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Abstract

In this paper, we will start the discussion with the refinable generators of
the shift invariant (SI) spaces in L2(R) that possess the largest possible
regularities and required vanishing moments. For the pseudo-scaling gener-
ators, the corresponding MRA frame wavelets with certain regularities are
constructed. In addition, the stability of the refinable SI spaces and the
corresponding complementary spaces, biorthogonality of the SI spaces, and
the approximation property of the spaces are also discussed.
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6.1 Introduction

[10] pointed out that to achieve higher regularity by increasing vanishing moments
of scaling functions and wavelets is not efficient, because 80% of zero moments are
wasted. In this paper, we give a method for constructing pseudo-scaling functions
and the corresponding MRA frame wavelets with the largest possible regularities
and required vanishing moments.

We start by setting some notations. Define low-pass filter as

m0(ξ) = 2−1
∑

n

hne−inξ. (1.1)
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Here, we assume that only finitely many hn are non-zero. However, some of our
results can be extended to infinite sequences that have sufficient decay for |n| → ∞.
Next, we define φ by

φ̂(ξ) = Π∞j=1m0(2−jξ). (1.2)

This infinite product converge only if m0(0) = 1 i.e., if
∑

n hn = 2. In this case,
the infinite products in (1.2) converge uniformly and absolutely on compact sets, so
that φ̂ is well-defined C∞ functions. Obviously,

φ̂(ξ) = m0(ξ/2)φ̂(ξ/2), (1.3)

or, equivalently, φ(t) =
∑

n hnφ(2t− n) at least in the sense of distributions. From
Lemma 3.1 in [3], φ has a compact support.

A shift invariant (SI) space is a closed subspace of L2(R) that is invariant under
the operator Sk(f) := f(· − k) (k ∈ Z). For φ ∈ L2(R), we say that V = S(φ) :=
span{φ(· − k)| k ∈ Z} is generated by φ. In addition, if φ is refinable, then φ is
said to be a refinable generator of S(φ), and S(φ) is called a refinable SI space.
Each element φ ∈ Φ is a refinable generator of the corresponding SI space S(φ). A
refinable generator is said to be a pseudo-scaling (refinable) generator (see [19]) if
it satisfies Equation (1.3) and

|m0(ξ)|2 + |m0(ξ + π)|2 = 1. (1.4)

We now consider the simplest possible masks m0(ξ) of refinable generators with
the following form.
Definition 1. Denote by Φ the set of all functions φ(t) that have Fourier transform
φ̂(ξ) = m0(ξ/2)φ̂(ξ/2). The filter m0(ξ) = 2−1

∑
n hne−inξ is in set M that contains

all filters with the form

mN
0 (ξ) =

(
1 + e−iξ

2

)N

F (ξ), (1.5)

where

F (ξ) = e−ik′ξ
k∑

j=0

aje
−ijξ. (1.6)

Here, all coefficients of F (ξ) are real, F (0) = 1; N and k are positive integers; and
k′ ∈ Z. Hence, the corresponding φ can be written as follows.

φ̂(ξ) =

(
1 + e−iξ/2

2

)N

F (ξ/2)φ̂(ξ/2). (1.7)

Clearly, φ is a B-spline of order N if F (ξ) = 1. The vanishing moments of φ

are completely controlled by the exponents of its “spline factor,”
(

1+e−iξ

2

)N
. In



MRA Frame Wavelets with Certain Regularities Associated with ... 167

addition, the regularity of φ is justified by the factors F (ξ), and are independent of
its vanishing moments.

A frame in a Hilbert space H is a family {fn, n ∈ I} of elements in H for which
there exist two positive constants, 0 < A ≤ B < ∞, such that

A‖f‖2 ≤
∑

n∈I

|〈f, fn〉|2 ≤ B‖f‖2, (1.8)

for all f ∈ H. If A = B, {fn} is called a tight frame. For tight frames, the frames
constants A = B can be assumed to be 1, simply by dividing each frame generator
fn by

√
A. In other words, the tight frames can be defined by

∑

n∈I

|〈f, fn〉|2 = ‖f‖2. (1.9)

The index set I for the family {fn} can be quite general. We assume it to be
countable and, in particular, we are often dealing with the case where {fn} is the
sequence of translates {φ(· − n)} of a function φ ∈ H ⊂ L2(R), n ∈ Z, or the
sequence of {2j/2φ(2j · −k)} with the index set consists of the pairs (j, k) ∈ Z× Z.
Definition 2. [14, 17] A function ψ ∈ L2(R) is a tight frame wavelet (TFW) if the
system {ψjk}j,k∈Z, ψjk(x) = 2j/2ψ(2jx− k), is a tight frame for L2(R); that is, for
all f ∈ L2(R),

∑

j,k∈z

|〈f, ψjk〉|2 = ‖f‖2
2. (1.10)

The applications of TFW are based on the following expression that is equivalent
to the condition (1.10) (see [15], p.334).

f(t) =
∑

j,k∈z

〈f, ψjk〉ψjk(t), (1.11)

where the equation holds unconditionally for all f ∈ L2(R).
Definition 3. A TFW ψ is an MRA (Multiresolution Analysis) TFW if there exists
a pseudo-scaling generator defined by Equation (1.3) such that

ψ̂(ξ) = eiξ/2m0(ξ/2 + π)φ̂(ξ/2); (1.12)

i.e., the symbol of ψ is m1(ξ) = eiξ/2m0(ξ/2 + π).
Since vanishing moment conditions

∫
x`ψ(x)dx = 0, ` = 0, 1, · · · , L, are equiva-

lent to d`

dξ` ψ̂|ξ=0 = 0, ` = 0, 1, · · · , L, we immediately know that the maximum order
of vanishing moment for ψ is N −1 if ψ is given by Equation (1.12) and φ is defined
by Equation (1.7). Therefore, the vanishing moments of φ are completely controlled

by the exponents of its respective “spline factors,”
(

1+e−iξ

2

)N
. In addition, the reg-

ularities of ψ is justified by the factors F (ξ), and are independent of their vanishing
moments.
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From [14, 17], we have the following result regarding the characterization of
TFWs.
Theorem 4. [14, 17] A function ψ ∈ L2(R) is a TFW if and only if ψ satisfies

∑

j∈Z

∣∣∣ψ̂
(
2jξ

)∣∣∣
2

= 1 a.e. (1.13)

and ∑

j≥0

ψ̂
(
2jξ

)
ψ̂ (2j(ξ + 2qπ)) = 0 a.e., (1.14)

for all q ∈ 2Z + 1; i.e., for all odd integers, q.
In [2], [3], and [11], the following concepts were introduced that are important

in our discussion.
Definition 5. Denote T = [0, 2π). The bracket operator [ , ] : L2(R) × L2(R) →
L1(T) is defined by

[f, g] =
∑

k∈Z

f(ξ + 2πk)g(ξ + 2πk). (1.15)

For f ∈ L2(R), the function [f, f ] ∈ L1(T) is called the auto-correlation of f .
If f, g are compactly supported, then [f̂ , ĝ] is a trigonometric polynomial and

has the Fourier expansion

[f̂ , ĝ](ξ) =
∑

k∈Z

〈f(·), g(·+ k)〉eikξ. (1.16)

Definition 6. Let S(φ) be a shift invariant space that is generated by φ. {φ(· −
k)}k∈Z is called a stable basis of S(φ) if there exist constants 0 < A ≤ B < ∞ such
that for every c = {ck}k∈Z ∈ `2(Z)

A ‖c‖2
`2(Z) ≤

∥∥∥∥∥
∑

k∈Z

ckφ(· − k)

∥∥∥∥∥
2

L2(R)

≤ B ‖c‖2
`2(Z) . (1.17)

Obviously, a stable basis of S(φ) is a basis of S(φ).
Theorem 7. [17] Let φ ∈ L2(R) and let 0 < A ≤ B < ∞. Inequality (1.17) is
equivalent to

A ≤
[
φ̂, φ̂

]
≤ B, a.e.

In Section 2, we will give the conditions for the coefficients {aj} such that the cor-
responding refinable pseudo-scaling generator φ is in L2(R) and the corresponding ψ
defined by Equation (1.12) is an MRA TFW. Section 3 discusses the stability of the
SI space, S(φ), generated by φ and the stability of the corresponding complementary
spaces. We then construct stable scaling function φ̃ ∈ Φ such that {φ(· − k)}k∈Z

and {φ̃(· − k)}k∈Z are biorthogonal. Thus, {φ(· − k)}k∈Z and {φ̃(· − k)}k∈Z are
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stable bases in the subspace that they generate. In addition, biorthogonal wavelets
that possess the largest possible regularities and required vanishing moments can
be obtained accordingly. We will also discuss the L2 approximation from S(φ) in
the section.

6.2 MRA TFWs with certain regularities

We construct pseudo-scaling generators and MRA TFWs using the following theo-
rem.
Theorem 8. Let φ ∈ Φ be defined by Definition 1; i.e., φ = Π∞j=1m

N
0 (2−jξ), where

mN
0 (ξ) ∈ M is defined by Equations (1.5) and (1.6): mN

0 (ξ) =
(

1+e−iξ

2

)N
F (ξ)

and F (ξ) = e−ik′ξ ∑k
j=0 aje

−ijξ, N, k ∈ Z+ and k′ ∈ Z, where F (0) = 1. If F also
satisfies F (π) 6= −1 and its coefficients satisfy

(k + 1)
k∑

j=0

a2
j < 22N−1, (2.1)

and
N+k+k′∑

j=k′

k∑

`=0

k∑

˜̀=0

(
N

j − ˜̀− k′

)(
N

j + 2n− `− k′

)
a˜̀a` = 22N−1δn0, (2.2)

where δn0 is the Kronecker symbol and n = 0,±1,±2, · · · , then φ ∈ L2(R) and is a
pseudo-scaling generator. In addition, The corresponding ψ defined by (1.12) is an
MRA TFW in Cα. Here α is more than

N − 1
2

log2


(k + 1)

k∑

j=0

a2
j


 .

Condition (2.1) can be replaced by the following weaker condition.

C({aj}, k) < 22N−1, (2.1)′

where C({aj}, k) equals k
∑k

j=0 a2
j if k ≥ 1 and equals a2

0 if k = 0. Hence, the
corresponding regularities of ψ is determined by ψ ∈ Cα′ , where α′ is more than
N − 1

2 log2 (2C({aj}, k)).
We shall break up the proof of Theorem 8 into several lemmas, in which Lemma

9 is given in [13]. Here, we provide a simpler alternative proof. Lemmas 10 and 11
are also shown in [13]. However, we list them as follows for readers’ convenience
and the completeness of the paper.
Lemma 9. Assume that φ ∈ Φ that is defined by Equation (1.7) in Definition 1. If
F (π) 6= −1 and

C({aj}, k) < 22N−1,
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then φ = Π∞j=1m
N
0 (2−jξ) is in L2(R).

Proof. It is sufficient to prove the boundedness of the following integral

∫

|ξ|≥π
|φ̂(ξ)|2dξ =

=
∞∑

`=1

∫

2`−1π≤|ξ|≤2`π
Π∞j=1

∣∣∣∣∣∣

(
1 + e−i2−jξ

2

)N

F (2−jξ)

∣∣∣∣∣∣

2

dξ

=
∞∑

`=1

∫

2`−1π≤|ξ|≤2`π

∣∣∣∣
1− e−iξ

iξ

∣∣∣∣
2N

Π∞j=1|F (2−jξ)|2dξ

≤ C
∞∑

`=1

∫

2`−1π≤|ξ|≤2`π

1
|ξ|2N

Π∞j=1|F (2−jξ)|2dξ

≤ C

∞∑

`=1

1
22`N

∫

2`−1π≤|ξ|≤2`π
Π`

j=1|F (2−jξ)|2Π∞j=1|F (2−`−jξ)|2dξ

≤ C
∞∑

`=1

4−`N

∫

2`−1π≤|ξ|≤2`π
Π`

j=1|F (2−jξ)|2dξ.

(2.3)

We now prove the boundedness of the last integral in inequality (2.3). Denote

Tf(ξ) =
∣∣∣∣F

(
ξ

2

)∣∣∣∣
2

f

(
ξ

2

)
+

∣∣∣∣F
(

ξ

2
+ π

)∣∣∣∣
2

f

(
ξ

2
+ π

)
. (2.4)

Hence, for any 2π-periodic continuous function f , we have
∫

2`−1π≤|ξ|≤2`π
f(2−`ξ)Π`

j=1

∣∣F (2−jξ)
∣∣2 dξ

=
∫ π

−π
T `f(ξ)dξ ≤

√
2π||T `f ||L2 ≤

√
2π||f ||L2 ||T `|| (2.5)

Let ρ(T ) be the spectral radius of the operator T . Since F (0) = 1 and F (π) 6= −1,
we have ρ(T ) > 0 (also see [8]). In fact, considering the Fourier expansion

|F (ξ)|2 =
k∑

`=−k

b`e
i`ξ,

where k is a positive integral and

bt =
k−|t|∑

j=0

ak−|t|−jak−j
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(t = −k, · · · , k), we find that the matrix of T restricted to

Ek = {
k∑

`=−k

c`e
i`ξ : (c−k, . . . , ck) ∈ C2k+1}

is

MT = (2bi−2j)i,j=−k,...,k = 2




bk 0 0 · · · 0
bk−2 bk−1 bk · · · 0

...
...

...
. . .

...
b−k b−k+1 b−k+2 · · · bk

0 0 b−k · · · bk−2
...

...
...

. . .
...

0 0 0 · · · b−k




. (2.6)

Noting that |F (0)|2 =
∑k

`=−k b` = 1 and |F (π)|2 =
∑k

`=−k(−1)`b` = α 6= −1, it
follows that ∑

`

b2` =
∑

`

b2`+1 = (α + 1)/2,

and for the vector u = (1, . . . , 1) ∈ C2k+1,

Tu = uM = (α + 1)u.

Thus, T has at least one eigenvalue α + 1 6= 0.
For every ε > 0, there is an integer `(ε) such that

||T `|| ≤ (ρ(T ) + ε)` , ` > `(ε).

It follows from (2.3) that

∫

|ξ|≥π
|φ̂(ξ)|2dξ ≤ C

`(ε)∑

`=1

4−N`||T `||+ C
∞∑

`=`(ε)+1

4−N` (ρ(T ) + ε)` ,

so ρ(T ) must be estimated if we are to choose an ε > 0 small enough for the series
to converge. Regardless of how small an ε > 0 is chosen, the contribution

C

`(ε)∑

`=1

4−N`||T `|| ≤ C

`(ε)∑

`=1

4−N`||T ||`

is finite, although possibly very large.
To evaluate ρ(T ), we consider the matrix of T , MT , which was shown in Equation

(2.6). It is clear that ρ(T ) = ρ(MT ). We write MT = 2H, where

H = (bi−2j)i,j=−k,··· ,k .
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Obviously, bβ can be written as

bβ =
k−|β|∑

j=0

ak−|β|−jak−j , β = −k, · · · , k.

Hence, bβ = b−β, for all β = −k, · · · , k. It is also clear that bk is an eigenvalue of H
with multiplicity 2. To estimate bounds of the eigenvalues of H, we establish

|bβ| ≤ b0, β = −k, · · · , k.

In fact,

|bβ| ≤
k−|β|∑

j=0

|ak−|β|−jak−j | ≤
k−|β|∑

j=0

[
1
2
a2

k−|β|−j +
1
2
a2

k−j ] =

=
1
2

k∑

j=β

a2
k−j +

1
2

k−β∑

j=0

a2
k−j ≤

k∑

j=0

a2
k−j = b0.

It is obvious that the spectral radius of H is b0 if k = 0. For k ≥ 1, the characteristic
polynomial of H is (bk − λ)(b−k − λ) multiplied by the characteristic polynomial of
the core matrix, Hc, which consists of all rows and columns of H except its first and
last rows and columns. Hence, the spectral radius of H is

ρ(H) = max{bk, ρ(Hc)} ≤ max{bk, ‖Hc‖1}

= max{bk,
k−1∑

i=−k+1

|bi−2j | : j = −k + 1, · · · , k − 1} ≤ kb0.

Therefore, ρ(T ) = 2ρ(H) ≤ 2C({aj}, k). Here, C({aj}, k) was defined in Theo-
rem 7. If C({aj}, k) < 22N−1, then ρ(T ) < 22N , so we choose

ε =
1
2

(
22N − ρ(T )

)
.

Thus
ρ(T ) + ε < 22N ,

and we obtain the estimation

∫

|ξ|≥π

∣∣∣φ̂(ξ)
∣∣∣
2
dξ ≤ C

`(ε)∑

`=1

4−N`||T ||` +
∞∑

`=`(ε)+1

(
ρ(T ) + ε

4N

)`

.

The tail of the series is a convergent geometric series, thus completing the proof of
φ ∈ L2(R) if condition (2.1)’, C({aj}, k) < 22N−1, holds.



MRA Frame Wavelets with Certain Regularities Associated with ... 173

Obviously, C({aj}, k) ≤ (k + 1)
∑k

j=0 a2
j . Hence, we have proved the Lemma 9

and the first part of Theorem 8; i.e., φ ∈ L2(R) under condition (2.1) or condition
(2.1)’.

It is well-known (see [1, 4]) that ψ ∈ Cr and r = N − 1
2 log2(ρ(T )), where ρ(T )

is the spectral radius of the matrix representing operator T , which is defined by
equation (2.4). Hence, we obtain the following result.
Lemma 10. ψ ∈ Cα′ , where α′ is more than

N − 1
2

log2 (2C({aj}, k)) .

Obviously, if 〈φ(t), φ(t− n)〉 = 0, then

1
2

∑

j

hjhj+2n = δn0, (2.7)

where n is an integer. From equations (2.7), noting that hj = (
∑k

`=0

(
N

j−`−k′
)

a`)/2N−1, j = k′, · · · , N + k + k′, we immediately obtain the following lemma.
Lemma 11. If φ defined by (1.7) satisfies 〈φ(t), φ(t− n)〉 = δn0, then

N+k+k′∑

j=k′

k∑

`=0

k∑

˜̀=0

(
N

j − ˜̀− k′

)(
N

j + 2n− `− k′

)
a˜̀a` = 22N−1δn0, (2.8)

where δn0 is the Kronecker symbol and n = 0,±1,±2, · · · .
For sufficient conditions of 〈φ(t), φ(t− n)〉 = δn0, we have the following result.

Lemma 12. Let φ be the function defined by (1.7). Assume that φ satisfies (2.8)
and either

(i)
k∑

j=0

|aj | < 2N−1/2,

or

(ii) (k + 1)
k∑

j=0

a2
j < 22N−1.

Then 〈φ(t), φ(t−n)〉 = δn0, and |φ̂(ξ)| ≤ C(1+ |ξ|)−1/2−α, where α = N −1/2−
log2 B2n , B2n = maxξ

∣∣∣Π2n−1
j=0 F (2jξ)

∣∣∣
1/2n

.
Proof. If

B2n = max
ξ

∣∣∣Π2n−1
j=0 F (2jξ)

∣∣∣
1/2n

< 2N−1/2 (2.9)

for some integer n > 0, then by using Propositions 4.8 and 4.9 in [3] we have
〈φ(t), φ(t− n)〉 = δn0 and |φ̂(ξ)| ≤ C(1 + |ξ|)−1/2−α.
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On the other hand, B2n ≤ maxξ |F (ξ)| = ∑k
j=0 |aj |. Hence, by using the Cauchy-

Schwartz inequality, we obtain

B2n ≤

(k + 1)

k∑

j=0

a2
j




1/2

,

where the equal sign does not hold if {aj} satisfies condition (2.8), because all {aj}
can not be the same. Hence, if (k + 1)

∑k
j=0 a2

j < 22Ñ−1, then B2n < 2Ñ−1/2. This
completes the proof of Lemma 12.
Proof of Theorem 8. Let φ ∈ Φ be the function defined by (1.7) (in Definition
1) that satisfies F (π) 6= −1 and the Condition (2.1). Then, from Lemma 9, φ is in
L2(R). Noting Lemmas 11 and 12, we have that Conditions (2.1) and (2.2) imply
〈φ(t), φ̃(t− n)〉 = δn0, which is equivalent to

∑

k∈Z

|φ̂(ξ + 2kπ)|2 = 1 for a.e. ξ ∈ R.

By using (1.3), the above equation can be written as an equivalent form (1.4). Hence,
φ is a pseudo-scaling generator. To prove that ψ defined in (1.12) is an MRA TFW,
it is sufficient to prove that ψ is a TFW; i.e., it satisfies Equations (1.13) and (1.14).
From (1.12) and (1.4),

∑

j∈Z

∣∣∣ψ̂
(
2jξ

)∣∣∣
2

=

=
∑

j∈Z

∣∣m0

(
2j−1ξ + π

)∣∣2
∣∣∣φ̂

(
2j−1ξ

)∣∣∣
2

= lim
n→∞

n∑

j=−n

∣∣m0

(
2j−1ξ + π

)∣∣2
∣∣∣φ̂

(
2j−1ξ

)∣∣∣
2

=

= lim
n→∞

n∑

j=−n

[
1− ∣∣m0

(
2j−1ξ

)∣∣2
] ∣∣∣φ̂

(
2j−1ξ

)∣∣∣
2

=

= lim
n→∞

[∣∣∣φ̂
(
2−n−1ξ

)∣∣∣
2
−

∣∣∣φ̂ (2nξ)
∣∣∣
2
]

.

Since φ ∈ L2(R), lim
n→∞

∣∣∣φ̂ (2nξ)
∣∣∣
2

= 0 for a.e. ξ. From condition F (0) = 1, we have

lim
n→∞

∣∣m0

(
2−nξ

)∣∣ = 1. Hence, taking limit n → ∞ on the both sides of Equation

(1.2) and noting that

lim
n→∞

∣∣∣φ̂(ξ)
∣∣∣ = lim

n→∞Π∞j=1

∣∣m0(2−jξ)
∣∣ 6= 0,
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we obtain (see [19]) lim
n→∞

∣∣∣φ̂
(
2−nξ

)∣∣∣ = 1, which derives
∑

j∈Z

∣∣∣ψ̂
(
2jξ

)∣∣∣
2

= 1. There-

fore, Equation (1.13) holds for our ψ.
For any odd integer q,

∑

j≥0

ψ̂
(
2jξ

)
ψ̂ (2j (ξ + 2qπ)) =

=
∑

j>0

ei2j−1ξm0 (2j−1ξ + π)φ̂
(
2j−1ξ

)
ei2j−1ξm0 (2j−1ξ + π)φ̂ (2j−1ξ + 2jqπ)+

+ei2−1ξm0 (2−1ξ + π)φ̂
(
2−1ξ

)
ei2−1ξ+πm0 (2−1ξ)φ̂ (2−1ξ + qπ) =

=
∑

j>0

∣∣m0

(
2j−1ξ + π

)∣∣2 φ̂
(
2j−1ξ

)
φ̂ (2j−1ξ + 2jπ)−

−m0 (2−1ξ + π)φ̂
(
2−1ξ

)
m0

(
2−1ξ

)
φ̂ (2−1ξ + π) =

=
∑

j>0

[
1− ∣∣m0

(
2j−1ξ

)∣∣2
]
φ̂

(
2j−1ξ

)
φ̂ (2j−1ξ + 2jπ)− φ̂(ξ)φ̂(ξ + 2π) =

=
∑

j>0

[
φ̂

(
2j−1ξ

)
φ̂ (2j−1ξ + 2jπ)− φ̂

(
2jξ

)
φ̂ (2jξ + 2j+1π)

]
− φ̂(ξ)φ̂(ξ + 2π) =

= − lim
n→∞ φ̂ (2nξ) φ̂ (2nξ + 2n+1π) = 0,

where φ̂
(
2j−1ξ + 2jqπ

)
= φ̂

(
2j−1ξ + 2jπ

)
, q ∈ 2Z + 1, because m0(ξ) is 2π− peri-

odic. Therefore, (1.14) also holds, and the proof of Theorem 8 is complete.
We now give a general algorithm to construct the pseudo-scaling generator φ

such that the corresponding MRA TFW ψ is of the largest possible regularity and
the required vanishing moments. In fact, this method can be described as an opti-
mization problem of finding suitable F (ξ), or, equivalently, suitable coefficient set,
a = {a0, · · · , ak}, of F (ξ), such that

∑k
j=0 a2

j is the minimum under conditions (2.1)
and (2.2) of Theorem 8. Thus, the above optimization problem can be written as
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follows.

min
a

k∑

j=0

a2
j , (2.10)

subject to




k∑

j=0

(−1)jaj + 1




2

> 0, (2.11)

k∑

j=0

a2
j < 22N−1/(k + 1), (2.12)

N+k+k′∑

j=k′

(
k∑

`=0

(
N

j + 2n− `− k′

)
a`

) 


k∑

˜̀=0

(
N

j − ˜̀− k′

)
a˜̀




= 22N−1δn0, n = 0,±1,±2, · · · , (2.13)

where object (2.10) will give the largest possible regularity, condition (2.11) is from
the definition of F (π) 6= −1, and conditions (2.12) and (2.13) come from conditions
(2.1) and (2.2) of Theorem 8.

Problem (2.10)-(2.13) can be written in a form without the inequality con-
ditions by defining parameters s, t 6= 0 as s2 = 22N−1/(k + 1) − ∑k

j=0 a2
j and

t2 =
(∑k

j=0(−1)jaj + 1
)2

, respectively. Hence, the optimization problem becomes

min
a

k∑

j=0

a2
j +

1
s2

+
1
t2

,

subject to t2 =




k∑

j=0

(−1)jaj + 1




2

s2 +
k∑

j=0

a2
j = 22N−1/(k + 1)

N+k+k′∑

j=k′

(
k∑

`=0

(
N

j + 2n− `− k′

)
a`

)


k∑

˜̀=0

(
N

j − ˜̀− k′

)
a˜̀


 =

= 22N−1δn0, n = 0,±1,±2, · · · ,

As examples, we choose N = 1 and k = k′ = 0, then the solution of prob-
lem (2.10)-(2.13) is a0 = 1 and we obtain the Haar function. If we choose N =
2, k = 1, and k′ = 0, then the solutions of the problem are a0 = 1±√3

2 and
a1 = 1∓√3

2 . Hence, the corresponding φ is defined by φ̂(ξ) = Π∞j=1m̃0(2−jξ), where

m0(ξ) = 1±√3
2

(
1− e−iξ

) (
1+e−iξ

2

)2
. In addition, the regularities of ψ is more than

2− log2(4)/2 = 1; i.e., ψ ∈ C1.
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6.3 Stable generators of an SI space and its complemen-
tary space

We now discuss the stability of φ. From [16], we obtain a necessary and sufficient
condition for a refinable function defined by Definition 1 to be stable. Here, a
function φ is stable if it is a stable generator of space S(φ), or, equivalently, the
integer translates of φ form a stable basis of the space.
Lemma 13. The function φ defined by Definition 1 is stable if and only if F (ξ)
satisfies the following two conditions.

(i) F (ξ) does not have any symmetric zeroes on T = [0, 2π);
(ii) For any odd integer m > 1 and a primitive mth root ω = e−i2nπ/m of unity

(i.e., n is an integer relatively prime to m), there exists an integer d, 0 ≤ d < ordm 2,
such that F

(−2d+1nπ/m
) 6= 0, where p = ordm 2 is the smallest positive integer

with 2p ≡ 1(mod m).
In addition, if φ is stable, then |φ̂(ξ)|2 and

F̄ (ξ) = Π∞j=1

∣∣F (
2−j(ξ + 2πu)

)∣∣2 /Π∞j=1

∣∣F (
2−jξ

)∣∣2

=
Π∞j=1

∣∣∣∑k
`=0 a`e

−i`2−j(ξ+2πu)
∣∣∣
2

Π∞j=1

∣∣∣∑k
`=0 a`e−i`2−jξ

∣∣∣
2

(3.1)

have no roots in T = [0, 2π).
Proof. By using Lemma 6.6 of [1] and Theorem 1 of [16], we obtain that φ is stable.
In addition, since

∣∣∣φ̂(ξ)
∣∣∣
2

=
∣∣∣∣
1− e−iξ

iξ

∣∣∣∣
2N

Π∞j=1

∣∣F (
2−jξ

)∣∣2 , (3.2)

we have ∣∣∣φ̂(ξ + 2πu)
∣∣∣
2

= F̄ (ξ)
∣∣∣φ̂(ξ)

∣∣∣
2 ξ2N

(ξ + 2πu)2N
,

where F̄ (ξ) is defined as (3.1). Therefore,

[
φ̂, φ̂

]
=

∑
u∈Z

∣∣∣φ̂(ξ + 2πu)
∣∣∣
2

=

=
∣∣∣φ̂(ξ)

∣∣∣
2
F̄ (ξ)(ξ)2N

∑
u∈Z

1
(ξ+2πu)2N .

By using formula (4.2.7) in [6], we can rewrite the last expression as
[
φ̂, φ̂

]
=

=
∣∣∣φ̂(ξ)

∣∣∣
2

F̄ (ξ)(ξ/2)2N

sin2N (ξ/2)

∑∞
u=−∞

∣∣∣B̂N (ξ + 2πu)
∣∣∣
2 l (3.3)
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where B̂N (ξ) is the Fourier transform of the B-spline of order N . In addition, the
sum on the right-hand side of Equation (3.3) can be evaluated by using formula
(4.2.10) in [6]:

∞∑
u=−∞

∣∣∣B̂N (2ξ + 2πu)
∣∣∣
2

=
− sin2N ξ

(2N − 1)!
d2N−1

dξ2N−1
cot ξ.

Thus, noting that φ is stable and applying Theorem 7 to the above
[
φ̂, φ̂

]
, we

immediately know that |φ̂(ξ)|2, F̄ (ξ) 6= 0 for all ξ ∈ T. This completes the proof of
Lemma 13.

From Theorem 8 and Lemma 13, we have the following result.
Theorem 14 Let φ ∈ Φ be defined as in Definition 1. If F (ξ) satisfies F (π) 6= −1,
conditions (i) and (ii) in Lemma 13, and (2.1) or (2.1)’, then the corresponding φ is
in L2(R) and is stable.

Let Vj := span{φ(2jt−k) : k ∈ Z}. Following [11], for any φ ∈ L2(R), we define
the (natural) dual φ̄ by its Fourier transform,

̂̄φ :=
φ̂[

φ̂, φ̂
] ,

where we interpret 0/0 = 0. Thus, from Equation (3.3), the dual function’s Fourier
transform of φ is

̂̄φ =
φ̂[

φ̂, φ̂
]

= sin2N (ξ/2)

(ξ/2)2N φ̂F̄ (ξ)
∑∞

u=−∞
∣∣∣B̂N (ξ + 2πu)

∣∣∣
2
.

The properties of the dual function φ̄ can be found in [6, 11].
It is clear that S(φ) ⊂ V1 = span{φ(2 · −k) : k ∈ Z}. We now consider the

complementary space of S(φ) in V1, which is generated by a function ψ ∈ V1. We say
a function f ∈ L2(T) is in W, the Wiener Algebra, if its Fourier series

∑
k∈Z fke

−ikξ

satisfies {fk} ∈ `1(Z). From [11], we can establish the following lemma.
Theorem 15. Let φ ∈ Φ satisfy all conditions of Theorem 14, where Φ is defined in
Definition 1, and let ψ ∈ V1 := span{φ(2 ·−k) : k ∈ Z} have the symbol m1(ξ) ∈ W,
the Wiener Algebra, such that

|m1(ξ)|2 + |m1(ξ + π)|2 > 0, ξ ∈ T. (3.4)

Then ψ is stable (i.e., a stable generator for S(ψ)).
Proof. Since ψ ∈ V1, using the two-scale relation of ψ yields
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[
ψ̂, ψ̂

]
(ξ) =

=
∑

i∈Z

∣∣∣∣m1

(
ξ

2
+ πi

)∣∣∣∣
2 ∣∣∣∣φ̂

(
ξ

2
+ πi

)∣∣∣∣
2

=

=
∑

i∈Z

∣∣∣∣m1

(
ξ

2
+ 2πi

)∣∣∣∣
2 ∣∣∣∣φ̂

(
ξ

2
+ 2πi

)∣∣∣∣
2

+

+
∑

i∈Z

∣∣∣∣m1

(
ξ

2
+ π + 2πi

)∣∣∣∣
2 ∣∣∣∣φ̂

(
ξ

2
+ π + 2πi

)∣∣∣∣
2

=

=
∣∣∣∣m1

(
ξ

2

)∣∣∣∣
2 [

φ̂

(
ξ

2

)
, φ̂

(
ξ

2

)]
+

+
∣∣∣∣m1

(
ξ

2
+ π

)∣∣∣∣
2 [

φ̂

(
ξ

2
+ π

)
, φ̂

(
ξ

2
+ π

)]
.

From Theorem 8 and Lemma 13, φ is in L2(R) and is stable. Thus, Theorem 7
shows there exist 0 < A ≤ B < ∞ such that

A ≤
[
φ̂, φ̂

]
≤ B a.e.

Thus we can bound the auto-correlation of ψ by

AM1(ξ) ≤
[
ψ̂, ψ̂

]
(ξ) ≤ BM1(ξ),

where

M1(ξ) :=
∣∣∣∣m1

(
ξ

2

)∣∣∣∣
2

+
∣∣∣∣m1

(
ξ

2
+ π

)∣∣∣∣
2

.

Since m1(ξ) ∈ C (T), from the condition (3.4) we have

Ā := min
ξ∈T

M1(ξ) > 0.

On the other hand, B̄ := ‖m1(ξ)‖C(T) < ∞. Therefore,

0 < ĀA ≤
[
ψ̂, ψ̂

]
(ξ) ≤ B̄B < ∞, a.e.

By using Theorem 7, we have proved that ψ is a stable generator for S(ψ).
We can also construct a biorthogonal system from φ ∈ Φ as follows. Here, the

set Φ was defined in Definition 1. Assume that φ̃ ∈ Φ; i.e., φ̃(t) =
∑

n h̃nφ̃(2t − n)

or equivalently, ˆ̃
φ(ξ) = m̃0( ξ

2) ˆ̃
φ( ξ

2) with m̃0(ξ) = 2−1
∑

n h̃ne−inξ ∈ M , which is
defined in Definition 1. Therefore, we can write

m̃0(ξ) = m̃Ñ
0 (ξ) =

(
1 + e−iξ

2

)Ñ

F̃ (ξ). (3.5)
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Here F̃ (ξ) is defined by

F̃ (ξ) = e−ik̃′ξ
k̃∑

j=0

ãje
−ijξ,

where, F̃ (0) = 1; all coefficients of F̃ (ξ) are real; Ñ and k̃ are positive integers; and
k̃′ ∈ Z. Hence, the corresponding φ and φ̃ can be written as follows.

φ̂(ξ) =

(
1 + e−iξ/2

2

)N

F (ξ/2)φ̂(ξ/2),

ˆ̃
φ(ξ) =

(
1 + e−iξ/2

2

)Ñ

F̃ (ξ/2) ˆ̃
φ(ξ/2). (3.6)

We also define the corresponding ψ and ψ̃ by

ψ̂(ξ) = eiξ/2m̃0(ξ/2 + π)φ̂(ξ/2)

ˆ̃
ψ(ξ) = eiξ/2m0(ξ/2 + π)φ̃(ξ/2), (3.7)

or, equivalently,
ψ(x) =

∑
n

(−1)n−1h̃−n−1φ(2x− n)

ψ̃(x) =
∑

n

(−1)n−1h−n−1φ(2x− n). (3.8)

Similar to φ, φ̃ is also a B-spline of order Ñ if F̃ (ξ) = 1. Since vanishing
moment conditions

∫
x`ψ(x)dx = 0, ` = 0, 1, · · · , L, are equivalent to d`

dξ` ψ̂|ξ=0 = 0,
` = 0, 1, · · · , L, we immediately know that the maximum orders of vanishing moment
for ψ and ψ̃ are N − 1 and Ñ − 1, respectively. Therefore, following the similar
argument in Section 2, the vanishing moments of φ and φ̃ are completely controlled

by the exponents of their respective “spline factors,”
(

1+e−iξ

2

)N
and

(
1+e−qiξ

2

)Ñ
.

In addition, the regularities of φ and φ̃ are justified by the factors F (ξ) and F̃ (ξ),
respectively, and are independent of their vanishing moments.

Similar to φ, if φ̃ defined in (3.6) satisfies F̃ (π) 6= −1 and

(k̃ + 1)
k̃∑

j=0

ã2
j < 22Ñ−1, (3.9)

then φ̃ ∈ L2(R).
From [8], the stability of φ, φ̃, ψ, and ψ̃ are implied by their biorthogonality. In

fact, [8] gave the following results.
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Lemma 16. If φ, φ̃ ∈ L2(R) satisfy 〈φ(t), φ̃(t− n)〉 = δn0, then {φ(t− k)}k∈Z and
{φ̃(t − k)}k∈Z are stable; i.e., they are stable bases (Riesz bases) in the subspace
that they generate. In addition, the corresponding biorthogonal wavelet functions
ψ and ψ̃ are also stable; i.e., they are stable bases (Riesz bases) in the subspace that
they generate.

Hence, we have the following results.
Theorem 17. Let φ, φ̃ ∈ Φ be defined in Definition 1; that is, φ = Π∞j=1m

N
0 (2−jξ)

and φ̃ = Π∞j=1m̃
Ñ
0 (2−jξ), where mN

0 (ξ) and m̃Ñ
0 (ξ) are defined by Equations (1.5)

and (3.5). Assume F (π), F̃ (π) 6= −1, and conditions (2.1) and (3.9) are satisfied by
mN

0 (ξ) and m̃Ñ
0 (ξ) and

ν∑

j=µ

k∑

`=0

k̃∑

˜̀=0

(
Ñ

j − ˜̀− k̃′

)(
N

j + 2n− `− k′

)
ã˜̀a` = 2N+Ñ−1δn0 (3.10)

holds for all n ∈ Z, where µ = min{k′, k̃′}; ν = max{N + k + k′, Ñ + k̃ + k̃′} and
δn0 is the Kronecker symbol, then φ, φ̃ ∈ L2(R) satisfy 〈φ(t), φ̃(t − i)〉 = δi,0 for
all i ∈ Z, and thus they are stable. In addition, The corresponding biorthogonal
wavelets ψ and ψ̃ are in Cα and Cα̃, respectively. Here α and α̃ are more than

N − 1
2

log2


(k + 1)

k∑

j=0

a2
j




and

Ñ − 1
2

log2


(k̃ + 1)

k̃∑

j=0

ã2
j


 ,

(3.11)

respectively.
Proof. By using Lemma 9, we have φ, φ̃ ∈ L2(R). Similar to the proofs of Lemmas
11 and 12, from Propositions 4.8 and 4.9 in [9], φ and φ̃ are biorthogonal if (2.1),
(3.9), and the following conditions hold.

1
2

∑

j

h̃jhj+2n = δn0, n ∈ Z, (3.12)

where hj and h̃j are respectively the coefficients of two-scale relations of φ and φ̃.
From equations (3.12), noting that

hj =

(
k∑

`=0

(
N

j − `− k′

)
a`

)
/2N−1

(j = k′, · · · , N + k + k′), and

h̃j =




k̃∑

`=0

(
Ñ

j − `− k̃′

)
ã`


 /2Ñ−1
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(j = k̃′, · · · ), Ñ + k̃ + k̃′, we immediately obtain (3.10).
It is well-known (see [7, 9]) that ψ ∈ Cr and r = N − 1

2 log2(ρ(T )), where ρ(T )
is the spectral radius of the matrix representing operator T , and T is defined by
equation (2.4). Hence, we obtain that the corresponding biorthogonal wavelets ψ
and ψ̃ are in Cα and Cα̃, respectively, and α and α̃ are more than the quantities
shown in (3.11).
Remark 1. Conditions (2.1) and (3.9) can be replaced by the following weaker
conditions.

C({aj}, k) < 22N−1, C̃({ãj}, k̃) < 22Ñ−1, (3.13)

where C({aj}, k) equals k
∑k

j=0 a2
j if k ≥ 1 and equals a2

0 if k = 0 while C̃({ãj}, k̃)
equals k̃

∑k
j=0 ã2

j if k̃ ≥ 1 and equals ã2
0 if k̃ = 0. Hence, the corresponding regular-

ities of φ and φ̃ are determined by φ ∈ Cα′ and φ̃ ∈ Cα̃′ , where α′ and α̃′ are more
than

N − 1
2

log2 (2C({aj}, k))

and
Ñ − 1

2 log2

(
2C̃({ãj}, k̃

)
,

(3.14)

respectively.
Remark 2. If F (ξ) = 1 (i.e., k, k′ = 0), then condition (3.10) can be written as

k̃∑

`=0

max{N,Ñ+k̃+k̃′}∑

j=k̃′

(
Ñ

j − `− k̃′

)(
N

j + 2n

)
ã` = 2N+Ñ−1δn0, (3.15)

where n = 0,±1, · · · . Condition (3.15) can be reduced again as follows for Ñ = N−k̃
and k̃′ = 0:

k̃∑

`=0




N∑

j=0

(
N − k̃

j − `

)(
N

j + 2n

)
 ã` = 22N−k̃−1δn0, (3.16)

where n = 0,±1,±2, · · · .

We now give a general algorithm to construct biorthogonal scaling functions
φ and φ̃ with the largest possible regularity and the required vanishing moments.
Similar the algorithm shown in Section 2, this method can be described as an opti-
mization problem of finding suitable F (ξ) and F̃ (ξ), or, equivalently, suitable coef-
ficient sets, a = {a0, · · · , ak} and ã = {ã0, · · · , ãk}, of F (ξ) and F̃ (ξ), respectively,
such that

∑k
j=0 a2

j and
∑k̃

j=0 ã2
j are the minimum under conditions (2.1) and (3.9).

From the wavelet analysis of spline approximation, we assume F (ξ) = 1; i.e., the
corresponding φ is the B-spline of order N . Then, the above optimization problem



MRA Frame Wavelets with Certain Regularities Associated with ... 183

can be written as follows.

mina

k̃∑

j=0

ã2
j , (3.17)

subject to




k̃∑

j=0

(−1)j ãj + 1




2

> 0, (3.18)

k̃∑

j=0

ã2
j < 22Ñ−1/(k̃ + 1), (3.19)

k̃∑

`=0

max{N,Ñ+k̃+k̃′}∑

j=k̃′

(
Ñ

j − `− k̃′

)(
N

j + 2n

)
ã`

= 2N+Ñ−1δn0, (3.20)

where n = 0,±1, · · · , object (3.17) will give the largest possible regularity, condi-
tion (3.18) is from the definition of F̃ , and conditions (3.19) and (3.20) come from
conditions (3.9) and (3.10).

Problem (3.17)-(3.20) can be written in a form without the inequality con-
ditions by defining parameters s, t 6= 0 by s2 = 22Ñ−1/(k̃ + 1) − ∑k̃

j=0 ã2
j and

t2 =
(∑k̃

j=0(−1)j ãj + 1
)2

, respectively. Hence, the optimization problem becomes

mina

k̃∑

j=0

ã2
j +

1
s2

+
1
t2

,

subject to t2 =




k̃∑

j=0

(−1)j ãj + 1




2

k̃∑

j=0

ã2
j + s2 = 22Ñ−1/(k̃ + 1),

k̃∑

`=0

max{N,Ñ+k̃+k̃′}∑

j=k̃′

(
Ñ

j − `− k̃′

)(
N

j + 2n

)
ã`

= 2N+Ñ−1δn0,

where n = 0,±1, · · · .

As examples, we consider m0(ξ) =
(

1+e−iξ

2

)
; i.e., φ is B-spline of order 1. If we

choose Ñ = 1 and k̃ = k̃′ = 0, then the solution of problem (3.17)-(3.19) is ã0 = 1
and we obtain the Haar function. If we choose Ñ = 2, k̃ = 1, and k̃′ = 0, then the
solutions of the problem are ã0 = 3/2 and ã1 = −1/2. Hence, the corresponding

φ̃ is defined by ˆ̃
φ(ξ) = Π∞j=1m̃0(2−jξ), where m̃0(ξ) =

(
1+e−iξ

2

)2 (
3−e−iξ

2

)
. Clearly,
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Both φ and φ̃ satisfy all the conditions of Theorem 17. Hence, they are in L2(R)
and are stable. In addition, the regularities of φ and φ̃ are respectively 1 and
2− log2(5)/2 = 0.839036.

We now discuss the error of L2 approximation from S(φ). Denote

E(f, S(φ))L2 := inf
g∈S(φ)

‖f − g‖L2
.

We have the following result.
Theorem 18. Let φ ∈ Φ defined by Definition 1; i.e., φ = Π∞j=1m

N
0 (2−jξ), where

mN
0 (ξ) ∈ M is defined by Equations (1.5) and (1.6): mN

0 (ξ) =
(

1+e−iξ

2

)N
F (ξ) and

F (ξ) = e−ik′ξ ∑k
j=0 aje

−ijξ, N, k ∈ Z+ and k′ ∈ Z, where F (ξ) satisfies Conditions
(i) and (ii) of Lemma 13, F (0) = 1, and F (π) 6= −1. If inequality (2.1) or (2.1)’
holds, then for any function f ∈ WN+1

2 (R), the Sobolev space,

E
(
f, S(φ)h

)
2

= CN
φ ‖f‖W N

2 (R) + O
(
hN+1

)
,

where
S(φ)h := {f(·/h)|f ∈ S(φ)}

and

CN
φ =

1
N !

√∑

u6=0

∣∣∣φ̂(N)(2πu)
∣∣∣
2
.

Proof. Following [4], we define the error kernel

Γφ :=


1− |φ̂|2[

φ̂, φ̂
]



1
2

,

where 0/0 is interpreted as 0. From Equation (3.3), we have

|φ̂|2[
φ̂, φ̂

] =
sin2N (ξ/2)

(ξ/2)2N F̄ (ξ)
∑∞

u=−∞
∣∣∣B̂N (ξ + 2πu)

∣∣∣
2 .

Noting Equation (3.1) and the inequality (see [6])

∞∑
u=−∞

∣∣∣B̂N (ξ + 2πu)
∣∣∣
2
≤ 1,

we obtain |ξ|−NΓφ(ξ) ∈ L∞(T). Thus, from Theorems 1.6 and 2.20 of [4], S(φ)
provides approximation order N ; i.e.,

E
(
f, S(φ)h

)
2
≤ CN

φ hN ‖f‖W N
2 (R) ,
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where CN
φ can be found as follows. By observing that φ ∈ EN := {f ||f(x)| ≤

C(1 + |x|)−(N+1+ε), ε > 0} is stable and using the following lemma shown in [5], we
immediately obtain the Theorem 18.
Lemma 19. [5] Assume φ ∈ Em is stable while φ̂(0) = 1 and provides L2 approxi-
mation order m. Then for any function f ∈ Wm+1

2 (R),

E
(
f, S(φ)h

)
2

= Cm
φ hm|f |W m

2 (R) + O
(
hm+1

)
,

where Cm
φ = 1

m!

√∑
u6=0

∣∣∣φ̂(m)(2πu)
∣∣∣
2
.
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