1

2

)
, so that (cf. Jordan [7])

δ = ∆E−1/2 = ∆/E1/2, δ2k = ∆2kE−k.

Moreover, in the sections §3 and §4, we will make use of several
simple and well-known propositions which may be stated as lemmas as
follows.
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Lemma 2.5 There is a simple binomial identity

∞∑
m=k

(
m

k

)
xm =

xk

(1− x)k+1
, (|x| < 1).

Lemma 2.6 Newton’s symbolic expression for Ex is given by

Ex = (1 + ∆)x =
∞∑

k=0

(
x

k

)
∆k.

For f ∈ Cn+1
[0,∞) we have Newton’s interpolation formula

f(x) = Exf(0) =
n∑

k=0

(
x

k

)
∆kf(0) +

(
x

n + 1

)
f (n+1)(ξ),

where x ∈ (0,∞) and ξ ∈ 〈x, 0, 1, · · · , n〉.

Lemma 2.7 Euler’s summation formula for the arithmetic-geometric
series is given by

∞∑
j=0

jkxj =
Ak(x)

(1− x)k+1
= αk(x), (|x| < 1),

where k is a positive integer, and αk(x) is the Eulerian fraction.

Lemma 2.8 For n ≥ 1 we have Everett’s symbolic expression (cf. Jor-
dan [7], §129).

Ex =
∞∑

k=0

((
x + k

2k + 1

)
∆2k

Ek−1
−
(

x + k − 1

2k + 1

)
∆2k

Ek

)
.

For f ∈ C2m
(−∞,∞) we have Everett’s interpolation formula

f(x) =
m−1∑
k=0

((
x + k

2k + 1

)
δ2kf(1)−

(
x + k − 1

2k + 1

)
δ2kf(0)

)
+

(
x + m− 1

2m

)
f (2m)(ξ),

where x ∈ (−∞,∞) and ξ ∈ 〈x, 0,±1, · · · ,±m,m + 1〉.
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Lemma 2.9 Gauss’s symbolic expression for Ex is given by

Ex =
∞∑

k=0

((
x + k

2k

)
∆2k

Ek
+

(
x + k

2k + 1

)
∆2k+1

Ek+1

)
.

For f ∈ C2m
(−∞,∞) we have Gauss interpolation formula (cf. Jordan [7],

§129).

f(x) =
m−1∑
k=0

((
x + k

2k

)
∆2kf(−k) +

(
x + k

2k + 1

)
∆2k+1f(−k − 1)

)
+

(
x + m

2m

)
f (2m)(ξ),

where x ∈ (−∞,∞) and ξ ∈ (−m,m− 1).

Lemma 2.10 (Mean Value Theorem) Let
∑∞

n=0 anx
n with an ≥ 0 be a

convergent series for x ∈ (0, 1). Suppose that φ(t) is a bounded contin-
uous function of t on (−∞,∞), and {tn} is a sequence of real numbers.
Then there is a number ξ ∈ (−∞,∞) such that

∞∑
n=0

anφ(tn)xn = φ(ξ)
∞∑

n=0

anx
n.

3 Main Results

We now state and prove the following proposition of various expansions
of (1− xE)−1.

Proposition 3.1 The operator (1 − xE)−1 has four symbolic expan-
sions, as follows.
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(1− xE)−1 =
∞∑

k=0

xk

(1− x)k+1
∆k (3.1)

(1− xE)−1 =
∞∑

k=0

αk(x)

k!
Dk (3.2)

(1− xE)−1 = 1 +
∞∑

k=0

(
x

(1− x)2

)k+1(
∆2k

Ek−1
− x

∆2k

Ek

)
(3.3)

(1− xE)−1 = 1 +
∞∑

k=0

(
x

(1− x)2

)k+1(
x−1 ∆2k

Ek
− ∆2k

Ek+1

)
(3.4)

where the condition x 6= 1 is assumed, and moreover, x 6= 0 for (3.4).

Proof. Here we present a proof in the sense of symbolic calculus, viz.,
every series expansion is considered as a formal series.

Clearly (3.1) may be derived as follows.

(1− xE)−1 = (1− x(1 + ∆))−1 = (1− x− x∆)−1

= (1− x)−1(1− x∆/(1− x))−1 =
∞∑

k=0

xk∆k

(1− x)k+1
.

For proving (3.2) it suffices to make use of E = eD and Lemma 2.7.
Indeed we have

(1− xE)−1 = (1− xeD)−1 =
∞∑

k=0

xkekD

=
∞∑

k=0

xk

∞∑
j=0

(kD)j

j!
=

∞∑
j=0

(
∞∑

k=0

xkkj

)
Dj

j!
=

∞∑
j=0

αj(x)
Dj

j!
.

(3.3) and (3.4) can be justified in an entirely similar manner by using
Lemma 2.5, Lemma 2.8 and Lemma 2.9, respectively. Indeed, (3.4) may
be derived as follows.



Symbolic operator approach to summation for power series 7

(1− xE)−1 − 1 =
∞∑

j=1

(xE)j

=
∞∑

k=0

{(
∞∑

j=1

(
j + k

2k

)
xj

)
∆2k

Ek
+

(
∞∑

j=1

(
j + k

2k + 1

)
xj

)
∆2k+1

Ek+1

}

=
∞∑

k=0

{
xk

(1− x)2k+1

∆2k

Ek
+

xk+1

(1− x)2k+2

∆2k+1

Ek+1

}

=
∞∑

k=0

(
x

(1− x)2

)k+1(
1− x

x

∆2k

Ek
+

∆2k+1

Ek+1

)

=
∞∑

k=0

(
x

(1− x)2

)k+1(
x−1 ∆2k

Ek
− ∆2k

Ek+1

)
.

Once (3.3) is derived by the aid of Lemma 2.5 and Lemma 2.8, it can
also be verified by symbolic computations. In fact we have

RHS of (3.3) = 1 +
x

(1− x)2

∞∑
k=0

(
x

(1− x)2

)k (
∆2

E

)k

(E − x)

= 1 +
x

(1− x)2

E − x

1− x
(1−x)2

∆2

E

= 1 +
x(E − x)

(1− x)2 − x∆2

E

= 1 +
Ex(E − x)

(1− x)2E − x(E − 1)2
= 1 +

Ex

1− xE

= (1− xE)−1 = LHS of (3.3).

Certainly (3.4) could also be verified in the like manner as above.

Remark 3.1 Note that all the operators displayed on the right-hand
sides of (3.1) - (3.4) involve ∆ or D, so that they will yield finite ex-
pressions when they are applied to any polynomial f(t) at t = 0. In
particular, we see that for the pth degree polynomial f(t), (3.1) gives a
generating function (GF ) in the form

∞∑
k=0

f(k)xk =

p∑
k=0

xk

(1− x)k+1
∆kf(0). (3.5)
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Actually, this is a well-known formula and was mentioned in Jordan [7],
§11. Moreover, an exact formula parallel to (3.5) may be obtained from
(3.2), namely

∞∑
k=0

f(k)xk =

p∑
k=0

αk(x)

k!
Dkf(0). (3.6)

Certainly, both (3.5)) and (3.6) may be used either as summation for-
mulas for the power series

∑∞
k=0 f(k)xk with |x| < 1, or as a tool for

getting GF ′s for the sequence {f(k)}.
Remark 3.2 Observe that Euler’s formula as given by Lemma 2.7 is
a particular case of (3.6) with f(t) = tp (p ≥ 1). Obviously, Euler’s
formula may also be deduced from (3.5) by recalling the fact that (cf.
Hsu & Shiue [5])

αk(x) =
k∑

j=0

j!S(k, j)
xj

(1− x)j+1
,

where S(k, j) are Stirling numbers of the second kind.

Proposition 3.2 Let {f(k)} be a given sequence of numbers (real or
complex), and let h(t) be infinitely differentiable at t = 0. Then we have
formally

∞∑
k=0

f(k)xk =
∞∑

k=0

xk

(1− x)k+1
∆kf(0) (3.7)

∞∑
k=0

h(k)xk =
∞∑

k=0

αk(x)

k!
Dkh(0) (3.8)

∞∑
k=1

f(k)xk =
∞∑

k=0

(
x

(1− x)2

)k+1 (
δ2kf(1)− xδ2kf(0)

)
(3.9)

∞∑
k=1

f(k)xk =
∞∑

k=0

(
x

(1− x)2

)k+1 (
x−1δ2kf(0)− δ2kf(−1)

)
(3.10)

where we always assume that x 6= 0 and x 6= 1.

Proof. Clearly (3.7) - (3.10) are merely consequences of (3.1) - (3.4) by
applying the operators to f(t) or h(t) at t = 0.
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As in the case of (3.5) - (3.6), we have a corollary form (3.9) - (3.10),
namely

Corollary 3.3 If f(t) is a polynomial in t of degree p, then

∞∑
k=1

f(k)xk =

[p/2]∑
k=0

(
x

(1− x)2

)k+1 (
δ2kf(1)− xδ2kf(0)

)
(3.11)

∞∑
k=1

f(k)xk =

[p/2]∑
k=0

(
x

(1− x)2

)k+1 (
x−1δ2kf(0)− δ2kf(−1)

)
(3.12)

Certainly, (3.11) - (3.12) may also be used as a rule for obtaining
GF ′s of {f(k)}.

4 Consequences of Proposition 3.2 and Ex-

amples

As observed in §3, any of the formulas (3.5), (3.6), (3.11) and (3.12)
solves generally the summation problem of power series

∑∞
k=0 f(k)xk

in the case f(t) is a polynomial. Thus for instance, a few summation
formulas of the forms

∞∑
k=0

(k + λ|θ)px
k =

p∑
k=0

k!S(p, k, λ|θ)xk

(1− x)k+1
(4.1)

∞∑
k=0

Dp(k, α)xk =

p∑
k=0

xαk!S(p, k, α|θ)xk

(1− x)k+1
(4.2)

as given in Hsu and Shiue [5] are just particular cases of (3.5) in which
f(t) = (t+λ|θ)p and f(t) = Dp(t, α) are known as the generalized falling
factorial and the Dickson polynomial, respectively, or more precisely

(t + λ|θ)p = Πp−1
j=0(t + λ− jθ), (p ≥ 1), (t + λ|θ)0 = 1, and

Dp(t, α) =

[p/2]∑
j=0

p

p− j

(
p− j

j

)
(−α)jtp−2j, D0(t, α) = 2.
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Moreover, S(p, k, λ|θ) denotes Howard’s degenerate weighted Stirling
numbers. (For more in details, cf. [5] loc. cit.)

Another important consequence of Proposition 3.2 is that (3.7), (3.9)
and (3.10) with x = −1 yield three series transforms respectively

∞∑
k=0

(−1)kf(k) =
∞∑

k=0

(−1)k

2k+1
∆kf(0) (4.3)

∞∑
k=1

(−1)k−1f(k) =
∞∑

k=0

(−1)k

4k+1

(
δ2kf(1) + δ2kf(0)

)
(4.4)

∞∑
k=1

(−1)kf(k) =
∞∑

k=0

(−1)k

4k+1

(
δ2kf(0) + δ2kf(−1)

)
. (4.5)

Note that (4.3) is the well-known Euler series transform that can be
used to convert a slowly convergent alternating series

∑∞
k=0(−1)kf(k)

with f(k) ↓ 0 (as k → ∞) into rapidly convergent series. For instance,
the series

ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− · · · (4.6)

can be converted using (4.3) with f(k) = 1
k+1

(k = 0, 1, 2, . . .) into a
quickly convergent series of the form

ln 2 =
1

2
+

1

22 · 2
+

1

23 · 3
+

1

24 · 4
+ · · · (4.7)

Actually, the above expression can be derived by substituting

∆kf(0) =
k∑

j=0

(
k

j

)
(−1)k−j(j + 1)−1 (4.8)

into (4.3). Thus,



Symbolic operator approach to summation for power series 11

ln 2 =
∞∑

k=0

(−1)kf(k) =
∞∑

k=0

(−1)k

2k+1

k∑
j=0

(
k

j

)
(−1)k−j(j + 1)−1

=
∞∑

k=0

1

(k + 1)2k+1

k∑
j=0

(−1)j

(
k + 1

j + 1

)

=
∞∑

k=0

1

(k + 1)2k+1
=

∞∑
k=1

1

k2k
. (4.9)

Remark 4.1 Obviously, the convergence of the series shown in (4.7)
with a rate of O(1/2n) is much faster than the convergence of the series in
(4.6), which has the rate of O(1/n). For instance, to arrive the accuracy
of the five digits of ln 2 = 0.69315, we only need to sum the first 15
terms of the series in (4.7), while the partial sum of the first 40, 000
terms of the series in (4.6) is 0.69313. (4.4) - (4.5) appear to be novel,
and they could also be used to convert slowly convergent alternating
series

∑∞
k=1(−1)kf(k) into quickly convergent ones if a definition for

f(k) = 0 (k = 0,−1,−2, . . .) is introduced. A later work will give the
comparison on the rate of the convergence of series (4.3)-(4.5) for the
positive decreasing functions.

We now give some examples of the summations shown in Proposition
3.2. Our first example is for function f(x) = 1/(x + 1)2. Similar to
expression (4.8) we obtain

∆kf(0) =
k∑

j=0

(
k

j

)
(−1)k−j(j + 1)−2.

Substituting the above expression into (3.2) and noting the well-known
identity (cf. [4])

k∑
j=1

(−1)j−1

(
k

j

)
1

j
=

k∑
`=1

1

`
,

(see [6]), we use the process similar to that in (4.9) and have
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∞∑
k=0

(−1)kf(k) =
∞∑

k=0

1

2k+1

k∑
j=0

(
k

j

)
(−1)j

(j + 1)2

=
∞∑

k=0

1

(k + 1)2k+1

k∑
j=0

(
k + 1

j + 1

)
(−1)j

j + 1
=

∞∑
k=1

1

k2k

k∑
j=1

(
k

j

)
(−1)j−1

j

=
∞∑

k=1

1

k2k

k∑
`=1

1

`
=

∞∑
j=0

∞∑
`=1

1

`(j + `)2j+`
=

∞∑
`=1

1

`22`
+ σ,

where summation 360(c) in Jolley [6] gives the first sum as π2

12
− 1

2
ln2 2

and

σ =
∞∑

j=1

∞∑
`=1

1

`(j + `)2j+`

easily seen to equal

1

2

∞∑
j=1

∞∑
`=1

1

j`2j+`
=

1

2
ln2 1

2

yielding

∞∑
k=0

(−1)k

(k + 1)2
=

π2

12
. (4.10)

Remark 4.2 Although formula (4.10) can be easily derived by using
Fourier cosine expansion of x2, we give a different approach here by using
formula (4.3) because it converts the series in (4.10) into the following
quickly convergent series:

π2

12
=

∞∑
k=0

(−1)k

(k + 1)2
=

∞∑
k=1

1

k2k

k∑
`=1

1

`
.

Hence, we can use the last series shown above to evaluate ζ(2) as

ζ(2) =
π2

6
=

∞∑
k=1

1

k2k−1

k∑
`=1

1

`
.



Symbolic operator approach to summation for power series 13

The sum of the first 13 terms of the last series gives 1.6449, the first
5 digits of π2/6, while the sum of the first 5, 000 terms of the series in
(4.10) is only 1.6447. This example shows that formula (4.3) can be
used to convert an alternating series into quickly convergent ones.

We now consider another example generated by function f(x) =
(g(t))x, where g : R 7→ R and f is defined on N ∪ {0}. Obviously, we
have

∆kf(0) =
k∑

j=0

(
k

j

)
(g(t))j(−1)k−j = (g(t)− 1)k (4.11)

and for i = 0, 1

δ2kf(i) = ∆2kE−kf(i) = ∆2k(g(t))i−k

=
2k∑

j=0

(
2k

j

)
(g(t))i−k+j(−1)2k−j = (g(t)− 1)2k(g(t))i−k. (4.12)

Hence, substituting (4.11) into (3.7) yields

∞∑
k=0

(g(t))kxk =
∞∑

k=0

xk

(1− x)k+1
(g(t)− 1)k

=
1

1− x

1

1− x(g(t)−1)
1−x

=
1

1− xg(t)
. (4.13)

Similarly, substituting (4.12) into (3.9), we obtain the following sum-
mation formula

∞∑
k=0

(
x

(1− x)2

)k+1

(g(t)− 1)2k
{
(g(t))1−k − x(g(t))−k

}
=

g(t)(g(t)− x)

(g(t)− 1)2

∞∑
k=0

(
x(g(t)− 1)2

g(t)(1− x)2

)k+1

=
g(t)(g(t)− x)

(g(t)− 1)2

x(g(t)− 1)2

g(t)(1− x)2 − x(g(t)− 1)2

=
xg(t)(g(t)− x)

g(t)(1 + x2)− x((g(t))2 + 1)
=

xg(t)

1− xg(t)
. (4.14)
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As examples, we take g(t) = eit, with i =
√
−1, and g(t) = t. Thus,

from (4.13) we have respectively

∞∑
k=0

eitkxk =
∞∑

k=0

xk

(1− x)k+1
(eit − 1)k =

1

1− xeit
(4.15)

and

∞∑
k=0

(tx)k =
∞∑

k=0

xk

(1− x)k+1
(g(t)− 1)k =

1

1− xt
. (4.16)

By applying (4.14) for g(t) = eit and t we obtain

∞∑
k=0

(
x

(1− x)2

)k+1

(eit − 1)2k
{
e−i(k−1)t − xe−ikt

}
=

xeit

1− xeit
(4.17)

and

∞∑
k=0

(
x

(1− x)2

)k+1

(t− 1)2k
{
t1−k − xt−k

}
=

tx

1− tx
, (4.18)

respectively.
We now illustrate (3.8) with h(x) = (g(t))x with g : R 7→ R and

g(t) > 0. Hence, Dkh(0) = (ln g(t))k and from (3.8) and Definition 2.3

∞∑
k=0

(g(t))kxk =
1

1− xg(t)
=

∞∑
k=0

αk(x)

k!
(ln g(t))k

=
∞∑

k=0

Ak(x)

k!(1− x)k+1
(ln g(t))k. (4.19)

Replacing ln g(t) by t and t(1 − x), respectively, in Eq. (4.19) yields
GF ′s (cf. Section 6.5 in [3] and [10])

∞∑
k=0

αk(x)
tk

k!
=

1

1− xet
(4.20)

and
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∞∑
k=0

Ak(x)
tk

k!
=

1− x

1− xet(1−x)
. (4.21)

Some other GF ′s such as (5i) − (5k) shown in Section 6.5 in [3] can
be derived from Eq. (4.19). In addition, from Eq. (4.20), we can
establish the recurrence relation for αk(x) by multiplying both sides of
the equation by (1− xet). The details can be found in [10].

Finally, we consider a special case of (4.19) by letting h(x) = eitx,
i.e., g(t) = eit with t ∈ R, and x = −1 in (4.19), we obtain

∞∑
k=0

eikt(−1)k =
1

1 + eit
=

1

2

{
1− i tan

t

2

}
=

∞∑
k=0

Ak(−1)

k!2k+1
(it)k.

Therefore, direct verification of the rightmost equality would be effected
by the identity

∞∑
k=1

Ak(−1)zk

k!
= − tanh z, (4.22)

implying Ak(−1) is the negative of the respective tangent coefficient [7].
Note that

Ak(−1) =
k∑

j=1

A(k, j)(−1)j = −
k∑

j=1

j!S(k, j)(−2)k−j, (4.23)

with S(k, j) denoting the Stirling number of the second kind (cf. For-
mula [5l] in 6.5 of [3], [2] and [5]). Therefore, implementing exponential
GFs, in z, on both sides of (4.23), (4.22) follows from j!

∑∞
k=j S(k, j)zk/k! =

(ez − 1)j (cf. [1]).
The numerical results in Remarks 4.1 and 4.2 are obtained by using

mathematical package Mathematica. All of the sums, except for the
few discussed in the examples, can also be done with any mathematical
package, for examples Mathematica and Maple.

5 Summation Formulas with Remainders

In this section we will establish four summation formulas with remain-
ders whose forms are suggested by Lemmas 2.6, 2.8 and 2.9.
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Theorem 5.1 Let f(t) ∈ Cm
[0,∞), (m ≥ 1), with bounded derivative

f (m)(t) in [0,∞), and let
∑∞

k=0 f(k)xk be convergent for |x| < 1. Then
for x ∈ (0, 1) we have

N−1∑
k=M

f(k)xk =
m−1∑
k=0

(
xM∆kf(M)− xN∆kf(N)

) xk

(1− x)k+1
+ ρm, (5.1)

where the remainder ρm has a form with ξ ∈ [0,∞) as follows

ρm =
(
xMf (m)(M + ξ)− xNf (m)(N + ξ)

) xm

(1− x)m+1
. (5.2)

Proof. Let φ(t) = φ(t, x) = xMf(t + M) − xNf(t + N), so that φ(t) ∈
Cm

[0,∞). Then by Lemma 2.6 and using the Mean-Value Theorem (Lemma

2.10) with an =
(

n
m

)
, we obtain

N−1∑
k=M

f(k)xk =
∞∑

n=0

φ(n)xn

=
∞∑

n=0

{
m−1∑
k=0

∆kφ(0)

(
n

k

)}
xn +

∞∑
n=0

φ(m)(ξn)

(
n

m

)
xn (ξn ∈ 〈n, 0, 1, 2, · · · , m− 1〉)

=
m−1∑
k=0

∆kφ(0)

(
∞∑

n=0

(
n

k

)
xn

)
+ φ(m)(ξ)

∞∑
n=0

(
n

m

)
xn

=
m−1∑
k=0

∆kφ(0)
xk

(1− x)k+1
+ φ(m)(ξ)

xm

(1− x)m+1

= RHS of (5.1)

with ρm being given by (5.2).

Note that the RHS of (5.1) without ρm may be regarded as a rational
approximation to the series on the LHS. In particular, if xN∆kf(N) → 0
(N →∞, 0 ≤ k ≤ m− 1), then (5.1) - (5.2) reduce to

∞∑
k=M

f(k)xk =
m−1∑
k=0

xM∆kf(M)
xk

(1− x)k+1
+ xMf (m)(M + ξ)

xm

(1− x)m+1
.

(5.3)
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Theorem 5.2 Under the same condition of Theorem 5.1, we have

N−1∑
k=M

f(k)xk =
m−1∑
k=0

(
xMf (k)(M)− xNf (k)(N)

) αk(x)

k!
+ ρm, (5.4)

where the remainder is given by

ρm =
(
xMf (m)(M + ξ)− xNf (m)(N + ξ)

) αm(x)

m!
. (5.5)

Proof. Denote φ(t) = xMf(t + M)− xNf(t + N) so that φ(t) ∈ Cm
[0,∞).

Clearly, by using Taylor’s expansion with Lagrange’s remainder, we have

N−1∑
k=M

f(k)xk =
∞∑

n=0

φ(n)xn

=
∞∑

n=0

(
m−1∑
k=0

1

k!
φ(k)(0)nk

)
xn +

∞∑
n=0

1

m!
φ(m)(ξn)nmxn, (0 < ξn < n)

=
m−1∑
k=0

1

k!
φ(k)(0)

(
∞∑

n=0

nkxn

)
+ S2.

Here we can apply Lemma 2.10 to the series S2, thus obtaining

S2 =
1

m!
φ(m)(ξ)

(
∞∑

n=0

nmxn

)
(0 < ξ < ∞)

=
1

m!
φ(m)(ξ)αm(x) = ρm.

Hence, in accordance with Lemma 2.7, we have (5.4) and (5.5).

Remark 5.1 Theorem 5.2 with expressions (5.4) - (5.5) is of similar
nature as that of Theorems 1 and 2 in Wang & Hsu [10]. However, our
present result appears to be a little more restrictive since we have as-
sumed here the condition 0 < x < 1 and the convergence of

∑∞
k=0 f(k)xk

for |x| < 1. In what follows we shall give formulas using the central dif-
ference operators δ2k = ∆2k/Ek which appear to be more available for
numerical computations.
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Theorem 5.3 Let f(t) ∈ C2m
(−∞,∞) with bounded derivative f (2m)(t) in

(−∞,∞) and let
∑∞

k=0 f(k)xk be convergent for |x| < 1. Then for
x ∈ (0, 1), we have

N−1∑
k=M

f(k)xk =
m−1∑
k=0

(
δ2kφ(1)− xδ2kφ(0)

)( x

(1− x)2

)k+1

+ ρm, (5.6)

where δ2kφ(t) = xMδ2kf(t+M)−xNδ2kf(t+N) and ρm is given by the
following with ξ ∈ [−m,∞)

ρm =
(
xMf (2m)(M + ξ)− xNf (2m)(N + ξ)

) xm+1

(1− x)2m+1
. (5.7)

Proof. Denote φ(t) = xMf(t+M)−xNf(t+N), so that φ(t) ∈ C2m
(−∞,∞).

Let us now make use of Everett’s formula (Lemma 2.8) for φ(t) at t = n,

φ(n) =
m−1∑
k=0

[(
n + k

2k + 1

)
δ2kφ(1)−

(
n + k − 1

2k + 1

)
δ2kφ(0)

]
+

(
n + m− 1

2m

)
φ(2m)(ξn),

where ξn ∈ 〈n, 0,±1,±2, · · · ,±m, m + 1〉. Clearly we have
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N−1∑
k=M

f(k)xk =
∞∑

n=0

φ(n)xn, (0 < x < 1)

=
∞∑

n=0

m−1∑
k=0

[(
n + k

2k + 1

)
δ2kφ(1)−

(
n + k − 1

2k + 1

)
δ2kφ(0)

]
xn

+
∞∑

n=0

(
n + m− 1

2m

)
φ(2m)(ξn)xn

=
m−1∑
k=0

δ2kφ(1)

(
∞∑

n=0

(
n + k

2k + 1

)
xn

)

−
m−1∑
k=0

δ2kφ(0)

(
∞∑

n=0

(
n + k − 1

2k + 1

)
xn

)
+ ρm

=
m−1∑
k=0

δ2kφ(1)
xk+1

(1− x)2k+2
−

m−1∑
k=0

δ2kφ(0)
xk+2

(1− x)2k+2
+ ρm

=
m−1∑
k=0

(
δ2kφ(1)− xδ2kφ(0)

)( x

(1− x)2

)k+1

+ ρm.

Here an application of Lemma 2.10 to the series representation of ρm

yields

ρm = φ(2m)(ξ)

(
∞∑

n=0

(
n + m− 1

2m

)
xn

)
= φ(2m)(ξ)

xm+1

(1− x)2m+1
,

where ξ ∈ [−m,∞). Hence the theorem is proved.

Theorem 5.4 Under the same condition of Theorem 5.3 we have

N−1∑
k=M

f(k)xk =
m−1∑
k=0

(
x−1δ2kφ(0)− δ2kφ(−1)

)( x

(1− x)2

)k+1

+ρm, (5.8)

where x 6= 0 and δ2kφ(t) = xMδ2kf(t + M)− xNδ2kf(t + N), and
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ρm =
(
xMf (2m)(M + ξ)− xNf (2m)(N + ξ)

) xm

(1− x)2m+1
. (5.9)

Proof. As before, denote φ(t) = xMf(t + M) − xNf(t + N) and let
x ∈ (0, 1). Using Gauss interpolation formula with remainder (Lemma
2.9) for φ(t) at t = n, we get as in the case of proving Theorem 5.3 the
following expressions

N−1∑
k=M

f(k)xk =
∞∑

n=0

φ(n)xn

=
m−1∑
k=0

∆2kφ(−k)

(
∞∑

n=0

(
n + k

2k

)
xn

)

+
m−1∑
k=0

∆2k+1φ(−k − 1)

(
∞∑

n=0

(
n + k

2k + 1

)
xn

)

+
∞∑

n=0

(
n + m

2m

)
φ(2m)(ξn)xn

=
m−1∑
k=0

∆2kφ(−k)
xk

(1− x)2k+1
+

m−1∑
k=0

∆2k+1φ(−k − 1)
xk+1

(1− x)2k+2
+ ρm

=
m−1∑
k=0

(
1− x

x
∆2kφ(−k) +

[
∆2kφ(−k)−∆2kφ(−k − 1)

])

×
(

x

(1− x)2

)k+1

+ ρm

=
m−1∑
k=0

(
x−1∆2kφ(−k)−∆2kφ(−k − 1)

)( x

(1− x)2

)k+1

+ ρm.

Finally, an application of Lemma 2.10 to the series expression of ρm

gives

ρm = φ(2m)(ξ)
∞∑

n=0

(
n + m

2m

)
xn = φ(2m)(ξ)

xm

(1− x)2m+1
,

where ξ ∈ (−∞,∞). Hence Theorem 5.4 is proved.
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Remark 5.2 The uniform boundedness conditions for f (m)(t) in [0,∞)
as well as for f (2m)(t) in (−∞,∞) imply that xNf (m)(N + ξ) → 0 and
xNf (2m)(N + ξ) → 0 as N → ∞ and 0 < x < 1. Thus, if in addition,
xNf (k)(N) = o(N), (N →∞, 0 ≤ k ≤ m− 1), then (5.4) - (5.5) yield

∞∑
k=M

f(k)xk =
m−1∑
k=0

xMf (k)(M)
αk(x)

k!
+ xMf (m)(M + ξ)

αm(x)

m!
. (5.10)

Similar consequences from Theorems 5.3 and 5.4 may also be deduced
by providing additional conditions such as xNδ2kf(N) → 0 (N → ∞,
0 < x < 1).
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