Some dense subset of real numbers and an application

Tian-Xiao He, Zachariah Sinkala and Xiaoya Zha ${ }^{\dagger}$

Abstract

In this paper we first give a collection of subsets which are dense in the set of real numbers. Then, as an application, we show that: for a continuous function f on $\mathbb{R} \backslash\{0\}$, the integrals $F_{p, f}(x)=\int_{x}^{p x} f(t) d t$ and $F_{q, f}(x)=\int_{x}^{q x} f(t) d t\left(\right.$ where $\left.\frac{\ln p}{\ln q} \notin \mathbb{Q}\right)$ are constant functions of x if and only if $f=\frac{c}{x}, c=f(1) \in \mathbb{R}$.

1 Introduction

Throughout this paper we use $\mathbb{R}, \mathbb{R}^{+}, \mathbb{R}^{-}, \mathbb{Q}, \mathbb{Z}, \mathbb{Z}^{+}$to denote real numbers, positive real numbers, negative real numbers, rational numbers, integers, positive integers, respectively. This work is motivated by the calculus problem of finding the derivative of $F(x)=\int_{x}^{2 x} \frac{1}{t} d t, x \neq 0$ (this problem is designed for applying the Fundamental Theorem of Calculus and the chain rule). It is easy to see that $F^{\prime}(x)=0$, which implies a nice geometric fact: for any given $x, x \neq 0$, the area between the curves of $y=1 / t$ and $y=0$ from x to $2 x$ is a constant. Clearly, the function $y=c / t, c \in \mathbb{R}$ also has this interesting property. It is natural to ask whether the converse is true or not; i.e., letting f be a continuous function on $\mathbb{R} \backslash\{0\}$ and $F_{2, f}(x)=\int_{x}^{2 x} f(t) d t$ a constant function of $x(x \neq 0)$, is $f(t)=c / t$, for some constant

[^0]$c \in \mathbb{R}$? Examples in Section 3 show that in fact $F_{2, f}(x)$ being a constant function of x is not sufficient to guarantee that $f(x)=c / x$ for some $c \in \mathbb{R}$. They also demonstrate that there exists a function g such that $F_{3, g}(x)=\int_{x}^{3 x} g(t) d t$ being a constant function of x is not sufficient to guarantee that $g(x)=c / x, c \in \mathbb{R}$. However, one may ask whether there is a function h with both $F_{2, h}(x)$ and $F_{3, h}(x)$ are constant functions of x, does it force that $h(t)=c / t$? or a possible function k can be constructed by "combining" f and g so that both $F_{2, k}(x)$ and $F_{3, k}(x)$ are constant functions of x but $k(t) \neq c / t, c \in \mathbb{R}$? We study this problem in Section 3. We provide a necessary and sufficient condition for $f(t)$ being a constant multiple of $1 / t$. The study of this problem relies on dense subsets of \mathbb{R}. In Section 2 we give a collection of "small" subsets which are dense in \mathbb{R}.

2 Dense subsets of real numbers

In this section, we construct a collection of infinitely many dense subsets (see p. 32 of [1] for the definition of dense subsets) of \mathbb{R} that are very "small". These dense subsets may not seem dense in \mathbb{R} at the first glance. For example, we show that both $S_{2,3}=\left\{ \pm 2^{n} 3^{m}: n, m \in \mathbb{Z}\right\}$ and $S_{\pi, e}=\left\{ \pm \pi^{n} e^{m}: n, m \in \mathbb{Z}\right\}$ are dense in \mathbb{R}. In general, we prove the following main theorem.

Theorem 1 Suppose p and q are in $\mathbb{R}^{+} \backslash\{1\}$. Let

$$
S_{p, q}=\left\{ \pm p^{n} q^{m}: n, m \in \mathbb{Z}\right\}
$$

Then $S_{p, q}$ is dense in \mathbb{R} if and only if $\frac{\ln p}{\ln q} \notin \mathbb{Q}$.
We first prove a technical lemma.
Lemma 2 Let p, q and $S_{p, q}$ be defined as in Theorem 2.1. Then
(i) There exists a sequence $\left\{a_{n}, n \geq 1, a_{n} \in S_{p, q}\right\}$ such that $1<a_{1}<$ $a_{2}<\ldots<a_{n} \ldots$ and $\lim _{n \rightarrow \infty} a_{n}=1^{+} ;$
(ii) There exists a sequence $\left\{b_{n}, n \geq 1, b_{n} \in S_{p, q}\right\}$ such that $b_{1}<b_{2}<$ $\ldots<b_{n}<\ldots<1$ and $\lim _{n \rightarrow \infty} b_{n}=1^{-}$.

Proof. Since $S_{p, q}$ is closed under reciprocals, we may assume that $1<$ $p<q$. Let $s_{1}=\ln p$ and $t_{1}=\ln q$. Then $0<s_{1}<t_{1}$. Since $\ln p$ is not a rational multiple of $\ln q$, there exists an integer $n_{1} \in \mathbb{Z}^{+}$such that $n_{1} s_{1}<t_{1}<\left(n_{1}+1\right) s_{1}$ and $t_{1} \neq \frac{n_{1} s_{1}+\left(n_{1}+1\right) s_{1}}{2}$. Let

$$
s_{2}=\min \left\{t_{1}-n_{1} s_{1},\left(n_{1}+1\right) s_{1}-t_{1}\right\}
$$

and

$$
t_{2}=\max \left\{t_{1}-n_{1} s_{1},\left(n_{1}+1\right) s_{1}-t_{1}\right\} .
$$

We have
$0<s_{2}<\frac{1}{2} s_{1}<t_{2}<s_{1}<t_{1}$
$\left(\right.$ since $t_{1} \neq \frac{n_{1} s_{1}+\left(n_{1}+1\right) s_{1}}{2}$ and $\left.n_{1} s_{1}<t_{1}<\left(n_{1}+1\right) s_{1}\right)$
(2.2) t_{2} is not a rational multiple of s_{2} (otherwise $\left(n_{1}+1\right) s_{1}-t_{1}=k\left(t_{1}-n_{1} s_{1}\right), k \in \mathbb{Q}$ which implies that t_{1} is a rational multiple of s_{1}, i.e $\frac{\ln p}{\ln q} \in \mathbb{Q}$, a contradiction);
(2.3) s_{2} and t_{2} are linear combination of $\ln p$ and $\ln q$ with integer coefficients, respectively.

For $i=3,4, \ldots$, construct $s_{3}, t_{3}, s_{4}, t_{4}, \ldots$ inductively. Suppose s_{i} and t_{i} are constructed, satisfying
(2.4) $0<s_{i}<\frac{1}{2} s_{i-1}<t_{i}<s_{i-1}<t_{i-1}$;
(2.5) t_{i} is not a rational multiple of s_{i};
(2.6) s_{i} and t_{i} are linear combination of $\ln p$ and $\ln q$ with integer coefficients, respectively.

Let

$$
s_{i+1}=\min \left\{t_{i}-n_{i} s_{i},\left(n_{i}+1\right) s_{i}-t_{i}\right\}
$$

and

$$
t_{i+1}=\max \left\{t_{i}-n_{i} s_{i},\left(n_{i}+1\right) s_{i}-t_{i}\right\}
$$

where n_{i} is the unique integer satisfying $n_{i} s_{i}<t_{i}<\left(s_{i}+1\right) s_{i}$. It is easy to show inductively that (2.4) - (2.6) are true for s_{i+1} and t_{i+1}. Therefore, two sequences $\left\{s_{n}, n \geq 1\right\}$ and $\left\{t_{n}, n \geq 1\right\}$ are constructed,
satisfying (2.4) - (2.6). By (2.4), $s_{1}>s_{2}>\ldots>s_{n}>\ldots>0$ and $\lim _{n \rightarrow \infty} s_{n}=0^{+}$. For $n=1,2, \ldots$, let $a_{n}=e^{s_{n}}$. Then

$$
a_{n} \in S_{p, q}, a_{1}>a_{2}>\ldots>a_{n}>\ldots>1 \text { and } \lim _{n \rightarrow \infty} a_{n}=1^{+}
$$

Thus Lemma 2.2 (i) is true. Let $b_{n}=1 / a_{n}, n \geq 1$. Then $b_{1}<b_{2}<$ $\ldots<b_{n}<\ldots<1$ and $\lim _{n \rightarrow \infty} b_{n}=1^{-}$. Therefore Lemma 2.2 (ii) is also true.

Proof of Theorem 2.1. The proof for the necessary condition is straightforward. Suppose $\frac{\ln p}{\ln q} \in \mathbb{Q}$, say $\ln p=\frac{a}{b} \ln q, a, b \in \mathbb{Z}^{+}$. Then $p=q^{\frac{a}{b}}$ and

$$
S_{p, q}=\left\{q^{\frac{a}{b} s+t}, s, t \in \mathbb{Z}\right\} .
$$

Clearly for any given $a, b \in \mathbb{Z}^{+}$, the set $A=\left\{\frac{a}{b} s+t, s, t \in \mathbb{Z}\right\}$ is not dense in \mathbb{R}. Hence $S_{p, q}$ is not dense in \mathbb{R}^{+}, which contradicts the assumption.

We now show that the condition is sufficient; i.e., if $\frac{\ln p}{\ln q} \notin \mathbb{Q}$, then $S_{p, q}$ is dense in \mathbb{R}. Let $c \in \mathbb{R}^{+}$be any positive real number and assume that $c \notin S_{p, q}$. Again since $S_{p, q}$ is closed under reciprocals, we may assume that $1<p<q$. We need to show that there exits a sequence of numbers $x_{1}, x_{2}, \ldots, x_{n}, \ldots \in S_{p, q}$ such that $\lim _{n \rightarrow \infty} x_{n}=c$. Suppose the claim is not true. Let $S^{-}=\left\{x \in S_{p, q}, 0<x<c\right\}$ and $S^{+}=\{x \in$ $\left.S_{p, q}, x>c\right\}$. Since $\lim _{k \rightarrow \infty} 1 / p^{k}=0$ and $\lim _{k \rightarrow \infty} p^{k}=\infty$, both S^{-}and S^{+}are not empty. Let $\alpha=\sup S^{-}$and $\beta=\inf S^{+}$. Then $0<\alpha \leq c \leq \beta$. We now show that $\alpha=c=\beta$. By symmetry we only need to show that $\alpha=c$.

Assume $\alpha<c$. Let us consider the following two cases. Case 1: $\alpha \in S_{p, q}$. By Lemma 2.2, there exists a sequence $\left\{a_{n}, n \geq 1\right\}$ and $\lim _{n \rightarrow \infty} a_{n}=1^{+}$. Choose a_{i} such that $1<a_{i}<1+\frac{c-\alpha}{\alpha}$. Then $\alpha a_{i} \in S_{p, q}$, but $\alpha a_{i}>\alpha$ and $\alpha a_{i}<\alpha\left(1+\frac{c-\alpha}{\alpha}\right)=c$ which contradicts the fact that $\alpha=\sup S^{-}$.

Case 2: $\alpha \notin S_{p, q}$. Then there exists a sequence $x_{n}, n \geq 1, x_{n} \in$ $S_{p, q}, x_{n}<\alpha$, and $\lim _{n \rightarrow \infty} x_{n}=\alpha$. Again, as in the proof of Case 1, we choose a_{i} such that $1<a_{i}<1+\frac{c-\alpha}{2 \alpha}$. Then we choose $x_{n_{0}} \in\left\{x_{n}\right\}$
such that $x_{n_{0}}>\frac{\alpha}{a_{i}}$. Therefore $x_{n_{0}} a_{i} \in S_{p, q}$, but $x_{n_{0}} a_{i}>\frac{\alpha}{a_{i}} a_{i}=\alpha$ and $x_{n_{0}} a_{i}<\alpha\left(1+\frac{c-\alpha}{2 \alpha}\right)=\frac{c+\alpha}{2}<c$. This again contradicts the fact that $\alpha=\sup S^{-}$.

A similar argument shows that $\beta=c$. Therefore $S_{p, q}$ is dense in \mathbb{R}^{+} and also in \mathbb{R} since all negative elements in $S_{p, q}$ will be dense in \mathbb{R}^{-}.

3 An Application

In this section we apply Theorem 2.1 to solve a problem originated from the calculus, as stated in the introduction.

Let $f(t)$ be a continuous function on $\mathbb{R} \backslash\{0\}$, and

$$
F_{\lambda, f}(x)=\int_{x}^{\lambda x} f(t) d t, \quad \lambda \in \mathbb{R}^{+} \backslash\{1\} .
$$

If $f(t)=\frac{c}{t}, c \in \mathbb{R}$, then for $x \neq 0, F_{\lambda, f}(x)=c \ln \lambda$ is a constant function of x. However, the following example shows that the inverse is not true; i.e., $F_{\lambda, f}(x)$ being a constant function of $x,(x \neq 0)$ does not imply that $f(t)=\frac{c}{t}, c \in \mathbb{R}$.
Example 3.1. Inductively define $f_{2}(t)$ as follows:
(i) for $t \in[1,2)$, let

$$
f_{2}(t)=\left\{\begin{array}{l}
t-1, \quad t \in\left[1, \frac{3}{2}\right) \\
-t+2, \quad t \in\left[\frac{3}{2}, 2\right)
\end{array}\right.
$$

(ii) for $t \in\left[2^{n-1}, 2^{n}\right), n=2,3, \ldots$, let $f(t)=\frac{1}{2} f\left(\frac{t}{2}\right)$;
(iii) for $t \in\left[\frac{1}{2^{n}}, \frac{1}{2^{n-1}}\right), n=1,2, \ldots$, let $f(t)=2 f(2 t)$;
(iv) for $t \in(-\infty, 0)$, let $f(t)=-f(-t)$.

Then $f(t)$ is a continuous function on $\mathbb{R} \backslash\{0\}$ and

$$
F_{2, f}(x)=\int_{x}^{2 x} f(t) d t=\frac{1}{4} .
$$

In fact, Example 3.1 can be generalized to functions with any parameter $\lambda \in \mathbb{R}^{+} \backslash\{1\}$.
Example 3.2 For $\lambda \in \mathbb{R}^{+} \backslash\{1\}$ and $\lambda>1$, define $f_{\lambda}(t)$ on $\mathbb{R} \backslash\{0\}$ as follows:
(i) for $t \in\left[\lambda^{n-1}, \lambda^{n}\right), n \in \mathbb{Z}$, let

$$
f_{\lambda}(t)=\left\{\begin{array}{ll}
\frac{1}{\lambda^{2 n-2}}\left(t-\lambda^{n-1}\right), & t \in\left[\lambda^{n-1}, \lambda^{n-1}\left(\frac{\lambda+1}{2}\right)\right) \\
-\frac{1}{\lambda^{2 n-2}}\left(t-\lambda^{n}\right) & x \in\left[\lambda^{n-1}\left(\frac{\lambda+1}{2}\right), \lambda^{n}\right)
\end{array} ;\right.
$$

(ii) for $t \in(-\infty, 0)$, let $f_{\lambda}(t)=-f(-x)$.

For $\lambda \in \mathbb{R}^{+} \backslash\{1\}$ and $\lambda<1$, define $f_{\lambda}(t)$ on $\mathbb{R} \backslash\{0\}$ similar to the case $\lambda>1$, with the only change being replacing λ by $\frac{1}{\lambda}$.

The function $f(t)$ is continuous on $\mathbb{R} \backslash\{0\}$, and

$$
F_{\lambda, f}(x)=\int_{x}^{\lambda x} f(t) d t=\frac{1}{4}(\lambda-1)^{2}
$$

is a constant function of $x,(x \neq 0)$. However, $f(t) \neq c / t, c \in \mathbb{R}$.
On the other hand, by the same approach as in the proof of Theorem 2.1, it is not hard to show that if $f(t)$ is a continuous function on $\mathbb{R} \backslash\{0\}$ and $F_{n, f}(x)=\int_{x}^{n x} f(t) d t$ is a constant function of $x,(x \neq 0)$ for all positive integer n, then $f(t)$ and a function c / t agree on all rational numbers. Hence by the continuity of $f, f(t)=c / t, c=f(1) \in \mathbb{R}$. Certainly, the condition that, for all $n \in \mathbb{Z}^{+}$, the function $F_{n, f}(x)$ is a constant function of x for $x \neq 0$ is very strong. The next theorem shows that in fact we can weaken the sufficient condition quite a lot.

Theorem 3 Suppose $p, q \in \mathbb{R}^{+} \backslash\{1\}$, and $\frac{\ln p}{\ln q} \notin \mathbb{Q}$. Let $f(t)$ be a continuous function on $\mathbb{R} \backslash\{0\}$. Then $f(t)=\frac{c}{t}$, where $c=f(1)$ is an arbitrary real number if and only if both $F_{p, f}(x)=\int_{x}^{p x} f(t) d t$ and $F_{q, f}(x)=\int_{x}^{q x} f(t) d t$ are constant functions of $x,(x \neq 0)$.

Proof. The necessary condition is obvious. We only need to prove the sufficient condition. The function $f(t)$ is continuous, and hence $F_{p, f}(x)$
is differentiable over $\mathbb{R} \backslash\{0\}$. Since $F_{p, f}(x)$ is a constant function of x, we have

$$
F_{p, f}^{\prime}(x)=p f(p x)-f(x)=0,
$$

and in turn

$$
f(p x)=\frac{f(x)}{p}
$$

Inductively, for $l \in \mathbb{Z}^{+}$and $l>1$, we have

$$
f\left(p^{l} x\right)=\frac{f\left(p^{l-1} x\right)}{p}=\ldots=\frac{f(x)}{p^{l}} .
$$

Furthermore,

$$
f(x)=f\left(p \frac{x}{p}\right)=\frac{f\left(\frac{x}{p}\right)}{p}
$$

and therefore

$$
f\left(\frac{x}{p}\right)=p f(x)
$$

Inductively we have

$$
f\left(\frac{x}{p^{n}}\right)=p^{n} f(x)
$$

Similarly, for $k \in \mathbb{Z}^{+}$,

$$
f\left(q^{k} x\right)=\frac{f(x)}{q^{k}} \text { and } f\left(\frac{x}{q^{k}}\right)=q^{k} f(x)
$$

It follows that

$$
f\left(p^{k} q^{l} x\right)=\frac{f(x)}{p^{k} q^{l}}, k, l \in \mathbb{Z}
$$

Let $x \in S_{p, q}$. Then $x= \pm p^{k} q^{l}, k, l \in \mathbb{Z}$. If $x=p^{k} q^{l}$, then

$$
f(x)=f\left(p^{k} q^{l}\right)=\frac{f(1)}{p^{k} q^{l}}=\frac{f(1)}{x} .
$$

If $x=-p^{k} q^{l}$, then

$$
f(x)=f\left(p^{k} q^{l}(-1)\right)=\frac{f(-1)}{p^{k} q^{l}}=-\frac{f(-1)}{x} .
$$

If x is a positive real number, there exists a sequence of numbers $\left\{x_{k}: x_{k} \in S_{p, q}\right\}$ such that $\lim _{k \rightarrow \infty} x_{k}=x$. Since f is continuous on $\mathbb{R} \backslash\{0\}$,

$$
f(x)=\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{k \rightarrow \infty} \frac{f(1)}{x_{k}}=\frac{f(1)}{x}
$$

If x is a negative real number, then a similar argument shows that

$$
f(x)=-\frac{f(-1)}{x}
$$

Since $F_{p, f}(x)$ is a constant function of x,

$$
\int_{-1}^{-p}-\frac{f(-1)}{t} d t=\int_{1}^{p} \frac{f(1)}{t} d t
$$

Evaluating the above integrals, we obtain $-f(-1) \ln p=f(1) \ln p$. Thus $-f(-1)=f(1)$, completing the proof.

The collection of the dense subsets in \mathbb{R} constructed in Section 2 has a wide range applications, such as pointwise approximation, data fitting, etc (see [2]). Some of these applications will be presented in a future paper.

References

[1] W. Rudin, Principles of Mathematical Analysis, Third Edition, McGraw-Hill, Inc., New York, 1976.
[2] R. A. Devore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, New York, 1991.

[^0]: *Department of Mathematics and Computer Science, Illinois Wesleyan University, Bloomington, Illinois 61702
 ${ }^{\dagger}$ Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132

