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Abstract

We present a constructive generalization of Abel-Gontscharoff’s
series expansion to higher dimensions. A constructive application
to a problem of multivariate interpolation is also investigated. In
addition, two algorithms for the constructing the basis functions
of the interpolants are given.
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1 Introduction

Throughout we should adopt various notations in the multiple-index
system.
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2 T. X. He, L. C. Hsu and P. J. S. Shiue

(i) Given ν ∈ Ns with ν = (ν1, ν2, · · · , νs). We denote

|ν| :=
s∑

i=1

νi, ν! := ν1!ν2! · · · νs!.

If k ∈ Ns such that k ≤ ν (i.e., ki ≤ νi, 1 ≤ i ≤ s), then we denote(
ν

k

)
:=

(
ν1

k1

)(
ν2

k2

)
· · ·
(

νs

ks

)
=

ν!

k!(ν − k)!
,

where ν − k = (ν1 − k1, ν2 − k2, · · · , νs − ks).
(ii) Given ν ∈ Ns and x ∈ Rs (or Cs) with x = (x1, x2, · · · , xs). We

denote

xν := xν1
1 xν2

2 · · ·xνs
s .

(iii) Given x, α ∈ Rs (or Cs). We denote

∂νf(x) :=
∂|ν|f(x)

∂xν1
1 ∂xν2

2 · · · ∂xνs
s

, ∂νf(α) = ∂νf(x)|x=α ,

and if ν = 0 = (0, · · · , 0) we denote ∂0f(α) = f(α).
(iv) For k ∈ Ns we define αk ∈ Rs as a multiple sequence of dimension

s, i.e.,

αk = (α
(1)
k , α

(2)
k , · · · , α

(s)
ks

), (k ∈ Ns).

Also, we write ∞ = (∞, · · · ,∞).
The multivariate Taylor-Maclaurin expansion at 0 is given by

f(x) =
∑
ν≥0

1

ν!
∂νf(0)xν (1.1)

f(x) =
∑
|ν|≤r

1

ν!
∂νf(0)xν +

∑
|ν|=r+1

1

ν!
∂νf(θx)xν , , (1.2)

where 0 < θ < 1 and θx = (θx1, θx2, · · · , θxs), r ≥ 1.
For the simple case s = 1, let n, k ∈ N and x ∈ C. Given βk ∈ C. It

is known that Gould’s algebraic identity takes the form

n∑
k=0

(
n

k

)
c(k)(x− βk)

n−k = xn, (1.3)
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in which c(0) = 1, and c(k) ≡ c(k; β) ≡ c(k; β0, β1, · · · , βk−1) is a kind
of homogeneous polynomial, called the Abel-Gontscharoff-Gould poly-
nomial, of degree k in β1, β2, · · · , βk−1. For more details about c(k), see
Gould [2], Hsu [3], and He-Hsu-Shiue [4].

Let Γ ≡ (Γ, +, ·) be the commutative ring of formal power series

over Cs (or Rs), and let αk ≡
(
α

(1)
k1

, α
(2)
k2

, · · · , α
(s)
ks

)
(k ∈ Ns) be a given

multiplesequence. Then, what a basic result to be proved in this paper
(cf. Section 2) is the following: For any f ∈ Γ we have a formal series
expansion of the form

f(x) =
∑
k≥0

∂kf(αk)

k!
C(k; x− α), (1.4)

where C(k; x− α) is given by

C(k; x− α)

:= Πs
i=1c

(
k; xi − α

(i)
0 , xi − α

(i)
1 , · · · , xi − α

(i)
ki−1

)
(1.5)

Evidently, the classical Abel-Gontscharoff series expansion (i.e., Abel-
Gontscharoff interpolation series) is a particular case of (1.4) and (1.5)
with s = 1. Also we shall show that a multivariate polynomial Φr(x) ≡
Φr(f ; x) ∈ πs

r (the set of all polynomials of degree ≤ k in s variables) of
the form (with r ≥ 1)

Φr(f ; x) =
∑
|k|≤r

∂kf(αk)

k!
C(k; x− α) (1.6)

just solves a general problem for multivariate interpolation. This will
be discussed latter in Section 2. Finally in Section 3, we give two al-
gorithms for computing the Abel-Gontscharoff-Gould polynomials, i.e.,
the interpolation basis functions, defined by (1.5).

2 Two Main Theorems

The following lemmas are needed.
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Lemma 2.1 (A multivariate form of Gould’s identity) Let x ∈ Cs and

ν, k ∈ Ns, and denote β(i) ≡
(
β

(i)
0 , β

(i)
1 , · · · , β

(i)
ki−1

)
, (i = 1, 2, · · · ). We

have an algebraic identity of the form

xν =
∑
k≤ν

(
ν

k

)
Πs

i=1c
(
ki; β

(i)
) (

xi − β
(i)
ki

)νi−ki

. (2.1)

Proof. Application of (1.3) to each of the s factors of xν = xν1
1 xν2

2 · · ·xνs
s

yields the result expression (2.1).

Lemma 2.2 Let ν ∈ Ns, x ∈ Cs, and αk ≡
(
α

(1)
k1

, α
(2)
k2

, · · · , α
(s)
ks

)
with

k ∈ Ns. Then we have

∂νΠs
i=1c

(
ki; xi − α

(i)
0 , xi − α

(i)
1 , · · · , xi − α

(i)
ki−1

)∣∣∣
x=αν

=

{
0 if ν 6= k,
k! if ν = k.

(2.2)

Proof. This follows easily from a repeated application of the equation
(2.2) of our paper [4]. Indeed, in accordance with Proposition 2.1 of [4]
we see that the left-hand side of (2.2) can be re-written in the form

∂|ν|

∂xν1
1 ∂xν2

2 · · · ∂xνs
s

Πs
i=1Qki

(xi)

∣∣∣∣
x=αν

= Πs
i=1Q

(νi)
ki

(
α(i)

νi

)
= Πs

i=1νi!δνiki
=

{
0 if ν 6= k,
k! if ν = k,

wherein δ·,· is the Kronecker symbol.

Theorem 2.3 Let {αk} be a given s-multiple sequence with αk ≡
(
α

(1)
k1

,

α
(2)
k2

, · · · , α
(s)
ks

)
∈ Cs (or Rs) and k ∈ Ns. Then for any f ∈ Γ (Cs) we

have the formal series expansion formula
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f(x) =
∑
k≥0

∂kf(αk)

k!
Πs

i=1c
(
ki; xi − α

(i)
0 , xi − α

(i)
1 , · · · , xi − α

(i)
ki−1

)
,

(2.3)

where x ∈ Cs (or Rs), and c
(
ki; xi − α

(i)
0 , xi − α

(i)
1 , · · · , xi − α

(i)
ki−1

)
are

Abel-Gontscharoff-Gould polynomials with degrees ki ∈ N.

Proof. For brevity let us denote

β(i) ≡
(
β

(i)
0 , β

(i)
1 , · · · , β

(i)
ki−1

)
, C(k; β) ≡ Πs

i=1c(ki; β
(i)).

Also we shall make the substitutions β
(i)
j = xi − α

(i)
j , (i, j ∈ N). Then

using Lemma 1.1 and the multivariate Taylor expansion, we see that
f(x) can be formally expanded as follows.

f(x) =
∑
ν≥0

∂νf(0)

ν!
xν

=
∑
ν≥0

∂νf(0)

ν!

∑
k≤ν

(
ν

k

)
Πs

i=1c(ki; β
(i))
(
xi − β

(i)
ki

)νi−ki

=
∑
k≥0

C(k; β)

k!

∑
ν≥k

∂νf(0)

(ν − k)!

(
xi − β

(i)
ki

)νi−ki

By substituting µ = ν − k = (µ1, µ2, · · · , µs) into the right-hand side of
the last equation we can write it as

∑
k≥0

C(k; β)

k!

∑
µ≥0

∂µ+kf(0)

µ!

(
xi − β

(i)
ki

)µi

=
∑
k≥0

C(k; β)

k!

∑
µ≥0

1

µ!
∂µ
(
∂kf(0

) (
xi − β

(i)
ki

)µi

=
∑
k≥0

C(k; β)

k!
∂kf

(
x1 − β

(1)
k1

, x2 − β
(2)
k2

, · · · , xs − β
(s)
ks

)
=

∑
k≥0

1

k!
∂kf

(
α

(1)
k1

, α
(2)
k2

, · · · , α
(s)
ks

)
×Πs

i=1c
(
ki; xi − α

(i)
0 , xi − α

(i)
1 , · · · , xi − α

(i)
ki−1

)
,
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which is just the right-hand side of Eq. (2.3).

For the case αk ≡ (a1, a2, · · · , as) ≡ a ∈ Cs, so that α
(i)
j = ai, we see

that (2.3) implies the multivariate Taylor expansion as a consequence,
namely

f(x) =
∑
k≥0

∂kf(kt)

k!
Πs

i=1xi(xi − kiti)
ki−1, (2.4)

where k ∈ Ns, x, t ∈ Cs and kt ≡ (k1t1, k2t2, · · · , ksts).

Theorem 2.4 Given αk ≡
(
α

(1)
k1

, α
(2)
k2

, · · · , α
(s)
ks

)
∈ Cs with k ∈ Ns, let

f(x) ∈ Γ (over Cs). Then the s-variate Abel-Gontscharoff polynomial
of degree r (r ≥ 1) given by

Φr(x) = Φr(f ; x)

=
∑
|k|≤r

∂kf(αk)

k!
Πs

i=1c
(
ki; xi − α

(i)
0 , xi − α

(i)
1 , · · · , xi − α

(i)
ki−1

)
(2.5)

satisfies the interpolation conditions

{
Φr(α0) = f(α0),

(
α0 ≡

(
α

(1)
0 , α

(2)
0 , · · · , α

(s)
0

))
,

∂νΦr(x)|x=αν
= ∂νf(αν), 1 ≤ |ν| ≤ r.

(2.6)

Proof. In the first place, notice that c(j; β0, β1, · · · , βj−1) = 0 for j ∈ N,
j ≥ 1 and β0 = 0. Thus we have

Πs
i=1c

(
ki; xi − α

(i)
0 , xi − α

(i)
1 , · · · , xi − α

(i)
ki−1

)∣∣∣
x=α0

= 0, (|k| ≥ 1).

Moreover, c(0; β) = 1. So it follows that

Φr(α0) = Φr(f ; x)|x=α0
= ∂0f(α0) = f(α0).

Furthermore, for |ν| ≥ 1 we have by using Lemma 2.2
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∂νΦr(x)|x=αν

=
∑
|k|≤r

∂kf(αk)

k!
∂νΠs

i=1c
(
ki; xi − α

(i)
0 , xi − α

(i)
1 , · · · , xi − α

(i)
ki−1

)∣∣∣∣∣∣
x=αν

=
∂kf(αk)

k!

{
0 (k 6= ν)
k! (k = ν)

}
= ∂νf(αν).

Hence Theorem 2.4 is proved.

With the notation given by (1.5) the polynomial defined by (2.5)
may be written in a more compact from, namely

Φr(f ; x) =
∑
|k|≤r

∂kf(αk)

k!
C(k; x− α0, x− α1, · · · , x− αk−1), (2.7)

where x ∈ Cs, k ∈ Ns, and {αk} is a given sequence with αk ∈ Cs.
Certainly, Φr(f ; x) may be called the s-variate Abel-Gontscharoff inter-
polation polynomial of degree r.
Remark 2.1 The difference ρr(f ; x) = f(x)−Φr(f ; x) is called a remain-
der of the expression (2.3). From the viewpoint of numerical analysis, it
may be of interest to find some useful expression for ρr(f ; x) (r ≥ 1). In
particular, as an unsolved problem, we propose to investigate whether
there is a remainder formula of Lagrange form involving that of (1.2)
as a particular case. However, as a special case for that all αk are the
same when |k| fixed, the corresponding remainder will be shown in the
next section.

We now extend the dot product annihilation coefficients, defined
by Gould in [2], to the higher dimension setting. Similar to [2], we
define the multivariate dot product annihilation coefficients α(ν, k; β) ≡
α (ν, k; β0, · · · , βν) (ν, k ∈ Ns, β0, · · · , βν ∈ Cs) by the expansion∑

k≤ν

α(ν, k; β) (x− βk)
k = xν .

The inverse expansion is given by
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∑
k≤ν

(
ν

k

)
(−βν)

ν−k xk = (x− βν)
ν .

In terms of inverse relations we have the reciprocal pair

fν =
∑
k≤ν

α(ν, k; β)gk ⇐⇒ gν =
∑
k≤ν

(
ν

k

)
(−βν)

ν−k fk. (2.8)

Evidently, the binomial inversion is just a simple particular case when
βν =constant vector 6= 0, (ν ∈ Ns).

An identity can be derived from the reciprocal pair shown as in (2.8).
Substituting the second equation in (2.8) to the first one yields

fν =
∑
kν

α(ν, k; β)
∑
`≤k

(−βk)
k−`

(
k

`

)
f`

=
∑
`≤ν

[ ∑
`≤k≤ν

α(ν, k; β)(−βk)
k−`

(
k

`

)]
f`

Thus, we obtain the following identity

∑
`≤k≤ν

α(ν, k; β)(−βk)
k−`

(
k

`

)
= δν`. (2.9)

where ν, ` ∈ Ns ∪ {0}, and δν` = Πs
i=1δνi`i

, and δνi`i
(i = 1, · · · , s) are

the Kronecker symbol; i.e., δνi`i
equals to 1 if νi = `i and 0 otherwise.

3 Computation of the Abel-Gontscharoff-

Gould polynomials

In order to make (2.7) (or (2.3)) really available, it needs to devise some
algorithms for computing the Abel-Gontscharoff-Gould polynomials de-
fined by (1.5) and (1.3). In what follows we shall discuss computational
aspects of Abel-Gontscharoff-Gould polynomials. Two algorithms for
computing the Abel-Gontscharoff-Gould polynomials (hence, the basis
functions of the multivariate Abel-Gontscharoff interpolation shown in
Theorem 2.4) will be given.
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By checking the first few expressions of c(n) we find the relation
shown in the following Theorem 3.1, which can be used to establish a
general expression of c(n) recursively and write them out readily.

Theorem 3.1 For all n ∈ N and βk ∈ C (0 ≤ k ≤ n). The Abel-
Gontscharoff-Gould polynomials shown in (1.3) can be written as

c(n) =
n∑

j=1

(
n

j

)
(−1)j−1βj

0P
jc(n− j), (3.1)

where the index operator P is defined as

Pc(n) ≡ P
n−1∑
j=0

(−1)n−j−1

(
n

j

)
c(j)βn−j

j

:=
n−1∑
j=0

(−1)n−j−1

(
n

j

)
Pc(j)βn−j

j+1 , (3.2)

and P j+1c(n) := P [P jc(n)].

From Eq. (3.2) we have Pc(0) = 1 and

Pc(1) ≡ P
0∑

j=0

(−1)−j

(
1

j

)
c(j)β1−j

j = P (c(0)β0) := Pc(0)β1 = β1.

Hence, from (3.1), we can write the expression of c(n) (n = 1, 2, 3, 4)
recursively as

c(1) = β0Pc(0) = β0,

c(2) = 2β0Pc(1) + (−1)β2
0Pc(0) = 2β0β1 − β2

0

c(3) = 3β0Pc(2)− 3β2
0P

2c(1) + β3
0P

3c(0)

= 3β0β1(2β2 − β1)− 3β2β
2
0 + β3

0 ,

c(4) = 4β0Pc(3)− 6β2
0P

2c(2) + 4β3
0P

3c(1)− β4P 4c(0)

= 4β0β1

[
3β2(2β3 − β2)− 3β1β3 + β2

1

]
− 6β2

0β2(2β3 − β2) + 4β3
0β3 − β4

0 ,

c(5) = 5β0Pc(4)− 10β2
0P

2c(3) + 10β3
0P

3c(2)− 5β4
0P

4c(1) + β5
0P

5c(0)

= 5β0

[
4β1β2

(
3β3(2β4 − β3)− 3β2β4 + β2

2

)
− 6β2

1β3(2β4 − β3)

+4β3
1β4 − β4

1

]
− 10β2

0

[
3β2β3(2β4 − β3)− 3β4β

2
2 + β3

2

]
+10β3

0 [β3(2β4 − β3)]− 5β4β
4
0 + β5

0 .
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Proof. We now prove formula (3.1) by using the mathematical induction.
It is easy to see the formula holds for n = 1 from the definition (3.2)
of the operator P . Assume that the formula is true for all 1 ≤ j ≤ m.
We shall show it is also true for all 1 ≤ j ≤ m + 1. In fact, using the
induction assumption yields

c(m + 1)

=
m∑

j=0

(−1)m−j

(
m + 1

j

)
c(j)βm+1−j

j

=
m∑

j=1

(−1)m−j

(
m + 1

j

)
c(j)βm+1−j

j + (−1)mβm+1
0

=
m∑

j=1

(−1)m−j

(
m + 1

j

)
βm+1−j

j

j∑
u=1

(−1)u−1

(
j

u

)
βu

0 P uc(j − u) + (−1)mβm+1
0

=
m∑

u=1

(
m∑

j=u

(−1)m+u−j−1

(
m + 1

j

)(
j

u

)
βm+1−j

j P uc(j − u)

)
βu

0 + (−1)mβm+1
0 .

For 1 ≤ u ≤ n, the sum in the parentheses of the rightmost equality can
be simplified as

m−u∑
j=0

(−1)m−j−1j

(
m + 1

j + u

)(
j + u

u

)
βm−u+1−j

j+u P uc(j)

= (−1)u−1

(
m + 1

u

)m−u∑
j=0

(−1)m−u−j

(
m− u + 1

j

)
βm−u+1−j

j+u P uc(j)

= (−1)u−1

(
m + 1

u

)
P uc(m− u + 1).

Hence,

c(m + 1) =
m∑

u=1

(−1)u−1

(
m + 1

u

)
βu

0 P uc(m− u + 1) + (−1)mβm+1
0 ,

which completes the proof of the theorem.
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Another algorithm is based on an alternative form of Proposition 2.2
and Remark 3 in [4], in which two expressions of c(n) are given by using
a determinant and the Hadamard product form of the determinant.

To give our second algorithm, we start from the Gould’s algebraic
identity (1.3) with the form

n∑
k=0

(
n

k

)
c(k)(x− βk)

n−k = xn, (3.3)

where n ∈ N and x, βk ∈ C (0 ≤ k ≤ n). For any fixed n ∈ N, taking
x = 0, 1, · · · , n in (3.3) yields system

AC = G,

where C, G ∈ Rn+1, C = (c(n), c(n − 1), · · · , c(1), c(0))T , G = (0, 1, 2n,
· · · , nn)T , and the column vectors of matrix A are of the form

(fn,k(0), fn,k(1), · · · , fn,k(n))T (0 ≤ k ≤ n)

with fn,k(`) =
(

n
k

)
(`− βk)

n−k. In the following we denote the difference
operator by ∆, i.e., ∆f(t) = f(t + 1) − f(t), ∆kf(t) = ∆k−1∆f(t). In
general, ∆kf(t) can be expressed as

∆kf(t) =
k∑

j=0

(−1)k−j

(
k

j

)
f(t + j).

We also introduce the vectors

f
[n]
n,k := (fn,k(0), ∆fn,k(0), ∆

2fn,k(0), · · · , ∆nfn,k(0))
T (0 ≤ k ≤ n)

(3.4)
and the Vandermonde determinant

τ(fn) := det
[
f [n]

n,n, f
[n]
n,n−1, · · · , f

[n]
n,1, f

[n]
n,0

]
. (3.5)

It can be seen that

τ(fn) = Πn
k=0

n!

k!
=

n!

Πn
k=0k!
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because the matrix shown in (3.5) is an upper triangle matrix with
diagonal entries ∆ufn,n−u(0) = n!/(n−u)!. Likewise, we denote gn(`) :=
`n,

g[n]
n := (gn(0), ∆gn(0), · · · , ∆ngn(0))T , (3.6)

and

τj(fn|gn) := det
[
f [n]

n,n, · · · , f
[n]
n,j+1, g

[n]
n , f

[n]
n,j−1, · · · , f

[n]
n,0

]
(3.7)

for 0 ≤ j ≤ n. Hence, we have

Proposition 3.2 Let n ∈ N and x, βk ∈ C (0 ≤ k ≤ n). By using the
notations τ(fn) and τj(fn|gn) (0 ≤ j ≤ n) shown in (3.5) and (3.7),
respectively, we have the following expressions of the Abel-Gontscharoff-
Gould polynomials defined by (3.3).

c(j) =
τn−j(fn|gn)Πn

k=0k!

(n!)n
. (3.8)

Proof. Obviously, detA = τ(fn). Hence, for 0 ≤ j ≤ n

c(j) =
τn−j(fn|gn)

detA
=

τn−j(fn|gn)

τ(fn)
,

and the Eq. (3.8) immediately follows.

As examples, from (3.8) we have

c(0) =
τn(fn|gn)Πn

k=0k!

(n!)n
= 1

and

c(1) =

(n!)n−1

Πn
k=2k!

(∆nfn,0(0)∆
n−1gn(0)−∆n−1fn,0(0)∆

ngn(0))

(n!)n

Πn
k=0k!

=
∆n−1gn(0)−∆n−1fn,0(0)

n!
= β0.
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Similarly,

c(2) = β0(2β1 − β0)

c(3) = 3β0β1(2β2 − β1)− 3β2β
2
0 + β3

0

c(4) = 4β0β1

[
3β2(2β3 − β2)− 3β1β3 + β2

1

]
−6β2

0β2(2β3 − β2) + 4β3
0β3 − β4

0 .

Remark 3.1 There are still two other types of multivariate generaliza-
tion of Abel-Gontscharoff interpolation series. One of them has been
mentioned briefly in Remark 8 of our paper [4]. The second one has
been given in a recent paper by one of the authors in [5], in which
the classic Abel-Gontscharoff interpolation is extended to the multivari-
ate Kergin interpolation by using a differential operator generated from
Abel-Gontscharoff-Gould polynomial. Kergin type multivariate Abel-
Gontscharoff interpolation was first studied by Cavaretta, Micchelli and
Sharma in [1], in which a method for extending univariate interpolation
procedures to higher dimensions was given. The idea is based on the
requirement that the multivariate extension is related to its univariate
analog on the class of ridge functions. In particular, the implicit multi-
variate Abel-Gontscharoff without the remainder was established in [1].
We shall show in another paper the relation between the multivariate
Abel-Gontscharoff interpolation and the Kergin type Abel-Gontscharoff
interpolation as well as the convergence rate of the multivariate Abel-
Gontscharoff interpolation.
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