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Abstract

In this paper we first give a collection of subsets which are
dense in the set of real numbers. Then, as an application, we
show that: for a continuous function f on R\{0}, the integrals
Fp,f (x) =

∫ px
x f(t)dt and Fq,f (x) =

∫ qx
x f(t)dt (where ln p

ln q /∈ Q)

are constant functions of x if and only if f =
c

x
, c = f(1) ∈ R.

1 Introduction

Throughout this paper we use R,R+,R−,Q,Z,Z+ to denote real num-
bers, positive real numbers, negative real numbers, rational numbers,
integers, positive integers, respectively. This work is motivated by the

calculus problem of finding the derivative of F (x) =

∫ 2x

x

1

t
dt, x 6= 0

(this problem is designed for applying the Fundamental Theorem of
Calculus and the chain rule). It is easy to see that F ′(x) = 0, which
implies a nice geometric fact: for any given x, x 6= 0, the area be-
tween the curves of y = 1/t and y = 0 from x to 2x is a constant.
Clearly, the function y = c/t, c ∈ R also has this interesting prop-
erty. It is natural to ask whether the converse is true or not; i.e.,

letting f be a continuous function on R\{0} and F2,f (x) =

∫ 2x

x

f(t) dt

a constant function of x (x 6= 0), is f(t) = c/t, for some constant
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c ∈ R? Examples in Section 3 show that in fact F2,f (x) being a con-
stant function of x is not sufficient to guarantee that f(x) = c/x for
some c ∈ R. They also demonstrate that there exists a function g such
that F3,g(x) =

∫ 3x

x
g(t) dt being a constant function of x is not sufficient

to guarantee that g(x) = c/x, c ∈ R. However, one may ask whether
there is a function h with both F2,h(x) and F3,h(x) are constant func-
tions of x, does it force that h(t) = c/t? or a possible function k can be
constructed by ”combining” f and g so that both F2,k(x) and F3,k(x)
are constant functions of x but k(t) 6= c/t, c ∈ R? We study this
problem in Section 3. We provide a necessary and sufficient condition
for f(t) being a constant multiple of 1/t. The study of this problem
relies on dense subsets of R. In Section 2 we give a collection of ”small”
subsets which are dense in R.

2 Dense subsets of real numbers

In this section, we construct a collection of infinitely many dense subsets
(see p. 32 of [1] for the definition of dense subsets) of R that are very
“small”. These dense subsets may not seem dense in R at the first
glance. For example, we show that both S2,3 = {±2n3m : n,m ∈ Z}
and Sπ,e = {±πnem : n,m ∈ Z} are dense in R. In general, we prove
the following main theorem.

Theorem 1 Suppose p and q are in R+\{1}. Let

Sp,q = {±pnqm : n,m ∈ Z}.

Then Sp,q is dense in R if and only if
ln p

ln q
/∈ Q.

We first prove a technical lemma.

Lemma 2 Let p, q and Sp,q be defined as in Theorem 2.1. Then

(i) There exists a sequence {an, n ≥ 1, an ∈ Sp,q} such that 1 < a1 <
a2 < ... < an... and lim

n→∞
an = 1+;

(ii) There exists a sequence {bn, n ≥ 1, bn ∈ Sp,q} such that b1 < b2 <
... < bn < ... < 1 and lim

n→∞
bn = 1−.
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Proof. Since Sp,q is closed under reciprocals, we may assume that 1 <
p < q. Let s1 = ln p and t1 = ln q. Then 0 < s1 < t1. Since ln p is not
a rational multiple of ln q, there exists an integer n1 ∈ Z+ such that

n1s1 < t1 < (n1 + 1)s1 and t1 6=
n1s1 + (n1 + 1)s1

2
. Let

s2 = min{t1 − n1s1, (n1 + 1)s1 − t1}

and
t2 = max{t1 − n1s1, (n1 + 1)s1 − t1}.

We have

(2.1) 0 < s2 <
1
2
s1 < t2 < s1 < t1

(since t1 6=
n1s1 + (n1 + 1)s1

2
and n1s1 < t1 < (n1 + 1)s1);

(2.2) t2 is not a rational multiple of s2

(otherwise (n1 + 1)s1 − t1 = k(t1 − n1s1), k ∈ Q which implies

that t1 is a rational multiple of s1, i.e
ln p

ln q
∈ Q, a contradiction);

(2.3) s2 and t2 are linear combination of ln p and ln q with integer co-
efficients, respectively.

For i = 3, 4, ..., construct s3, t3, s4, t4, ... inductively. Suppose si and ti
are constructed, satisfying

(2.4) 0 < si <
1
2
si−1 < ti < si−1 < ti−1;

(2.5) ti is not a rational multiple of si;

(2.6) si and ti are linear combination of ln p and ln q with integer coef-
ficients, respectively.

Let
si+1 = min{ti − nisi, (ni + 1)si − ti}

and
ti+1 = max{ti − nisi, (ni + 1)si − ti},

where ni is the unique integer satisfying nisi < ti < (si + 1)si. It is
easy to show inductively that (2.4) - (2.6) are true for si+1 and ti+1.
Therefore, two sequences {sn, n ≥ 1} and {tn, n ≥ 1} are constructed,



4 T. X. He, Z. Sinkala and X. Zha

satisfying (2.4) - (2.6). By (2.4), s1 > s2 > ... > sn > ... > 0 and
lim
n→∞

sn = 0+. For n = 1, 2, ..., let an =esn . Then

an ∈ Sp,q, a1 > a2 > ... > an > ... > 1 and lim
n→∞

an = 1+.

Thus Lemma 2.2 (i) is true. Let bn = 1/an, n ≥ 1. Then b1 < b2 <
... < bn < ... < 1 and limn→∞ bn = 1−. Therefore Lemma 2.2 (ii) is also
true. 2

Proof of Theorem 2.1. The proof for the necessary condition is straight-

forward. Suppose ln p
ln q
∈ Q, say ln p =

a

b
ln q, a, b ∈ Z+. Then p = q

a
b

and
Sp,q = {q

a
b
s+t, s, t ∈ Z}.

Clearly for any given a, b ∈ Z+, the set A = {a
b
s + t, s, t ∈ Z} is

not dense in R. Hence Sp,q is not dense in R+, which contradicts the
assumption.

We now show that the condition is sufficient; i.e., if
ln p

ln q
/∈ Q, then

Sp,q is dense in R. Let c ∈ R+ be any positive real number and assume
that c 6∈ Sp,q. Again since Sp,q is closed under reciprocals, we may
assume that 1 < p < q. We need to show that there exits a sequence
of numbers x1, x2, ..., xn, ... ∈ Sp,q such that lim

n→∞
xn = c. Suppose the

claim is not true. Let S− = {x ∈ Sp,q, 0 < x < c} and S+ = {x ∈
Sp,q, x > c}. Since lim

k→∞
1/pk = 0 and lim

k→∞
pk =∞, both S− and S+ are

not empty. Let α = supS− and β = inf S+. Then 0 < α ≤ c ≤ β. We
now show that α = c = β. By symmetry we only need to show that
α = c.

Assume α < c. Let us consider the following two cases. Case
1: α ∈ Sp,q. By Lemma 2.2, there exists a sequence {an, n ≥ 1} and

lim
n→∞

an = 1+. Choose ai such that 1 < ai < 1+
c− α
α

. Then αai ∈ Sp,q,

but αai > α and αai < α(1 +
c− α
α

) = c which contradicts the fact

that α = supS−.
Case 2: α /∈ Sp,q. Then there exists a sequence xn, n ≥ 1, xn ∈

Sp,q, xn < α, and lim
n→∞

xn = α. Again, as in the proof of Case 1, we

choose ai such that 1 < ai < 1 +
c− α

2α
. Then we choose xn0 ∈ {xn}
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such that xn0 >
α

ai
. Therefore xn0ai ∈ Sp,q, but xn0ai >

α
ai
ai = α and

xn0ai < α(1+
c− α

2α
) =

c+ α

2
< c. This again contradicts the fact that

α = supS−.
A similar argument shows that β = c. Therefore Sp,q is dense in R+

and also in R since all negative elements in Sp,q will be dense in R−. 2

3 An Application

In this section we apply Theorem 2.1 to solve a problem originated from
the calculus, as stated in the introduction.

Let f(t) be a continuous function on R\{0}, and

Fλ,f (x) =

∫ λx

x

f(t)dt, λ ∈ R+\{1}.

If f(t) =
c

t
, c ∈ R, then for x 6= 0, Fλ,f (x) = c lnλ is a constant function

of x. However, the following example shows that the inverse is not true;
i.e., Fλ,f (x) being a constant function of x, (x 6= 0) does not imply that

f(t) =
c

t
, c ∈ R.

Example 3.1. Inductively define f2(t) as follows:

(i) for t ∈ [1, 2), let

f2(t) =

{
t− 1, t ∈ [1, 3

2
)

−t+ 2, t ∈ [3
2
, 2)

;

(ii) for t ∈ [2n−1, 2n), n = 2, 3, ..., let f(t) =
1

2
f(
t

2
);

(iii) for t ∈ [ 1
2n ,

1
2n−1 ), n = 1, 2, ..., let f(t) = 2f(2t);

(iv) for t ∈ (−∞, 0), let f(t) = −f(−t).

Then f(t) is a continuous function on R\{0} and

F2,f (x) =

∫ 2x

x

f(t)dt =
1

4
.
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In fact, Example 3.1 can be generalized to functions with any pa-
rameter λ ∈ R+\{1}.
Example 3.2 For λ ∈ R+\{1} and λ > 1, define fλ(t) on R\{0} as
follows:

(i) for t ∈ [λn−1, λn), n ∈ Z, , let

fλ(t) =

{
1

λ2n−2 (t− λn−1), t ∈ [λn−1, λn−1(λ+1
2

))

− 1
λ2n−2 (t− λn) x ∈ [λn−1(λ+1

2
), λn)

;

(ii) for t ∈ (−∞, 0), let fλ(t) = −f(−x).

For λ ∈ R+\{1} and λ < 1, define fλ(t) on R\{0} similar to the
case λ > 1, with the only change being replacing λ by 1

λ
.

The function f(t) is continuous on R\{0}, and

Fλ,f (x) =

∫ λx

x

f(t)dt =
1

4
(λ− 1)2

is a constant function of x, (x 6= 0). However, f(t) 6= c/t, c ∈ R.
On the other hand, by the same approach as in the proof of Theorem

2.1, it is not hard to show that if f(t) is a continuous function on R\{0}

and Fn,f (x) =

∫ nx

x

f(t)dt is a constant function of x, (x 6= 0) for all

positive integer n, then f(t) and a function c/t agree on all rational
numbers. Hence by the continuity of f , f(t) = c/t, c = f(1) ∈ R.
Certainly, the condition that, for all n ∈ Z+, the function Fn,f (x) is
a constant function of x for x 6= 0 is very strong. The next theorem
shows that in fact we can weaken the sufficient condition quite a lot.

Theorem 3 Suppose p, q ∈ R+\{1}, and
ln p

ln q
/∈ Q. Let f(t) be a

continuous function on R\{0}. Then f(t) =
c

t
, where c = f(1) is

an arbitrary real number if and only if both Fp,f (x) =
∫ px

x
f(t)dt and

Fq,f (x) =
∫ qx

x
f(t)dt are constant functions of x, (x 6= 0).

Proof. The necessary condition is obvious. We only need to prove the
sufficient condition. The function f(t) is continuous, and hence Fp,f (x)
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is differentiable over R\{0}. Since Fp,f (x) is a constant function of x,
we have

F ′p,f (x) = pf(px)− f(x) = 0,

and in turn

f(px) =
f(x)

p
.

Inductively, for l ∈ Z+ and l > 1, we have

f(plx) =
f(pl−1x)

p
= ... =

f(x)

pl
.

Furthermore,

f(x) = f(p
x

p
) =

f(x
p
)

p
.

and therefore
f(
x

p
) = pf(x).

Inductively we have

f(
x

pn
) = pnf(x).

Similarly, for k ∈ Z+,

f(qkx) =
f(x)

qk
and f(

x

qk
) = qkf(x).

It follows that

f(pkqlx) =
f(x)

pkql
, k, l ∈ Z.

Let x ∈ Sp,q. Then x = ±pkql, k, l ∈ Z. If x = pkql, then

f(x) = f(pkql) =
f(1)

pkql
=
f(1)

x
.

If x = −pkql, then

f(x) = f(pkql(−1)) =
f(−1)

pkql
= −f(−1)

x
.

If x is a positive real number, there exists a sequence of numbers
{xk : xk ∈ Sp,q} such that limk→∞ xk = x. Since f is continuous on
R\{0},

f(x) = lim
k→∞

f(xk) = lim
k→∞

f(1)

xk
=
f(1)

x
.
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If x is a negative real number, then a similar argument shows that

f(x) = −f(−1)

x
.

Since Fp,f (x) is a constant function of x,∫ −p

−1

−f(−1)

t
dt =

∫ p

1

f(1)

t
dt.

Evaluating the above integrals, we obtain −f(−1) ln p = f(1) ln p .
Thus −f(−1) = f(1), completing the proof. 2

The collection of the dense subsets in R constructed in Section 2
has a wide range applications, such as pointwise approximation, data
fitting, etc (see [2]). Some of these applications will be presented in a
future paper.
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