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Abstract. By using Gould’s annihilation coefficients, we obtain an
explicit fundamental polynomials of Multivariate Abel-Gontscharoff
Interpolation and its remainder expression.

§1. Introduction

In [1,2,11,12], Kergin, Micchelli and Milman, and Cavaretta, Micchelli
and Sharma studied a method for extending univariate interpolation pro-
cedures to higher dimensions. Their idea is based on the requirement that
the multivariate extension is related to its univariate analog on the class of
ridge functions. In particular, the implicit multivariate Abel-Gontscharoff
without the remainder was studied.

Recently, as motivated by some special identities of Abel-type, Gould
[7] has investigated a kind of general algebraic identity of the form

n

> (et e — g = o, (11)

k=0

where B, € C, By # 0, ¢(t|0; ) = 1, and the uniquely determined coef-
ficients (})c(t|k; B) = (3)e(t|k; Bo, - -+, Be—1) (0 < k < n) are called (by
Gould) “annihilation coefficients” and satisfy the recurrence relations

c<t|n;/a>:i)(—m—j—l(j)cuu;mﬂ;-j, Rl (12)

J=0
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Evidently (1.2) is implied by (1.1) with t = 0. A few c(k) = c(t|k; f)-
polyno-mials can be readily found by using (1.2), i.e., ¢(1) = B, ¢(2) =
28061 — B3, c(3) = 680B182 — 3B3B2 — 3BoBi + B3. Actually it is easily
observed that c(t|k;3) (kK > 1) is a certain kind of homogeneous poly-
nomial of degree k in By, - -, Bx—1. Also, it is obvious that (1.1) implies
c(t|k;a,---,a) = of by setting S, = a.

Recently, Hsu, Shiue and the author (see Proposition 2.1 in [9]) found
that Gould’s polynomials c(k) = c(t|k;t—ay, . . ., t—ag—_1) is identical with
the fundamental polynomials of Abel-Gontscharoff interpolation. In other
words, the operator

" g(k)
9" (ag)
Ang(t) = ZTC(ﬂk;t—ao,...,t—ak_l) (1.3)
k=0

is the Abel-Gontscharoff interpolation operator; i.e., the operator A, :
C"([a,b]) = 7, (IR), where [a, b] contains all nodes g, aq, - - -, @y, satisfies
(Ang)® (ar) = g™ (a) (1.4)

forall k =0,1,---,n. Here, ag, aq,---, a, are not necessary distinct, and

mn(IR) denotes the collection of all polynomials of degrees < n defined
on IR. Moreover, [9] and [10] gave an explicit expression of the form for
c(t|k; B) as follows.

c(tlk; B) = (—1)*185

+ Z (_1)"’_"'_1]{;! jlﬁj_'z—j16]:3—j2 . /Blf—jr (1 5)
@ J1l(ja — ga)l -+~ (k — g1 0 T g2 g '

where (j) = {j1,---,Jjr} denotes an ordered subset of the ordered set
{1,2,---  k—1} with1 < j1 <jo< <3 <k—-1,(1<r<k-1), and
the summation is taken over all the ordered subsets of {1,2,---,k—1} for
r=1,---,k — 1, so that the right-hand of (1.5) consists of 2¥~! terms.

In this paper, we will use Gould’s polynomial to find an explicit fun-
damental polynomials of multivariate Abel-Gontscharoff interpolation and
the remainder expression.

§2. Main Results

Denote
¢(Dlk;z — 2%z — ',z —2F ) = (=1)*1DF_
(4) k—r—1
(—1)k—7—1f . o s
+ DM DPI DR pE (9.1)

.71'(]2 _ .71)' .. (k _ ]r) z—x0 " x—ai1 —xJ2 r—xir)
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where (j) is as the same as that in (1.5), 7,2 z%,---, 2" € R% and D} __,

is the ith order directional derivative operator along the direction z — 27.
It is obvious that D¢ __;g(A-¢) = (A-z— X~ z)ig®(X-t) (t € R?) for all
M\ z,z7 € R? and for all i € IN. In the following, we will use K to denote
the convex hull, conv{z®, 21, ---, 2"}, of points z°, z,.--, 2" € RY, and
use my, (]Rd) to denote the collection of all polynomials of degrees < n
defined on RY.

Abel-Gontscharoff interpolation problem is a type of Hermite-Birkhoff
interpolation problem. There exists a corresponding incidence matrix

E = [ei,k]?ilfk:o’ m > 1,£>0,

where elements e; ;, are 0 or 1. Denote |E| =), e,z =n+1,n€N. In
addition, we do not allow empty rows in F, i. e.; an ¢ for which e; ;, = 0,
k=0,1,...,£. A set of nodes T = {t1,...,t,} consists of m distinct
points of the set A that is either an interval or a circle. The elements F,
T, and the data c; ; (defined for e; , = 1) determine a Hermite-Birkhoff
interpolation problem which consists in finding a polynomial p = p(t) €
7 (C) that satisfies

PP (t:) = cip, ein=1. (2.2)
It is easily seen that the above problem (2.2) has a unique solution if and
only if the determinant

a—k
Q

ey (2.3)

0<aln—1
D(E;T) := det [ ]

(i,k)€e

is nonzero, where e := {(i,k) : e;rx = 1} (cf. [12] and [13]). Prob-
lem (2.2) is said to be complex poised if it has a unique solution. For
Abel-Gontscharoff interpolation problem, the corresponding determinant
defined as in (2.3)

1 t ﬁ 't’f .
0 1 fit1 - il
1 n! n—2
D(E;T) = det 0 0 % " =it
0 0 O n

is 112!-.-n!. Therefore, Abel-Gontscharoff interpolation problem is com-
plex poised. From [1,2], it follows that there exist a multivariate exten-
sion of Abel-Gontscharoff interpolatory operator (1.3). The multivariate
extension of the operator shown in (1.3) is also denoted as A,,.
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Theorem 1. The multivariate Abel-Gontscharoff interpolation map can
be described as

Z

c(Dk;x — 2%z -2,z — ") f(2F), (2.4)

??‘|,_u

where f : R — R, z,2°% 2%, ---,2" € R? are not necessary distinct, and
c(Dlk;z — 2% 2 — xt,-- -,z — 2F71) is defined by (2.1). In addition, the
operator A, : C"(K) — m,(R?) satisfies

qe(An f) (@) = ae(£)(2") (2.5)

for every £th (0 < £ < n) order differential operator with constant coeffi-
cients. Moreover, these interpolation conditions completely determine the
polynomial operator A,,.

Proof: For f(z) =g(A-2), g: R — R, from Eq. (2.1) we find that

1
Zk— c¢(D|k;z — 2%,z — 2, --- 2 — 2871 f(2F)
(D|k -2z 2t x—2F g\ zF)

:Zki Nzlksh-z—A-a20 - Xz — X zF B (N k)
k=0
Ang(A-z) = Anf(z). (2.6)

Here, the step before the last step is due to Eq. (1.3). By using (1.4) and
noting that the ridge functions g(A- z), A € R¥, g € C"(IR), are dense in
C™(K), we obtain (2.6) for all f € C™(K), and this proves (2.5). As for
the uniqueness of the interpolation operator, the proof is similar to the
proof of Proposition 2 in [2], which is omitted here. O

Theorem 2. For f: C"t}(K) — R, the remainder of its (multivariate)
Abel-Gontscharoff interpolation defined in Theorem 1 is

P nvz ( ) e(Dlk;z —2°,- -,z — 2*1)

1
x/ n—k D1k ¢80 (g 4 (1 — )2 do
0

T—xk
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Proof: For f(z) = g(\-x), we have
pn(f) (@ )= pn(g)(A- )

'Z ( ) A-zlksh-z—A-20 - Xz — X2k
.

x [a”—’“()\ =X af) g (oA z + (1= o)A 2F) [
(m)(.
_9MA-2)

n!

1
—(n—k)/ n1-kprk o ®) (G g+ (1 - o)A~ a*)do | =

xZ() Nzlkshz—X-2% Az —X-zF YA 2F = A-)nTF

1
—mc()\-aﬂn;)\-x—)\-a:o,---,)\-:c—)\-;c"_l)g(”)()\-a:”)

1 = n—1—k(n—1 k—1
a0 (1)l et
X /01 on_l_kDZ:a’;kf(aa: + (1 =0)z")do = pp_1(9)(\- )
—WC()\-:UM;)\-QS—)\-xo,---,)\-a:—)\-x”_l). (2.7)

The last step of (2.7) is due to

n

Z(Z)c(,\-x\k;,\-x—)\-xo,---,,\-x—,\-x’“—l)(,\-xk_,\.m)n—k:o,
k=0

which is a special case of (1.1) with t = 0 and 8y = A\-z—\-z*. Repeating
the procedure shown in (2.7) yields

pn(g)(A- ) = po(g)(A- )

" oa® (- xk
—Zggfi'x)c()\-x\k;)\-x—)\-xo,---,)\-x—)\-xk_l)
k=1 '

1
= / Dy_gogloh -z + (1 —0)X z¥)do
0

" oa® (N ok
_Z%cu-xm;)\-x—A-xO,---,A-x—)\-xk‘l)
k=1 )

=gA-z)— cA -zl Aoz =20

k=0

Aoz —X-zF) = f(z) — Anf(x).
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This completes the proof. O

It is obvious that if z° = 2! = --- = 2", then Theorems 1 and 2 give

multivariate Taylor theorem; i.e., let f : R — IR be defined and have
continuous partial derivatives of order n + 1 in an open rectangle in IR%
containing the point z°, then

Z k! o—s0f (@)
n—k|"T . n—k n+1 0
+ o I;(—l) (k) /0 o" DT o flox + (1 —0)x”)do.

Denote by T' = (T'; +, -) the commutative ring of formal power series over
R%, in which formal differentiation and integration of power series are
defined as usual (cf. Comtet [1]).

Theorem 3. Let a; € R?, B, € R? (k =0,1,2---), and let ¢(D|0;B)
= 1 and ¢(D|k; 8) be defined as in (2.1). Then for any f € T' we have
formally

fz) = ; o(DIk; 3 — ap, -, — an_1) f(an), (2.8)
k=0

and

flay =y 2D 5 Z 7(0), (2.9)

k=0
where D,()k) (a) denotes the kth formal directional derivative of f(z) at
z = a along b (z,a,b e R?).

Proof: Both (2.8) and (2.9) could be formally verified by using the iden-
tity (1.1) and the substitutions 8; = z — «; (j > 0) as follows. For
f(z) = g(\-z) (A, z € R?), from the right-hand side of Eq. (2.8), we have

1
k_ c(D\k;z — -+, — ag—1) f(ax)

TTM8

— 1
:Zk_ e\ zlkiz —ag, oz — ap—1)g® - o)

k=0

1 > q(k+3) (0 .
=3 el slkir—an o —ae) 3P0 ay

=
I

o
<
I

[e)
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:ZlC(A'iﬂ“{:;.’E—ao,---,.’L‘—O[k,_l)z gJ(O) ()\‘T_)‘ﬁk)]_k

2] k)
© 1 (0) = [ j
= . jj!(O) > (if)c()\-aﬂk;x —ap, @ —ag 1) (A= X ) 7F
§=0 k=0
() .
-3 T 0a = gra) = @), O
iz

At the end of this paper, we will discuss briefly the construction of
a type of multivariate identities by using Gould’s polynomials. Recalling
the notation for multinomial coefficient

!
(5 )= =it

Ji, s dr Jic e
we can rewrite expression (1.5) for c(alk; 8) = c(alk; Bo, - - -, Br—1) in the
form

ki) = 3 0 (p VR B
(kir>1) o
(2.10)

where the summation is taken over the set, denoted by (k,r > 1), of all
positive integer compositions (j1,---,j,) of k into r parts with r» > 1,

or in other words, over all the positive integer solutions of the equation
jhi+--+j-=kforr=1,---,k.

We can find multivariate identities by using expression (2.10). For
instance, for any number A\, z,t € R¢, we have the identity

k ) .
) R [CYP T CRRR T PYr
(kir>1) J1, 5 e

Az+Gr+ - F g )A I = (D)FN-2) (A 2+ EX-t)F{2.11)
Actually this is a consequence of (2.10) for the case fx = A-z+ k-t which
leads to c(A- z|k; 8) = (A 2)(A - z+ kX -t)*~ 1, which yields the following
multivariate Abel’s identity from (1.1), which is a multivariate extension
of the wellknown Abel’s identity in univariate setting (cf. [8] and [15]).

n

n A A . k-1 T — -z — . "_k: ..,L,n.
’;)(k)()\ YA -z +EX-1)FT(A A kX -t) (\-z)
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