
Dimensionality-Reducing Expansion,

Boundary Type Quadrature Formulas,

and the Boundary Element Method

Tian-Xiao He
Department of Mathematics and Computer Science

Illinois Wesleyan University
Bloomington, IL 61702-2900, USA

Dedicated to Professor L. C. Hsu on the Occasion of his 80th Birthday

Abstract

This paper discusses the connection between boundary quadrature for-
mulas constructed by using solutions of partial differential equations
and boundary element schemes.

AMS Subject Classfication: 65D30, 65D32, 65N38.

Key Words and Phrases: boundary quadrature formula, boundary
element.

1 Introduction

Dimensionality-reducing expansion (DRE) is a technique for numerical in-
tegration that reduces a higher dimensional integral to lower dimensional
integrals with or without a remainder. Obviously, a DRE can be used to
reduce the computational load of many very high dimensional numerical in-
tegrations. For instance, the multivariate integral over the 180-dimensional
unit cube in the CMO (collateralized mortgage obligation) problem (see [3])
can be reduced to integrals of any dimension by successive applications of
certain DRES; it can even be directly reduced to a one-dimensional integral
by a single application of the measure theory. In most cases, the computation
needed for the reductions and the final integration is miniscule compared to
that of the original integration. Most DREs are based on Green’s Theorem in
the real or complex field. In 1963, using the theorem, Hsu [15] devised a way
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to construct a DRE with algebraic precision (degree of accuracy) for multi-
variate integrations. From 1978 to 1986, building on [15], Hsu, Wang, Zhou,
and the author (see [17], [18], [20], [21], and [22]) gave a general process for
constructing a DRE with algebraic precision and estimating its remainder.
In 1972, with the aid of Green’s Theorem and the Schwarz function, P. J.
Davis [4] gave an exact DRE, or a DRE without a remainder, for a double
integral over a complex field. In 1979, also utilizing Green’s Theorem, Kratz
[24] constructed an exact DRE for a function that satisfies a type of par-
tial differential equations. Lastly, to complete the introduction, we mention
Burrows’ DRE for measurable functions, developed in the 1980’s. As noted
above, his DRE can reduce a multivariate integration to a one dimensional
integral. Some important and common applications of DRE include the
construction of boundary type quadrature formulas and boundary element
schemes.

A Boundary type quadrature formulas (BTQF) is an approximate inte-
gration formula with all its of evaluation points lying on the boundary of
the integration domain. Such a formula is particularly useful for cases where
the values of the integrand function and its derivatives inside the domain are
not given or are not easily determined. Boundary quadrature formulas are
not really new. Indeed, from the viewpoint of numerical analysis, the clas-
sic Euler-Maclaurin summation formula and the Hermite two-end multiple
nodes quadrature formula may be regarded as one-dimensional BTQFs since
they use only the values of the integrand function and their derivatives at the
limits of integration. The earliest example of a BTQF with some algebraic
precision for multivariate integration is possibly the formula of algebraic pre-
cision degree 5 for a triple integral over a cube given by Sadowsky [28] in
1940. He used 42 points on the surface of a cube to construct the quadrature,
which has been modified by the author to one with 32 points, the fewest pos-
sible boundary points (see [7] and [8]). Some 20 years later, Levin [26] and
[27], Federenko [6], and Ionescu [23] individually investigated certain optimal
BTQFs for double integration over squares using partial derivatives at some
boundary points of the region. Despite these advances, however, both the
general principle and the general technique of construction remained lacking
for many years.

In 1978, Hsu, Wang, and Zhou ([18]) developed a general method for
constructing BTQFs using the basic principles of multivariate integration;
i.e., Hsu’s DRE (see [15]). Since then, Hsu, Zhou, Yang, and the author
have developed several different methods for constructing BTQFs ([7], [8],
[10], [13], [17], [19], [20], [21], and [22]). In this paper, we will look at a
recent development on this topic, using BTQFs to develop boundary element
schemes.
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In next section, we will recall the Kratz’s result (see [24]) of replacing
a double integral with a single integral and its higher dimension setting
shown in [30]. By using this approach, BTQFs related to solutions of partial
differential equations will be constructed. Then, the BTQFs will be applied
in Section 3 to give a scheme of the boundary element method, which is a
method for solving partial differential equations numerically.

2 Construction of BTQFs

In the following, we use Ω ≡ Vn to denote a bounded and closed region in
Rn. Suppose that the boundary of Vn, Sn−1, can be described by a system
of parametric equations. In particular, points (x1, · · · , xn) on Sn−1 satisfy
equation

Φ(x1, · · · , xn) = 0, (1)

where Φ has continuous partial derivatives. In addition, Φ(x1, · · · , xn) ≤ 0
for all points in Vn.

We begin with the second order differential operator L defined by

Lu =
n∑

i,j=1

aij(X)
∂2u

∂xi∂xj
+

n∑
i=1

bi(X)
∂u

∂xi
+ c(X)u, (2)

where aij(X) ∈ H2
n(Ω), bi(X) and c(X) ∈ H1

n(Ω), and Hα
n (Ω)(α ≥ 1) is the

collection of all functions f(X) = f(x1, · · · , xn) that have continuous partial
derivatives D(i1,··· ,in)f , 0 ≤ i1 + · · ·+ in ≤ αn, 0 ≤ ik ≤ α, k = 1, 2, · · · , n.

It is well-known that the conjugate operator of L is

Mv =
n∑

i,j=1

∂2(vaij(X))
∂xi∂xj

−
n∑

i=1

∂(vbi(X))
∂xi

+ c(X)v. (3)

If we denote by ri(X) the following expression

ri(X) = −v
n∑

j=1

aij
∂u

∂xj
+ u

n∑
j=1

aij
∂v

∂xj
+ uv

n∑
j=1

∂aij

∂xj
− biuv, (4)

then we have

uMv − vLu =
n∑

i=1

∂ri
∂xi

. (5)

Similarly, if we denote

pi = pi(X) =
n∑

j=1

aij(X)
∂v

∂xj
+

n∑
j=1

v
∂aij(X)
∂xj

− bi(X)v, (6)



238 T. X. He

then from Equation (5) we obtain

uMv − vLu =
n∑

i=1

∂

∂xi

upi − v

n∑
j=1

aij(X)
∂u

∂xj

 .

From this relation, Equation (5), and Green’s formula, we have the following
result, which is an alternative form of Theorem 1 shown in [30].

Theorem 1 Let Ω ∈ Rn be an n-dimensional bounded closed domain with
the boundary ∂Ω being a piecewise smooth surface or a simple closed curve
with finite length when n = 2. Let u = u(X) and v = v(X) be functions
in C2(Ω), and let L and M be differential operators defined by (2) and (3),
respectively. Then we have the identities∫

Ω
(uMv − vLu) dV =

∫
∂Ω

(
n∑

i=1

ri
∂xi

∂ν

)
dS (7)

and ∫
Ω
(uMv − vLu) dV

=
∫

∂Ω

[
u

n∑
i=1

pi
∂xi

∂ν

]
dS −

∫
∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂ν

 dS,(8)

where ri(X) and pi(X) are defined respectively by (4) and (6); dV and dS
are volume element and surface element respectively; and ∂xi

∂ν is the outer
normal derivative of xi on the surface ∂Ω.

Furthermore, if v = v(X) satisfies Mv = 1 on Ω, then for any solution,
u = u(X) (X ∈ Ω) of Lu = g, we have identity∫

Ω
u(X) dV =

∫
Ω
v(X)g(X) dV +

∫
∂Ω

[
u(X)

n∑
i=1

pi(X)
∂xi

∂ν

]
dS

−
∫

∂Ω

v(X)
n∑

i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂ν

 dS. (9)

Proof. In Green’s formula∫
Ω

∂f(X)
∂xi

dX =
∫

∂Ω
f(X)

∂xi

∂ν
dS
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with
∂xi

∂ν
=
∂Φ
∂xi

[(
∂Φ
∂x1

)2

+ · · ·+
(
∂Φ
∂xn

)2
]−1/2

,

we replace f(X) with ri(X) and immediately obtain (7) from (5). Similarly,
we obtain identity (8). In particular, if v = v(X) is a solution to the differ-
ential equation Mv = 1, then identity (8) can be reduced to (9), which is
also called a DRE with the remainder

∫
Ω v(X)g(X) dX. 2

If the remainder term of the identity (9) vanishes; i.e., g(X) satisfies∫
Ω v(X)g(X)dV = 0 (for instance, g(X) = 0 and u is a solution of Lu = 0),

we obtain the following exact DRE for integral
∫
Ω u dX.∫

Ω
u dX =

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂ν

]
dS

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂ν

 dS. (10)

In addition, if v satisfies the boundary condition v(X) = 0, X ∈ ∂Ω
(i.e., v is the solution of the boundary problem Mv(X) = 1 (X ∈ Ω) and
v(X) = 0 (X ∈ ∂Ω), then expansion (10) can be reduced to∫

Ω
u dX =

∫
∂Ω

u n∑
i=1

 n∑
j=1

aij(X)
∂v

∂xj

 ∂xi

∂ν

 dS. (11)

The above exact DRE is convenient for computing
∫
Ω u(X)dV.

We should point out that from identity (8), we can construct a boundary
element scheme. If v is the fundamental solution of equation Mv = 0 at
point X0 ∈ ∂Ω, then identity (8) gives a boundary integral equation, which
can be used to solve the function values and derivative values of u on the
bounder ∂Ω. Then, we take X0 as any interior point of Ω and substitute
the corresponding fundamental solution v into (8). Thus value of u(X0) can
be evaluated from equation (8). All of this topic will be discussed in next
section.

We can specify DRE formula (9) by replacing operator L with classical
partial differential operators as L such as elliptic, hyperbolic, and parabolic
operators. As an example, let us consider the elliptic operator.

Corollary 2 Let L shown as (2) be an elliptic operator, in which

aij =
{

1, if i = j,
0, if i 6= j,
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and v be a solution of Dirichlet problem{ ∑n
i=1

∂2v
∂x2

i
−
∑n

i=1
∂(vbi)
∂xi

+ cv = 1, on Vn;

v = 0, on Sn−1.

Then we obtain∫
Ω
u(X)dV =

∫
Ω
v(X)g(X)dV +

∫
∂Ω

[
u(X)

n∑
i=1

(
∂v

∂xi

∂xi

∂ν

)]
dS,

where function u = u(X) is a solution of equation
n∑

i=1

∂2u

∂x2
i

+
n∑

i=1

bi
∂u

∂xi
+ cu = g.

Using DREs (10) and (11), we can construct a type of boundary quadra-
ture formulas. For instance, let us consider the cubic domain Ω = Vn(0 ≤
xi ≤ 1, i = 1, · · · , n). From equation (11), we obtain∫

Vn

udV =
n∑

i=1

∫
Vn−1

[Fi(X)]xi=1
xi=0 dVn−1,

where Fi(X) = u(X)pi(X) and

[Fi(X)]xi=1
xi=0 = Fi(x1, · · · , xi−1, 1, xi+1, · · · , xn)

−Fi(x1, · · · , xi−1, 0, xi+1, · · · , xn).

Obviously, Fi ∈ H1
n−1(Vn).

Let r > 1. Then for any nature number k ≤ N , it can be written as
k = k0 + k1r + · · ·+kMr

M , 0 ≤ kj < r, 0 ≤ j ≤ M, where M = [logr N ].
Define φr(k) = k0r

−1+k1r
−2+ · · ·+kMr

−M−1. Then for the first n−1 prime
numbers p1, · · · , pn−1, we call sequence {Mk = (φp1(k), · · · , φpn−1(k)), k =
1, 2, · · · } the Halton sequence.

Denote

F (i,Mk;n,N) =
[
Fi

(
φp1(k), · · · , φpi−1(k), xi, φpi(k), · · · , φpn−1(k)

)]xi=1

xi=0
.

We have ∫
Vn

udV =
1
N

n∑
i=1

N∑
k=1

F (i,Mk;n,N) + ρN ,

where N > pn−1 and the remainder satisfies

|ρN | ≤ n4n−1CΠn−1
i=1

(
pi

log pi

)
logn−1N

N
,

where C is a constant and this estimate can not be improved. This result
was first given in [30].
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3 Boundary element scheme

In this section, we will give applications of the DREs (7) and (8) in the
boundary element method.

Let us consider the following boundary value problem
Lu(X) = g(X) X ∈ Ω,
u = u X ∈ ∂Ω1,

g = ∂u
∂n = g X ∈ ∂Ω2,

(12)

where differential operator L is defined by (2) and ∂Ω1∪∂Ω2 = ∂Ω. We now
derive a method for solving the boundary value problem (12) by using the
DRE shown in Section 2. Let u ∈ C(Ω̄) be the solution of L(u) = g and v be
a fundamental solution of Mv = 0; i.e., a solution of Mv = δ(X−X0). Here
M is the adjoint differential operator of L, δ(X) is the Delta function, and
X0, called the source point, is an arbitrarily fixed point in Ω̄. In general, the
fundamental solution exists but is not unique. We now evaluate

∫
Ω uMvdX

for the fundamental solution v. If X0 ∈ Ω\∂Ω, then∫
Ω
u(X)Mv(X)dX =

∫
Ω
u(X)δ(X −X0)dX = u(X0).

DRE (8) yields the following equation of u = u(X).

u(X0) =
∫

Ω
vg dX +

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂n

]
dS

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS. (13)

Therefore, we have the following result regarding the solution of the bound-
ary value problem (12).

Theorem 3 Let Ω ∈ Rn be an n-dimensional bounded closed domain with
the boundary ∂Ω being a piecewise smooth surface or a simple closed curve
with finite length when n = 2. Let u = u(X) be a function in C2(Ω) that
satisfies Lu = g, and let v = v(X) be the fundamental solution of Mv =
δ(X−X0), where X0 is an arbitrarily fixed point in Ω and adjoint differential
operators L and M are defined respectively by (2) and (3).

If X0 ∈ Ω\∂Ω, then the solution of the boundary value problem (12) at
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the point X0 is

u(X0) =
∫

Ω
vg dX +

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂n

]
dS

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS. (14)

For the points X0 ∈ ∂Ω, if εn−1
∑n

i=1 pi(ε)∂xi
∂n → C 6= 0 and v(ε)εn−1 → 0

as ε → 0, where ∂xi
∂n is the outer normal derivative of xi on the surface

{X : |X| = ε}, then

Cβu(X0) =
∫

Ω
vg dX +

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂n

]
dS

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS, (15)

where β = lim
ε→0

∫
Kε

dθ and dθ is the solid angle of Kε with respect to X0.

Here Kε = Ω∩∂Bε; Bε = {X : |X−X0| < ε} is a small ball centered at X0.

Remark 1. If the values of u(X) and its normal derivatives on the boundary
∂Ω are obtained, then expression (14) can be applied to evaluate all values of
u(X0) in the interior of Ω. However, in boundary value problem (12) we are
only given some of the values of u(X) and some of its normal derivative values
on ∂Ω. Hence, we need to calculate those unknown values on the boundary
by using Equation (15). In addition, If X0 ∈ Rn\Ω, then Mv(X) = 0 for all
X ∈ Ω̄. Therefore,

∫
Ω
vg dX +

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂n

]
dS

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS = 0. (16)

Proof. Noting that g(X) = 0, we immediately obtain Equation (14) from
(13). To prove (15), we consider a small ball Bε = {X : |X −X0| < ε} and
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apply DRE (8) on the domain Ωε = Ω \Bε. It follows that∫
Ωε

(uMv − vLu) dX

=
∫

∂Ωε

u n∑
i=1

pi
∂xi

∂n
− v

n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS. (17)

Substituting the solution of Lu = g (u ∈ C(Ω̄)) into (17) and noting Mv = 0
for all X ∈ Ωε, we obtain∫

Ω
vg dX

=
∫

∂Ωε

u n∑
i=1

pi
∂xi

∂n
− v

n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS

= I(1)
ε + I(2)

ε , (18)

where

I(1)
ε =

∫
∂Ωε\Kε

u n∑
i=1

pi
∂xi

∂n
− v

n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS, (19)

Kε = Ω ∩ ∂Bε, and

I(2)
ε =

∫
Kε

[
u(X)

n∑
i=1

pi(X −X0)
∂xi

∂n

−v(X −X0)
n∑

i=1

 n∑
j=1

aij(X)
∂u(X)
∂xj

 ∂xi

∂n

 dS. (20)

Denote by dθ the solid angle of Kε with respect to X0. Since the volume
element on Kε is dS = εn−1dθ, Equation (20) becomes

I(2)
ε =

∫
Kε

[
u(X)

n∑
i=1

pi(ε)
∂xi

∂n

−v(ε)
n∑

i=1

 n∑
j=1

aij(X)
∂u(X)
∂xj

 ∂xi

∂n

 εn−1dθ. (21)
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If the solid angle of Kε with respect to X0 tends to β as ε → 0 (i.e.,

lim
ε→0

∫
Kε

dθ = β), then from the mean value theorem for the integral,

lim
ε→0

I(2)
ε = Cβu(X0).

Therefore, Equation (15) is followed. This completes the proof of the theo-
rem.

2

Next, we consider the exterior boundary value problem (12); i.e., the
problem over Ω and the complement of Ω, Ω′ = Rn\Ω, is bounded. In order
to obtain the unique solution to the problem, we also need for u(x) to satisfy
the radiation conditions

u(X)‖∇ v(X)‖ = O
(
|X|−n

)
, v(X)‖∇ u(X)‖ = O

(
|X|−n

)
(22)

as |X| → ∞, where v(X) is the fundamental solution of Mv(X) = 0 and
∇f is the gradient of f .

Similar to Theorem 3, we have the following result on the exterior bound-
ary value problem.

Theorem 4 Let Ω ∈ Rn be an n-dimensional unbounded closed domain
with the bounded complement Ω′ = Rn\Ω, and let the boundary ∂Ω be a
piecewise smooth surface or a simple closed curve with finite length when
n = 2. Suppose that u = u(X) is a function in C2(Ω) that satisfies Lu = g,
and v = v(X) is the fundamental solution of Mv = δ(X −X0), where X0 is
an arbitrarily fixed point in Ω and adjoint differential operators L and M are
defined respectively by (2) and (3). In addition, we assume u(X) satisfies
radiation condition (22).

If X0 ∈ Ω\∂Ω, then the solution of the exterior boundary value problem
(12) at the point X0 is

u(X0) =
∫

Ω
vg dX +

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂n

]
dS

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS. (23)

For the points X0 ∈ ∂Ω, if εn−1
∑n

i=1 pi(ε)∂xi
∂n → C 6= 0 and v(ε)εn−1 → 0

as ε → 0, where ∂xi
∂n is the outer normal derivative of xi on the surface

{X : |X| = ε}, then
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Cβu(X0) =
∫

Ω
vg dX +

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂n

]
dS

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS, (24)

where β = lim
ε→0

∫
Kε

dθ and dθ is the solid angle of Kε with respect to X0.

Here Kε = Ω∩∂Bε; Bε = {X : |X−X0| < ε} is a small ball centered at X0.

Remark 2. Similar to the Remark 1, if the values of u(X) and its normal
derivatives on the boundary ∂Ω are obtained, then expression (23) can be
applied to evaluate all values of u(X0) in the interior of Ω. However, in
boundary value problem (12) we are only given some of the values of u(X)
and some of its normal derivative values on ∂Ω. Hence, we need to calculate
those unknown values on the boundary by using Equation (24). In addition,
If X0 ∈ Rn\Ω, then Mv(X) = 0 for all X ∈ Ω̄. Therefore,

∫
Ω
vg dX +

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂n

]

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂n

 dS = 0. (25)

Combining Equations (14) and (15) or Equations (23) and (24), we have

αu(X0) =
∫

Ω
vg dX +

∫
∂Ω

[
u

n∑
i=1

pi
∂xi

∂ν

]
dS

−
∫

∂Ω

v n∑
i=1

 n∑
j=1

aij(X)
∂u

∂xj

 ∂xi

∂ν

 dS, (26)

where α = 1, if X0 ∈ Ω\∂Ω, and α is a positive real number less than 1, if
X0 ∈ ∂Ω (in particular, α = 1

2 if X0 is on the smooth boundary). Thus, we
obtain an equation about u(X0) and boundary type weighted integrals of u
and ∂u/∂n. Here ∂u/∂n =

∑n
i=1(∂u/∂xi)(∂xi/∂ν) is the outward normal

derivative of u on ∂Ω. Applying a quadrature formula to these boundary
integrals, we obtain an algebraic equation, called the basic algebraic equa-
tion, about u(X0) and values of u and ∂u

∂n at the nodes on ∂Ω. Replacing the
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source point X0 with each node of the BTQF in the basic algebraic equation,
we have a system of linear equations about the values of u and ∂u/∂n at
nodes on ∂Ω. Substituting in the given boundary conditions (i.e., the given
values of u and ∂u/∂n at some nodes on ∂Ω), we can solve for the remaining
unknown values of u and ∂u/∂n at the other nodes on ∂Ω. After finding all
boundary values of u and ∂u/∂n at the nodes, the value of u at any interior
point X0 in Ω can be evaluated from the basic algebraic equation with the
values of u and ∂u/∂n at the nodes on ∂Ω. u(X0) (X0 ∈ Ω\∂Ω) can also be
evaluated directly from (8) by replacing v in (8) with the fundamental so-
lution of Mv = 0 and expressing the boundary integrals in (8) as numerical
quadrature formulas, which are similar to the formula at the end of Section
2.

As an example, we consider the following boundary value problem of the
Helmholtz’s equation 

(∇2 + k)u = 0 in Ω,
u = u on ∂Ω1,
q = ∂u

∂n = q on ∂Ω2,
(27)

where ∇2u = ∂2u
∂x2 + ∂2u

∂y2 and ∂Ω1 ∪ ∂Ω2 = ∂Ω. Obviously, L = ∇2 + k is
a self-conjugate operator. Therefore, M = L = ∇2 + k. The fundamental
solution of Mv = δ(X − X0) is v = v(X,X0) = − j

4H
(2)
0 (kr); here H(2)

0 is
the Hankel function of the second kind of order zero, and r = |X − X0|
denotes the distance from a point X = (x, y) to an arbitrarily fixed source
point X0 = (x0, y0) ∈ Ω. From (26) and observing g = 0 and aij = δij ,
1 ≤ i, j ≤ 2, we have

αu(x0, y0) =
∫

∂Ω
u
∂v

∂n
dS −

∫
∂Ω
v
∂u

∂n
dS, (28)

where α = 1 if (x0, y0) ∈ Ω\∂Ω; α = 1
2 if (x0, y0) ∈ ∂Ω and ∂Ω is smooth.

In (28), since v = v(x, y;x0, y0) = − j
4H

(2)
0 (kr), r = |(x, y) − (x0, y0)|, we

have ∂v
∂n = ∂v

∂n(x, y;x0, y0) = j
4kH

(2)
1 (kr) cos(~r, ~n), where ~r = (x, y), ~n is

the outward normal vector at (x, y) ∈ ∂Ω, and H
(2)
1 is the first order Han-

kel function of the second kind. Assume ∂Ω is defined by the parametric
function c(t) = (x(t), y(t)), 0 ≤ t ≤ 1. The solution of problem (27) for
the two-dimensional scattering problem of electromagnetic wave incident on
an infinitely long circular conducting body was discussed in Yashiro and
Ohkawa [29], Koshiba and Suzuki [25], and Chan, Chui, and He [2] .

We denote (xj , yj) = (x(tj), y(tj)), uj = u(xj , yj) = u(x(tj), y(tj)),
qj = ∂u

∂n(xj , yj) = ∂u
∂n(x(tj), y(tj)), and tj = j

n , j = 1, 2, · · · , n. Thus, u and
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g can be expanded approximately as

u
.=

n∑
j=1

ujφ
1
j (t) and q

.=
n∑

j=1

qjφ
2
j (t),

where φk
j (t), k = 1, 2, are Lagrange interpolation basis functions. We can

choose φk
j (t), k = 1, 2, either as the basis function lj(t) =

∏n
i=1,i6=j

t−ti
tj−ti

or as

some other basis functions. For instance, we can assume that φk
j (t) = φk(t−

j/n), j = 1, · · · , n, and {φk(2nt−2j)}j∈Z , k = 1, 2, are the basis functions of
the optimal spline Lagrange interpolation for the data at the even integers [9].
Here the optimal spline interpolation means the interpolation with a spline
basis function that possesses the highest possible approximation order and
the smallest possible compact support. Thus, we take

φ1(2nt) = −1
8
N3(t− 1) +

1
8
N3(t) +N3(t+ 1)

+N3(t+ 2) +
1
8
N3(t+ 3)− 1

8
N3(t+ 4),

where N3(t) is the B-spline of order 3. Hence, the support of φ1(2nt) is
[−4, 4]. It is easy to understand that φ1(i/n) = δi0 and that the correspond-
ing interpolation on the interval [0,1] with basis {φ1

j (t)} has the optimal
approximation order of O((n)−3). As for φ2(2nt), we assume it is N2(t+ 1),
B-spline of order 2, which satisfies φ2(i/n) = δi0.

Replacing (x0, y0) by (xi, yi) = (x( i
n), y( i

n)), i = 1, · · · , n, from (28), we
have

1
2
ui −

n∑
j=1

uj

∫ 1

0
φ1

j (t)
∂v

∂n
(t,

i

n
) ds(t) = −

n∑
j=1

qj

∫ 1

0
φ2

j (t)v(t,
i

n
) ds(t), (29)

where v(t, i/n) = v(x(t), y(t);x(i/n), y(i/n)) and ∂v/∂n(t, i/n) = ∂v/∂n
(x(t), y(t); x(i/n), y(i/n)).

In order to evaluate the boundary integrals in (29), we expand v and
∂v/∂n in terms of ψ∗mk(t), the periodized version of ψmk(t) = 2m/2ψ(2m−k).
Here ψ(t) is the wavelet associated with the scaling function φ(t) = φ1(nt)
(see [9], [10], [11], [12], and [14]); i.e., ψ(t) =

∑
k q̃kφ(2t − k), where the

coefficients {q̃k} are determined by their two-scale symbol Q̃(z) = 1
2

∑
k q̃kz

k,
z = e−iw/2. From the papers by the author [11] and [12], we have Q̃(z) =
c(−z)
c(z2)

Q(z), where c(z) = −1
8z

−1+ 1
8z

0+z1+z2+ 1
8z

3− 1
8z

4, Q(z) = 1
2

∑
k qkz

k,

z = e−iw/2, and

qk =

{
(−1)k

4

∑3
l=0

(
3
l

)
N6(k + 1− l), if 0 ≤ k ≤ 7,

0, otherwise.
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After finding all boundary integrals in (29), we denote hij =
∫ 1
0 φ

1
j (t)

∂v/∂n(t, i/n) ds(t) +δij/2 and gij =
∫ 1
0 φ

2
j (t) v(t, i/n) ds(t). Thus, (29) can

be written as Hu = Gg, where H = [hij ]1≤i,j≤n, G = [gij ]1≤i,j≤n, u =
(u1, · · · , un), and g = (g1, · · · , gn)T. Substituting the boundary conditions
(i.e., given values of uj and gj on ∂Ω) into the above linear system, we can
solve it for the unknown values of uj and gj .

If (x0, y0) ∈ Ω\∂Ω, from (28), we obtain the value of u at the point
(x0, y0) by using uj and gj on the boundary ∂Ω:

u(x0, y0) =
n∑

j=1

qj

∫ 1

0
φ2

j (t)v(t, t
0) ds(t)−

n∑
j=1

uj

∫ 1

0
φ1

j (t)
∂v

∂n
(t, t0) ds(t).

Thus we obtain the numerical solution of u on the boundary ∂Ω and at any
interior point of Ω.
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