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Abstract

In this paper we first give a collection of subsets which are
dense in the set of real numbers. Then, as an application, we
show that for a continuous function f on R\{0}, the 1ntegrals

= [P? f(t)dt and F,s(x) = [I7 f(t)dt (where 2 ¢ Q)

Ing
c
are constant functions of z if and only if f = —, ¢ = f(1) € R.
x

1 Introduction

Throughout this paper we use R,RT™, R~, Q,Z,Z" to denote real num-
bers, positive real numbers, negative real numbers, rational numbers,
integers, positive integers, respectively. This work is motivated by the

2x 1
calculus problem of finding the derivative of F(x) = / dt, © # 0

(this problem is designed for applying the Fundamental Theorem of
Calculus and the chain rule). It is easy to see that F'(z) = 0, which
implies a nice geometric fact: for any given x,x # 0, the area be-
tween the curves of y = 1/t and y = 0 from = to 2z is a constant.
Clearly, the function y = ¢/t, ¢ € R also has this interesting prop-

erty. It is natural to ask whether the converse is true or not; i.e.,
2x

letting f be a continuous function on R\{0} and F; (x) = / f(t) dt

a constant function of z (z # 0), is f(t) = ¢/t, for some constant
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c € R? Examples in Section 3 show that in fact F, () being a con-
stant function of z is not sufficient to guarantee that f(x) = ¢/x for
some ¢ € R. They also demonstrate that there exists a function g such
that Fs ,(z) = f;w g(t) dt being a constant function of z is not sufficient
to guarantee that g(z) = ¢/z, ¢ € R. However, one may ask whether
there is a function h with both Fyp(x) and Fp(x) are constant func-
tions of x, does it force that h(t) = ¢/t? or a possible function k can be
constructed by ”combining” f and g so that both F,x(x) and F3x(x)
are constant functions of = but k(t) # ¢/t, ¢ € R? We study this
problem in Section 3. We provide a necessary and sufficient condition
for f(t) being a constant multiple of 1/t. The study of this problem
relies on dense subsets of R. In Section 2 we give a collection of ”small”
subsets which are dense in R.

2 Dense subsets of real numbers

In this section, we construct a collection of infinitely many dense subsets
(see p. 32 of [1] for the definition of dense subsets) of R that are very
“small”. These dense subsets may not seem dense in R at the first
glance. For example, we show that both Sy3 = {£2"3™ : n,m € Z}
and S, = {£7"e™ : n,m € Z} are dense in R. In general, we prove
the following main theorem.

Theorem 1 Suppose p and q are in RY\{1}. Let

Spq ={E£p"¢" : n,m € Z}.
. . . LInp
Then S, , is dense in R if and only if o ¢ Q.
ng

We first prove a technical lemma.

Lemma 2 Let p,q and S, 4 be defined as in Theorem 2.1. Then

(i) There exists a sequence {an,n > 1,a, € S, .} such that 1 < a; <
as < ... < Qy... and lim a, = 17;

(11) There exists a sequence {b,,n > 1,b, € S, ,} such that by < by <
. <b,<..<1land limb,=1".

n—oo



Some dense subset of real numbers and an application 3

Proof. Since S, 4 is closed under reciprocals, we may assume that 1 <
p<gq. Let s; =Inp and t; = Ing. Then 0 < s; < t;. Since Inp is not
a rational multiple of In g, there exists an integer n; € Z* such that
nis ny +1)s

. 1+(21+ ) L Let

nis; <t < (TLl + 1)81 and 11 7é

S9 = min{t1 — MNn181, (Tll + 1)81 — tl}

and
tg = max{t1 — Nni8y, (n1 + 1)81 — tl}

We have

(21) O<82<%51<t2<81<t1
n1s1 + (n1 +1)s;

(since t; # 5

and nis; <t < (nl + 1)Sl)a

(2.2) ty is not a rational multiple of s9
(otherwise (n; + 1)s1 — t1 = k(t1 — n1s1),k € Q which implies

n
that ¢, is a rational multiple of sq, i.e l—p € Q, a contradiction);
nqg

(2.3) sy and ty are linear combination of Inp and In ¢ with integer co-
efficients, respectively.

For ¢ = 3,4, ..., construct ss,t3, sS4, t4, ... inductively. Suppose s; and t;
are constructed, satisfying

(24) 0<s; < %Si—l <t < 81 < ti_q;
(2.5) t; is not a rational multiple of s;;

(2.6) s; and t; are linear combination of Inp and In ¢ with integer coef-
ficients, respectively.

Let

Si11 = ].'Illl’l{tz — N;S;, (nz + 1)51 - tz}
and

ti+1 = max{ti — N;S;, (nz + 1)31 — tl},
where n; is the unique integer satisfying n;s; < t; < (s; + 1)s;. It is
easy to show inductively that (2.4) - (2.6) are true for s;;1 and t;4;.
Therefore, two sequences {s,,n > 1} and {¢,,n > 1} are constructed,
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satisfying (2.4) - (2.6). By (2.4), s > s9 > ... > s, > ... > 0 and
lim s, =0". Forn =1,2,..., let a, =e*". Then

n—o0

an € Spg,a1 > ag > ... >a, >..>1and lim a, =1".
Thus Lemma 2.2 (i) is true. Let b, = 1/a,,n > 1. Then b < by <
. <b, < ..<1landlim, b, =1". Therefore Lemma 2.2 (ii) is also
true. a

Proof of Theorem 2.1. The proof for the necessary condition is straight-
forward. Suppose }ﬁ—g € Q, say Inp = %ln g, a,b € Z*. Then p = ¢b

and
Spq = {q%S’Lt, s,t € Z}.

Clearly for any given a,b € Z", the set A = {%s +t, s,t € L} is

not dense in R. Hence S, , is not dense in R*, which contradicts the
assumption.

In
We now show that the condition is sufficient; i.e., if l_p ¢ Q, then
nq

Spq is dense in R. Let ¢ € RT be any positive real number and assume
that ¢ € S,,. Again since S,, is closed under reciprocals, we may
assume that 1 < p < ¢. We need to show that there exits a sequence
of numbers x1, z3, ..., Ty, ... € Sp4 such that lim z, = c. Suppose the

n—oo

claim is not true. Let S~ = {z € S,,,0 <z < ¢} and ST = {z €
Sp.q> T > c}. Since klggo 1/p* = 0and ’}Lgpk = 00, both S~ and St are
not empty. Let = sup S~ and S =1inf ST. Then 0 < o < c < 3. We
now show that @ = ¢ = (3. By symmetry we only need to show that
a=c.

Assume o < c¢. Let us consider the following two cases. Case

1: @ € S,,. By Lemma 2.2, there exists a sequence {a,,n > 1} and
lim a, = 17. Choose a; such that 1 < a; < 1+ .

n—o0 o

c—a
but awa; > a and aa; < ol +

. Then aa; € S, 4,

) = ¢ which contradicts the fact
a

that a =sup S—.
Case 2: a ¢ S,,. Then there exists a sequence z,,n > 1,z, €
Sp.g, Tn < a, and lim z,, = a. Again, as in the proof of Case 1, we

n—oo

c—
choose a; such that 1 < a; < 1+ ESPRE Then we choose z,,, € {z,}
Q
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Q
such that z,, > —. Therefore z,,a; € S, 4, but xpa; > Fa; = o and

c— c+a . . .
5 )= 5 < c. This again contradicts the fact that
a

Tno; < o1+

a=supS~.
A similar argument shows that 3 = c. Therefore S, , is dense in RT
and also in R since all negative elements in S, , will be dense in R™. O

3 An Application

In this section we apply Theorem 2.1 to solve a problem originated from
the calculus, as stated in the introduction.
Let f(t) be a continuous function on R\{0}, and

Az
F)\Vf(iﬂ) = f(t)dt, AE R+\{1}
If f(t) = g, c € R, then for x # 0, F) s(z) = cln A is a constant function

of . However, the following example shows that the inverse is not true;
i.e., F\ r(z) being a constant function of z, (x # 0) does not imply that

f(t) = ;, ceR.
Example 3.1. Inductively define f5(t) as follows:

(i) for t € [1,2), let

fo(t) =

’

{ t—1, tell,?)

—t+2, te[3,2)

(ii) for t € [2771,2"),n = 2,3, ..., let f(t) = %f(%);

(i) for t € [, 5o7),n = 1,2, ..., let f(t) = 2f(2t);
(iv) for t € (—o00,0), let f(t) = —f(—1).

Then f(t) is a continuous function on R\{0} and

Fy (o) —/xf(t)dt—}l.
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In fact, Example 3.1 can be generalized to functions with any pa-
rameter A € RT\{1}.
Example 3.2 For A € R"\{1} and A > 1, define f)\(¢) on R\{0} as
follows:

(i) fort € A1 A"), n€ Z, , let

[ =AY, te et a3
fA(t)_{ —ms (= A" we AR A

)

(ii) for t € (—00,0), let f(t) = —f(—x).

For A € R"\{1} and A < 1, define f)(¢) on R\{0} similar to the
case A > 1, with the only change being replacing A by %
The function f(t) is continuous on R\{0}, and

Az
1
Fy(x) = f(t)dt = Z_L()\ —1)?
is a constant function of x, (z # 0). However, f(t) # ¢/t,c € R.
On the other hand, by the same approach as in the proof of Theorem
2.1, it is not hard to show that if f(¢) is a continuous function on R\{0}

and F, ¢(z) = / f(t)dt is a constant function of x,(x # 0) for all

positive integer 7%;, then f(¢) and a function ¢/t agree on all rational
numbers. Hence by the continuity of f, f(t) = ¢/t, ¢ = f(1) € R
Certainly, the condition that, for all n € Z*, the function F, ;(z) is
a constant function of x for z # 0 is very strong. The next theorem
shows that in fact we can weaken the sufficient condition quite a lot.

1
Theorem 3 Suppose p,q € RT\{1}, and M ¢ Q. Let f(t) be a

continuous function on R\{0}. Then f(t) = where ¢ = f(l) is

7

t’ y

an arbztmry 'real number if and only if both F, ¢(x) = f PEf(t)dt and
f ¥ f(t)dt are constant functions of z, (x # 0).

Proof. The necessary condition is obvious. We only need to prove the
sufficient condition. The function f(¢) is continuous, and hence F), ;(z)
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is differentiable over R\{0}. Since F), ;(z) is a constant function of z,
we have

Fy 1(x) = pfpr) = f(x) =0,

and in turn

_ @)
f(pz) = P
Inductively, for [ € ZT and [ > 1, we have
f(plac) — f(pl_lx) — _ f(l‘)
5 P
Furthermore, (=
v JE
fz) = f(pz—?) -,
and therefore .
f(z;) =pf(z)

Inductively we have

Similarly, for k € Z™,

x
ok

. ) =" f().

ey =1 éf) and f(

It follows that

') = J;@) ke

kgl
Let z € S,,. Then z = +p*¢!, k,1 € Z. If x = p*¢!, then
_ pprah = S _ Q)
f(x)_f(p Q>_ p"’ql - T .
If z = —p¥q’, then
[0 f(=1)

If x is a positive real number, there exists a sequence of numbers
{zp : &, € Sp,} such that limy_,o xy = z. Since f is continuous on

R\{0}, X )
f(z) = lim f(xp) = lim J4) = M

k—o0 k—o0 Tk X
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If x is a negative real number, then a similar argument shows that

r=1)

T

fla) =~

Since F), ¢(x) is a constant function of x,

Evaluating the above integrals, we obtain —f(—1)lnp = f(1)Inp .
Thus — f(—1) = f(1), completing the proof. O

The collection of the dense subsets in R constructed in Section 2
has a wide range applications, such as pointwise approximation, data
fitting, etc (see [2]). Some of these applications will be presented in a
future paper.
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