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Abstract

This paper deals with the convergence of the summation of power
series of the form Sb

a(f ;x) =
∑

a≤k≤b f(k)xk, where 0 ≤ a <
b ≤ ∞, and {f(k)} is a given sequence of numbers with k ∈
[a, b) or f(t) a differentiable function defined on [a, b). Here the
summation is found by using the symbolic operator approach
shown in [4] . We will give a different type of the remainder of
the summation formulas. The convergence of the corresponding
power series will be determined consequently. Some examples
such as the generalized Euler’s transformation series will also be
given. In addition, we will compare the convergence of the given
series transforms.
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1 Introduction

In [4], we present a symbolic summation operator with its various ex-
pansions, and construct several summation formulas with estimable re-
mainders for Sb

a(f ; x) =
∑

a≤k≤b f(k)xk, with the aid of some classical
interpolation series due to Newton, Gauss and Everett, respectively,
where 0 ≤ a < b ≤ ∞, and {f(k)} is a given sequence of numbers with
k ∈ [a, b) or f(t) a differentiable function defined on [a, b). In order to
discuss the convergence of the summation formulas, we will give a new
type of remainders.

We now start from the following notations. It is known that the
symbolic operations ∆ (difference), E (displacement) and D (deriva-
tive) play important roles in the Calculus of Finite Differences as well
as in certain topics of Computational Methods. For various classical
results, see e.g., Jordan [6], Milne-Thomson [8], etc. Certainly, the the-
oretical basis of the symbolic methods could be found within the theory
of formal power series, in as much as all the symbolic expressions treated
are expressible as power series in ∆ , E or D, and all the operations
employed are just the same as those applied to formal power series.
For some easily accessible references on formal series, we recommend
Bourbaki [1], Comtet [2] and Wilf [10].

Recall that the operators ∆ , E and D may be defined via the
following relations:

∆f(t) = f(t + 1)− f(t), Ef(t) = f(t + 1), Df(t) =
d

dt
f(t).

Using the number 1 as an identity operator, viz. 1f(t) = f(t), one can
observe that these operators satisfy the formal relations

E = 1 + ∆ = eD, ∆ = E − 1 = eD − 1, D = log(1 + ∆).

Powers of these operators are defined in the usual way. In particular,
one may define for any real number x , viz., Exf(t) = f(t + x).



3

Note that Ekf(0) =
[
Ekf(t)

]
t=0

= f(k), so that any power series of

the form
∑∞

k=0 f(k)xk could be written symbolically as

∑
k≥0

f(k)xk =
∑
k≥0

xkEkf(0) =
∑
k≥0

(xE)kf(0) = (1− xE)−1f(0).

This shows that the symbolic operator (1 − xE)−1 with parameter x
can be applied to f(t) (at t = 0) to yield a power series or a generating
function (GF) for {f(k)}. We shall need several definitions as follows.

Definition 1.1 The expression f(t) ∈ Cm
[a,b) (m ≥ 1) means that f(t)

is a real function continuous together with its mth derivative on [a, b).

Definition 1.2 αk(x) is called an Eulerian fraction and may be ex-
pressed in the form (cf. Comtet [2])

αk(x) =
A(x)

(1− x)k+1
, (x 6= 1),

where Ak(x) is the kth degree Eulerian polynomial having the expression

Ak(x) =
k∑

j=1

A(k, j)xj, A0(x) ≡ 1

with A(k, j) being known as Eulerian numbers, expressible as

A(k, j) =

j∑
i=0

(−1)i

(
k + 1

i

)
(j − i)k, (1 ≤ j ≤ k).

Definition 1.3 δ is Sheppard central difference operator defined by the
relation δf(t) = f

(
t + 1

2

)
− f

(
t− 1

2

)
, so that (cf. Jordan [6])

δ = ∆E−1/2 = ∆/E1/2, δ2k = ∆2kE−k.

Definition 1.4 A sequence {xn} will be called a null sequence if for any
given positive (rational) number ε, there exists an integer n0 such that
for every n > n0 |xn| < ε.

For null sequences we quote the following result from [7] (see Theo-
rem 4 in §43).
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Lemma 1.5 Let {x0, x1, · · · } be a null sequence and suppose the coef-
ficients an,` of the system A = {ai,j : 0 ≤ j ≤ i; i = 0, 1, 2, . . .} satisfy
the two conditions:

(i) Every column contains a null sequence, i.e., for fixed p ≥ 0,
an,p → 0 when n →∞.

(ii) There exists a constant K such that the sum of the absolute
values of the terms in any row, i.e., for every n, the sum |an,0|+ |an,1|+
. . . + |an,n| < K.

Then the sequence formed by the numbers x′n = an,0x0 + an,1x1 +
an,2x2 + · · ·+ an,nxnis also a null sequence.

Obviously, Lemma 1.5 is a consequence of the Toeplitz Theorem (cf.
P.74 in [7]).

Definition 1.6 For any real or complex series
∑∞

k=0 ak, the so-called
Cauchy root is defined by r = limk→∞|ak|1/k. Clearly,

∑∞
k=0 ak converges

absolutely whenever r < 1.

In [4], we have shown in §3 that (1− xE)−1 could be expanded into
series in various ways to derive various symbolic operational formulas
as well as summation formulas for

∑
k≥0 f(k)xk. For the completeness

of the paper, we now cite the result as follows.

Proposition 1.7 Let {f(k)} be a given sequence of (real or complex)
numbers, and let g(t) be infinitely differentiable at t = 0. Then we have
formally

∞∑
k=0

f(k)xk =
∞∑

k=0

xk

(1− x)k+1
∆kf(0) (1.1)

∞∑
k=1

f(k)xk =
∞∑

k=0

(
x

(1− x)2

)k+1 (
δ2kf(1)− xδ2kf(0)

)
(1.2)

∞∑
k=1

f(k)xk =
∞∑

k=0

(
x

(1− x)2

)k+1 (
x−1δ2kf(0)− δ2kf(−1)

)
(1.3)

∞∑
k=0

g(k)xk =
∞∑

k=0

αk(x)

k!
Dkg(0) (1.4)

where we always assume that x 6= 0 and x 6= 1.
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Remark 1.1 We may write (cf. [5] and [9]) the Eulerian fractions αk(x)
as

αk(x) =
k∑

j=0

j!S(k, j)
xj

(1− x)j+1
, (1.5)

where S(k, j) are Stirling numbers of the second kind. Substituting Eq.

(1.5) into Eq. (1.4) and noting j!
∑∞

k=j S(k, j)Dk

k!
= (eD − 1)j = ∆j (cf.

[1] and [4]) yields

∞∑
k=0

g(k)xk =
∞∑

k=0

αk(x)

k!
Dkg(0)

=
∞∑

k=0

k∑
j=0

j!

k!
S(k, j)

xj

(1− x)j+1
Dkg(0)

=
∞∑

j=0

xj

(1− x)j+1

(
j!

∞∑
k=j

S(k, j)
Dk

k!

)
g(0)

=
∞∑

j=0

xj

(1− x)j+1
∆jg(0),

which is the series expansion (1.1). Hence, in this paper, we only discuss
the convergence of (1.1)-(1.3).

We shall give a new type of remainder in Section 2 for each of the
summation formulas shown in the series transforms in Proposition 1.7.
In Section 3, we shall discuss the convergence of the summation for-
mulas by using the established remainders. Some examples such as the
generalized Euler’s transformation series will also be given. In addition,
we will compare the convergence of the given series transforms.

2 Summation Formulas with Remainders

In this section we will establish three summation formulas with remain-
ders.

Theorem 2.1 Let {f(k)} be a given sequence of numbers (real or com-
plex). Then we have formally
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∞∑
k=0

f(k)xk =
n−1∑
k=0

xk

(1− x)k+1
∆kf(0)

+
xn

(1− x)n

∞∑
`=0

x`∆nf(`). (2.1)

∞∑
k=1

f(k)xk =
n−1∑
k=0

(
x

(1− x)2

)k+1 (
δ2kf(1)− xδ2kf(0)

)
+

(
x

(1− x)2

)n ∞∑
`=1

x`δ2nf(`) (2.2)

∞∑
k=1

f(k)xk =
n−1∑
k=0

(
x

(1− x)2

)k+1 (
x−1δ2kf(0)− δ2kf(−1)

)
+

(
x

(1− x)2

)n ∞∑
`=0

x`δ2nf(`). (2.3)

where we always assume that x 6= 0.

Proof. From Eq. (1.1) we obtain

(1− xE)−1 = (1− x− x∆)−1 = (1− x)−1

(
1− x

1− x
∆

)−1

= (1− x)−1

{
n−1∑
`=0

(
x

1− x

)`

∆` +

(
x

1−x
∆
)n

1−
(

x
1−x

∆
)}

=
n−1∑
`=0

x`

(1− x)`+1
∆` +

(
x

1− x

)n
∆n

1− xE

=
n−1∑
`=0

x`

(1− x)`+1
∆` +

(
x

1− x

)n ∞∑
`=0

x`E`∆n.

Since E`∆nf(0) = ∆nE`f(0) = ∆nf(`), applying operator (1 − xE)−1

and the rightmost operator shown in the above equalities to f(t)|t=0

yields Eq. (2.1).
Similarly, we can derive formula (2.2) formally as follows. From Eq.

(1.2), we have
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∞∑
k=1

xkf(k)

=
n−1∑
k=1

(
x

(1− x)2

)k+1 (
δ2kf(1)− xδ2kf(0)

)
+

∞∑
k=n

(
x

(1− x)2

)k+1

∆2kE−k(E − x)f(0).

Applying ∆ = E − 1 to the last series yields

∞∑
k=n

(
x

(1− x)2

)k+1

∆2kE−k(E − x)f(0)

=
∞∑

k=0

(
x

(1− x)2

)k+n+1(
∆2

E

)k+n

(E − x)f(0)

=

(
x

(1− x)2

)n+1(
∆2

E

)n ∞∑
k=0

(
x

(1− x)2

)k (
∆2

E

)k

(E − x)f(0)

=

(
x

(1− x)2

)n+1(
∆2

E

)n
E − x

1− x
(1−x)2

∆2

E

f(0)

=

(
x

(1− x)2

)n(
∆2

E

)n
x(E − x)

(1− x)2 − x∆2

E

f(0)

=

(
x

(1− x)2

)n(
∆2

E

)n
Ex(E − x)

(1− x)2E − x(E − 1)2
f(0)

=

(
x

(1− x)2

)n(
∆2

E

)n
Ex

1− xE
f(0)

=

(
x

(1− x)2

)n ∞∑
k=1

xkδ2nf(k),

which implies Eq. (2.2). Eq. (2.3) can be derived by using a similar
argument.

Remark 2.1 In Eq. (2.1), if we assume x = −1, then we have the
following Euler’s series transform
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∞∑
k=0

xkf(k) =
n−1∑
k=0

(−1)k

2k+1
∆kf(0) +

(−1)n

2n

∞∑
`=0

(−1)`∆nf(`). (2.4)

Hence, we may call (2.1) the generalized Euler’s series transform, which
can be used to accelerate the series convergence.

We now use Theorem 2.1 to discuss the convergence of the transfor-
mation series (2.1)-(2.3).

Theorem 2.2 Let {f(k)} be a given sequence of numbers (in R or C),
and let θ = lim

k→∞
|f(k)|1/k. Then for any given x with x 6= 0 we have the

convergent expressions (2.1), (2.2) and (2.3), provided that θ < 1/|x|.

Proof. Suppose that the condition θ < 1/|x| (x 6= 0) is fulfilled, so that
θ|x| < 1. Hence the convergence of the series on the left-hand side of
(2.1)-(2.3) is obvious in accordance with the Cauchy’s root test.

To prove the convergence of the right-hand side of (2.1), it is suf-
ficient to show that

∑∞
`=0 x`∆nf(`) is absolutely convergent. Choose

ρ > θ such that

θ|x| < ρ|x| < 1.

Thus, for large k we have f(k)|1/k < ρ, i.e., |f(k)| < ρk. Consequently
we have, for large `

|∆nf(`)|1/` ≤

(
n∑

j=0

(
n

j

)
|f(` + j)|

)1/`

≤

(
n∑

j=0

(
n

j

)
ρ`+j

)1/`

= ρ(1 + ρ)n/` → ρ

as ` →∞. Thus

lim
`→∞

∣∣x`∆nf(`)
∣∣1/` ≤ ρ|x| < 1,

so that the series on the right-hand side of (2.1) is also convergent ab-
solutely.

The absolute convergence of the right-hand side series in (2.2) and
(2.3) can be proved similarly. The only difference is to estimate |δ2nf(`)|1/`

which can be done as follows under the same condition θ < 1/|x|.
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∣∣δ2nf(`)
∣∣1/`

=
∣∣∆2nf(`− n)

∣∣1/`

≤

(
2n∑

j=0

(
2n

j

)
|f(`− n + j)|

)1/`

≤

(
2n∑

j=0

(
2n

j

)
ρ`−n+j

)1/`

= ρ1−n/`(1 + ρ)n/` → ρ

as ` →∞. It follows that

lim
`→∞

∣∣x`δ2nf(`)
∣∣1/` ≤ ρ|x| < 1,

which implies the absolute convergence of the right-hand side series of
both (2.2) and (2.3).

The argument in Theorem 2.2 applies to negative values of x with
x ≥ −1. Thus for x = −1 we have the following corollary.

Corollary 2.3 Let lim
k→∞

|f(k)|1/k < 1. Then we have the convergent

series

∞∑
k=0

(−1)kf(k) =
n−1∑
k=0

(−1)k ∆kf(0)

2k+1

+
(−1)n

2n

∞∑
`=0

(−1)`∆nf(`) (2.5)

∞∑
k=0

(−1)kf(k) =
n−1∑
k=0

(−1)k+1 δ2kf(1) + δ2kf(0)

4k+1

+
(−1)n

4n

∞∑
`=1

(−1)`δ2nf(`) (2.6)

∞∑
k=0

(−1)kf(k) =
n−1∑
k=0

(−1)k δ2kf(0) + δ2kf(−1)

4k+1

+
(−1)n

4n

∞∑
`=0

(−1)`δ2nf(`) (2.7)

The condition shown in Theorem 2.2 can be replaced by the following
weaker condition.
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Theorem 2.4 Let {f(k)} be a given sequence of numbers (real or com-
plex) such that

∑∞
k=0 f(k)xk is convergent. Then we have convergent

expressions (2.1), (2.2), and (2.3) for every x < 0.

Proof. We write the remainder of expression (2.1) as follows.

Rn :=
xn

(1− x)n

∞∑
`=0

x`∆nf(`)

=
xn

(1− x)n

∞∑
`=0

n∑
j=0

(−1)n−jx`

(
n

j

)
f(j + `)

=
(−x)n

(1− x)n

n∑
j=0

(
n

j

) ∞∑
`=0

(−1)jx`

(
n

j

)
f(j + `)

=
(−x)n

(1− x)n

n∑
j=0

(−x)−j

(
n

j

) ∞∑
`=j

x`f(`) =
(−x)n

(1− x)n

n∑
j=0

(−x)−j

(
n

j

)
xj,

where xj =
∑∞

`=j x`f(`) (0 ≤ j ≤ n). Since
∑∞

`=0 x`f(`) converges, xj

is the term of a null sequence (see Definition 1.4). To apply Lemma 1.5
here, we consider the coefficients

an,j :=
(−x)n

(1− x)n
(−x)−j

(
n

j

)
.

Hence, if j is fixed, for every x ∈ [−1, 0) we have an,j → 0 as n → ∞
because of

|an,j| =
|x|n−j

(1− x)n

(
n

j

)
<

nj

(1− x)n

and 1/(1 − x) < 1, and for every x < −1 we also have an,j → 0 when
n →∞, seeing that it is

|an,j| =
|x|n−j

(1− x)n

(
n

j

)
<

(
|x|

1− x

)n

nj

and |x/(1 − x)| < 1. In addition, for every n and for every x < 0 we
have

n∑
j=0

|an,j| =
1

(1− x)n

n∑
j=0

(−x)n−j

(
n

j

)
= 1.
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Therefore, from Lemma 1.5, we find that Rn is also the term of a null
sequence, so the series on the right-hand side of (2.5) converges for every
x < 0. Using the same argument, we can show the convergence of the
series on the right-hand side of Eqs. (2.6) and (2.7) for every x < 0.

Remark 2.2 If x < 0, the convergence rate of the right-hand side
series of either (2.2) or (2.3) is faster than the convergence rate of the
right-hand series of (2.1) because the rate of the former two series are
O((x/(1− x)2)n) while the rate of the latter is O((x/(1− x))n), where
|x/(1− x)2| < |x/(1− x)| < 1.

It is easy to see that the convergence of the series shown in (2.1)-
(2.3) depends on both the property of f and the range of x (i.e., the
convergence interval). From Theorems 2.2 and 2.4, we find that to en-
sure the convergence, more stringent requirements on f allow for weaker
demands on the range of x, and the reverse is also true. However, the
expressions of (2.1)-(2.3) show that the largest possible convergence in-
terval for x is x < 1/2. To prove it, we need an alternate approach that
will be shown in the next section.

3 An alternate approach for the conver-

gence

We will give other convergence conditions for series (2.1)-(2.3). The
series can be derived with the aid of the symbolic computation or more
formally with the use of some identities, in which the largest possible
convergence intervals for x can be shown.

Theorem 3.1 Let {f(k)} be a given sequence of numbers (real or com-
plex). Then we have formally Eq. (2.1) for every x < 1/2, Eq. (2.2) for
every x > 3+2

√
2 or x < 3−2

√
2, and Eq. (2.3) for every x > 3+2

√
2

or x < 3− 2
√

2 and x 6= 0.

Proof. From Eq. (1.1) we obtain

∞∑
k=0

xkf(k) =
∞∑

k=0

xk

(1− x)k+1
∆kf(0)

=
n−1∑
k=0

xk

(1− x)k+1
∆kf(0) +

∞∑
k=n

xk

(1− x)k+1
∆kf(0).
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Noting ∆ = E − 1, we write the last summation as

∞∑
k=n

xk

(1− x)k+1
∆kf(0)

=
∞∑

k=0

xn+k

(1− x)n+k+1
∆n((E − 1)kf(0))

=
∞∑

k=0

xn+k

(1− x)n+k+1
∆n

(
k∑

`=0

(
k

`

)
E`(−1)k−`f(0)

)

=
xn

(1− x)n+1

∞∑
k=0

k∑
`=0

xk

(1− x)k
(−1)k−`

(
k

`

)
∆nf(`)

=
xn

(1− x)n+1

∞∑
`=0

(−1)`∆nf(`)

(
∞∑

k=`

(−x)k

(1− x)k

(
k

`

))

=
xn

(1− x)n+1

∞∑
`=0

(−1)`∆nf(`)

(
∞∑

k=0

(
−x

(1− x)

)k+`(
k + `

`

))
.(3.1)

By using the well-known summation formula (see e.g., [3], (1.3))

∞∑
`=0

zk

(
k + `

`

)
=

1

(1− z)k+1
, |z| < 1,

we change the last series in (3.1) to be

xn

(1− x)n+1

∞∑
`=0

∆nf(`)

(
x

(1− x)

)`
1(

1− −x
1−x

)`+1
,

for x < 1/2, which is equivalent to the remainder shown in (2.1).
We now derive formula (2.2). From Eq. (1.2), we have

∞∑
k=1

f(k)xk =
n−1∑
k=1

(
x

(1− x)2

)k+1 (
δ2kf(1)− xδ2kf(0)

)
+

∞∑
k=n

(
x

(1− x)2

)k+1

∆2kE−k(E − x)f(0). (3.2)
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Applying ∆ = E − 1 to the last series yields

∞∑
k=n

(
x

(1− x)2

)k+1

∆2kE−k(E − x)f(0)

=
∞∑

k=0

(
x

(1− x)2

)n+k+1

∆2nE−n−k(E − x)(E − 1)2kf(0)

=
∞∑

k=0

(
x

(1− x)2

)n+k+1

∆2nE−n(E − x)

(
2k∑

u=0

(
2k

u

)
Eu−k(−1)u

)
f(0)

=
∞∑

k=0

(
x

(1− x)2

)n+k+1

∆2nE−n(E − x)

(
k∑

`=−k

(
2k

` + k

)
E`(−1)`+k

)
f(0).

We split the last summation of the rightmost equality and obtain

∞∑
k=n

(
x

(1− x)2

)k+1

∆2kE−k(E − x)f(0) = φ1(f) + φ2(f),

where

φ1(f)

:=
∞∑

k=0

(
x

(1− x)2

)n+k+1

∆2nE−n(E − x)

(
0∑

`=−k

(
2k

` + k

)
E`(−1)`+k

)
f(0)

=

(
x

(1− x)2

)n+1 0∑
`=−∞

(−1)`δ2nE`(E − x)f(0)
∞∑

k=−`

(
2k

k + `

)
(−1)k

(
x

(1− x)2

)k

=

(
x

(1− x)2

)n+1 0∑
`=−∞

(−1)`δ2nE`(E − x)f(0)
∞∑

k=0

(
2k − 2`

k

)(
−x

(1− x)2

)k−`

and
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φ2(f)

:=
∞∑

k=0

(
x

(1− x)2

)n+k+1

∆2nE−n(E − x)

(
k∑

`=1

(
2k

` + k

)
E`(−1)`+k

)
f(0)

=

(
x

(1− x)2

)n+1 ∞∑
`=1

(−1)`δ2nE`(E − x)f(0)
∞∑

k=`

(
2k

k − `

)
(−1)k

(
x

(1− x)2

)k

=
∞∑

`=1

(−1)`δ2n(f(` + 1)− xf(`))
∞∑

k=0

(
2k + 2`

k

)(
−x

(1− x)2

)k+`

.

We now apply the Polya and Szegö identity (see e.g., [3] (1.120))

∞∑
k=0

(
a + bk

k

)
zk =

(1− x)a+1

1− (1− b)x

to φ1(f) and φ2(f) with z = −x/(1 − x)b, b = 2, and a = 2` and
−2`, respectively, where |z| < |(b − 1)b−1/bb| = 1/4 or equivalently
x > 3 − 2

√
2 or x < 3 − 2

√
2. Here, we need x 6= −1. However, this

limitation will be omitted after we combine the resulting expressions of
φ1(f) and φ2(f) later.

Substituting the Polya and Szegö identity into the last expressions
of φ1(f) and φ2(f) yields respectively

φ1(f)

=

(
x

(1− x)2

)n+1 0∑
`=−∞

(−1)`δ2n(f(` + 1)− xf(`))

(
−x

(1− x)2

)−`
(1− x)−2`+1

1 + x

=

(
x

(1− x)2

)n+1 ∞∑
`=0

(−1)`δ2n(f(−` + 1)− xf(−`))
(1− x)(−x)`

1 + x

and

φ2(f)

=

(
x

(1− x)2

)n+1 ∞∑
`=1

(−1)`δ2n(f(` + 1)− xf(`))

(
−x

(1− x)2

)`
(1− x)2`+1

1 + x

=

(
x

(1− x)2

)n+1 ∞∑
`=1

(−1)`δ2n(f(` + 1)− xf(`))
(1− x)(−x)`

1 + x
.
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Therefore,

∞∑
k=n

(
x

(1− x)2

)k+1

∆2kE−k(E − x)f(0) = φ1(f) + φ2(f)

=
xn+1

(1 + x)(1− x)2n+1

{
∞∑

`=0

x`δ2n(f(−` + 1)− xf(−`))

+
∞∑

`=1

x`δ2n(f(` + 1)− xf(`))

}

=
x

1− x2

(
x

(1− x)2

)n
{

∞∑
`=1

x`δ2n(f(−` + 1)− xf(−`))

+
∞∑

`=0

x`δ2n(f(` + 1)− xf(`))

}

=
x

1− x2

(
x

(1− x)2

)n
{

∞∑
`=0

x`+1δ2nf(−`)−
∞∑

`=1

x`+1δ2nf(−`)

+
∞∑

`=1

x`−1δ2nf(`)−
∞∑

`=0

x`+1δ2nf(`)

}

=

(
x

(1− x)2

)n ∞∑
`=1

x`δ2nf(`). (3.3)

The rightmost equality shows that the limitation x 6= −1 is no longer
needed. Hence, we obtain (2.2), which holds for all x that satisfies
either x > 3 + 2

√
2 or x < 3− 2

√
2. Similarly, we can derive (2.3) and

it completes the proof of Theorem 3.1.

To give a compressed form of the remainders of the transform series
shown as (2.1)-(2.3), we need the following lemma (see also in [4]).

Lemma 3.2 (Mean Value Theorem) Let
∑∞

n=0 anx
n with an ≥ 0 be a

convergent series for x ∈ (0, 1). Suppose that φ(t) is a bounded con-
tinuous function on (−∞,∞), and {tn} is a sequence of real numbers.
Then there is a number ξ ∈ (−∞,∞) such that

∞∑
n=0

anφ(tn)xn = φ(ξ)
∞∑

n=0

anx
n.
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Theorem 3.3 Let f(t) be a bounded continuous function on (−∞,∞).
Then for x < 1/2

∞∑
k=0

f(k)xk =
n−1∑
k=0

xk

(1− x)k+1
∆kf(0) +

xn

(1− x)n+1
∆nf(ξ), (3.4)

where ξ ∈ (−∞,∞).
For x > 3 + 2

√
2 or x < 3− 2

√
2

∞∑
k=1

f(k)xk =
n−1∑
k=0

(
x

(1− x)2

)k+1 (
δ2kf(1)− xδ2kf(0)

)
+

xn+1

(1− x)2n+1
δ2nf(ξ), (3.5)

where ξ ∈ (−∞,∞).
Finally, for x > 3 + 2

√
2 or x < 3− 2

√
2 and x 6= 0, we have

∞∑
k=1

f(k)xk =
n−1∑
k=0

(
x

(1− x)2

)k+1 (
x−1δ2kf(0)− δ2kf(−1)

)
+

xn

(1− x)2n+1
δ2nf(ξ), (3.6)

where ξ ∈ (−∞,∞).

Proof. Clearly, (3.4)-(3.6) are merely consequences of Theorem 3.1 and
Lemma 3.2.

Corollary 3.4 Let f(t) be a uniformly bounded continuous function on
(−∞,∞). Then for x < 1/2

∞∑
k=0

f(k)xk =
∞∑

k=0

xk

(1− x)k+1
∆kf(0). (3.7)

For x > 3 + 2
√

2 or x < 3− 2
√

2 and x 6= −1

∞∑
k=1

f(k)xk =
∞∑

k=0

(
x

(1− x)2

)k+1 (
δ2kf(1)− xδ2kf(0)

)
. (3.8)
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Finally, for x > 3 + 2
√

2 or x < 3− 2
√

2 and x 6= −1 and x 6= 0, we
have

∞∑
k=1

f(k)xk =
∞∑

k=0

(
x

(1− x)2

)k+1 (
x−1δ2kf(0)− δ2kf(−1)

)
. (3.9)

Proof. Taking limit n → ∞ in Eqs. (3.4)-(3.6) yields Eqs. (3.7)-(3.9),
respectively.
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