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Abstract

Explicit formulae, in terms of Bernstein-Bézier coefficients, of the Fourier
transform of bivariate polynomials on a triangle and univariate polynomials
on an interval are derived in this paper. Examples are given and discussed
to illustrate the general theory. Finally, this consideration is related to the
study of refinement masks of spline function vectors.
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1 Introduction

The objective of this paper is to present a compact formula of the Fourier trans-
form of bivariate polynomials on a triangle and univariate polynomials on a
bounded interval in terms of their Bernstein-Bézier (BB) coefficients (see, for
example, [3, p. 58]). Of course the BB coefficients are formulated, as usual, in
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2 Fourier transform of BB polynomials on triangles

terms of the Barycentric coordinates, as opposed to the Cartesian coordinates
x = (x1, x2) for x ∈ R2 or x ∈ R. We will focus on the bivariate setting and
only consider the univariate formulae as simple consequences. In this regard,
although our method of derivation can be extended to multivariate polynomials
on simplexes, we have decided to present the detailed derivation only for bivari-
ate polynomials, since the motivation of this research is the study of subdivision
masks [1] for spline curves and surfaces.

Let Pn(x), x ∈ R2, x = (x1, x2), be a Bernstein-Bézier (or Bézier polynomial
(see, for example, [3, p. 58])) on a triangle 4A1A2A3 with vertices Ai = (ai, bi),
where i = 1, 2, 3. We write Pn(x) in terms of the Barycentric coordinates (u, v, w)
of 4A1A2A3 as follows.

Pn(x) ≡ Pn(x1, x2) =
∑

0≤j,k,l≤n, j+k+l=n

aj,k,l
n!

j!k!l!
ujvkwl, (1.1)

where (u, v, w) is the Barycentric coordinate of x = (x1, x2) ∈ 4A1A2A3 (i.e.,
(x1, x2) = (a1u+a2v +a3w, b1u+ b2v + b3w), 0 ≤ u, v, w ≤ 1 and u+ v +w = 1),
with Bernstein-Bézier (BB) coefficients aj,k,l.

For (m, s) ∈ {(1, 2), (1, 3), (2, 3)}, the forward-backward and backward-forward
operators, 4m,s and 5m,s respectively, are defined on the sequences {aj,k,l}j,k,l

with multi-indices j, k, l by:

412aj,k,l := aj+1,k−1,l − aj,k,l, 512aj,k,l := aj,k,l − aj−1,k+1,l,

413aj,k,l := aj+1,k,l−1 − aj,k,l, 513aj,k,l := aj,k,l − aj−1,k,l+1, (1.2)
423aj,k,l := aj,k+1,l−1 − aj,k,l, 523aj,k,l := aj,k,l − aj,k−1,l+1;

and in addition, we set 4k
m,s := 4m,s

(
4k−1

m,s

)
and 5k

m,s := 5m,s

(
5k−1

m,s

)
for

k = 1, 2, · · · .
For a triangle T = 4A1A2A3, we use VT to denote its area, given by

VT :=
1
2

∣∣∣∣∣∣det

 1 1 1
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ .
The main result of this paper can be stated as follows.

Theorem 1.1 The Fourier transform of Pn(x) as in (1.1) over a triangle 4A1A2A3

has the explicit formulation:
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P̂n(ξ) :=
∫
4A1A2A3

Pn(x)e−iξ·xdx

= 2VT

n∑
`=0

n−∑̀
k=0

(−1)k+` n!
(n− k − `)!

1
γ`+1

(1.3)

×
{

1
αk+1

(
5k

125`
23an−`,`,0 e−i(a1ξ1+b1ξ2) −4k

125`
23a0,n,0 e−i(a2ξ1+b2ξ2)

)
− 1

βk+1

(
5k

134`
23an−`,0,` e−i(a1ξ1+b1ξ2) −4k

134`
23a0,0,n e−i(a3ξ1+b3ξ2)

)}
,

where ξ = (ξ1, ξ2), and α := i
(
(a2−a1)ξ1 +(b2− b1)ξ2

)
, β := i

(
(a3−a1)ξ1 +(b3−

b1)ξ2

)
, γ := i

(
(a3 − a2)ξ1 + (b3 − b2)ξ2

)
.

Of course the above formulation is valid for univariate polynomials, simply
by setting w = 0, namely,

pn(x) =
∑

0≤j,k≤n,j+k=n

bj,k
n!

j!k!
ujvk, (1.4)

with u = (x − b)/(a − b), v = (x − a)/(b − a), and x ∈ [a, b]. Then, by using 4
and 5 to denote the forward-backward and backward-forward operators

4bj,k := bj+1,k−1 − bj,k; 5bj,k := bj,k − bj−1,k+1, (1.5)

and 4k := 4
(
4k−1

)
; 5k := 5

(
5k−1

)
, for k = 1, 2, · · · , we have, as an im-

mediate consequence of Theorem 1.1, the following formulation of the Fourier
transform of univariate polynomials.

Corollary 1.2 The Fourier transform of pn(x) in (1.4) over a bounded interval
[a, b] has the explicit formulation:

p̂n(ξ) :=
∫ b

a
pn(x)e−ixξdx

= (b− a)e−ibξ
n∑

k=0

(−1)k n!
(n− k)!

1
(i(b− a)ξ)k+1

(
5kbn,0 −4kb0,n

)
.(1.6)

We will present the proof of Theorem 1.1 in the next section. In Section 3,
we will compute the Fourier transforms of certain minimum-supported bivari-
ate splines to illustrate the general theory and introduce the Fourier transform
approach to computing subdivision (or refinement) masks.
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2 Proof of Theorem

Certain properties of the hypergeometric functions, along with the notion of
forward-backward and backward-forward operators defined as in (1.5), will be
used to prove Theorem 1.1. More precisely, the integral of the Fourier transform
P̂n of a bivariate polynomial Pn restricted to the triangle is related to the hy-
pergeometric function 1F1, called a confluent hypergeometric function (see, for
example, [10]), defined by

1F1(α1, β1; z) := 1+
α1

β1

z

1!
+

α1(α1 + 1)
β1(β1 + 1)

z2

2!
+

α1(α1 + 1)(α1 + 2)
β1(β1 + 1)(β1 + 2)

z3

3!
+· · · , z ∈ C,

where α1, β1 ∈ C with β1 /∈ {0,−1,−2, · · · }, so that

1F1(0, β1; z) = 1, 1F1(β1, β1; z) = ez.

We need the following two properties of 1F1(α1, β1; z) that are valid for all non-
negative integers α1 and β1:

(i) For all integers k ≥ 0,m > 0,

z

m
1F1(k + 1,m + 1; z) = 1F1(k + 1,m; z)− 1F1(k, m; z), z ∈ C; (2.1)

(ii) For all integers k ≥ 0,m ≥ 0, 0 ≤ u ≤ 1, and ρ ∈ C,

∫ 1−u

0
νk(1− u− ν)meρνdν =

k!m!
(k + m + 1)!1

F1(k + 1, k + m + 2; (1− u)ρ). (2.2)

The interested reader is referred to [10, p. 1013] and [10, p. 343] for more details.
To prove Theorem 1.1, we need the following result.

Lemma 2.1 For any integer s ≥ 0, real numbers bm,j, and ρ, z ∈ C,

s∑
m=0

bm,s−m
1

(s + 1)!
zs+1

1F1(m + 1, s + 2; ρz)

=
s∑

`=0

(−1)`

ρ`+1
5`bs,0

zs−`

(s− `)!
eρz −

s∑
`=0

(−1)`

ρ`+1
4`b0,s

zs−`

(s− `)!
. (2.3)
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Proof. By applying (2.1), we see that

Left-hand side of (2.3) =
s∑

m=0

bm,s−m
zs

ρ · s!
(
1F1(m + 1, s + 1; ρz)− 1F1(m, s + 1; ρz)

)
=

s∑
m=0

bm,s−m
zs

ρ · s!1
F1(m + 1, s + 1; ρz)−

s∑
m=0

bm,s−m
zs

ρ · s!1
F1(m, s + 1; ρz)

= bs,0
zs

ρ · s!1
F1(s + 1, s + 1; ρz) +

1
ρ

s−1∑
m=0

bm,s−m
zs

s! 1F1(m + 1, s + 1; ρz)

−b0,s
zs

ρ · s!1
F1(0, s + 1; ρz)−

s∑
m=1

bm,s−m
zs

ρ · s!1
F1(m, s + 1; ρz)

= bs,0
zs

ρ · s!
eρz +

1
ρ

s−1∑
m=0

bm,s−m
zs

s! 1F1(m + 1, s + 1; ρz)

−b0,s
zs

ρ · s!
− 1

ρ

s−1∑
m=0

bm+1,s−m−1
zs

s! 1F1(m + 1, s + 1; ρz)

=
1
ρ
bs,0

zs

s!
eρz − 1

ρ
b0,s

zs

s!
+

(−1)
ρ

s−1∑
m=0

4bm,s−m
zs

s! 1F1(m + 1, s + 1; ρz).

Now, repeating this process, we may conclude that the left-hand side of (2.3) is
given by

(
1
ρ
bs,0

zs

s!
+

(−1)
ρ2

4bs−1,1
zs−1

(s− 1)!
+ · · ·+ (−1)`

ρ`+1
4`bs−`,`

zs−`

(s− `)!
+ · · ·+ (−1)s

ρs+1
4sb0,s

)
eρz

−
(

1
ρ
b0,s

zs

s!
+

(−1)
ρ2

4b0,s
zs−1

(s− 1)!
+ · · ·+ (−1)`

ρ`+1
4`b0,s

zs−`

(s− `)!
+ · · ·+ (−1)s

ρs+1
4sb0,s

)
=

s∑
`=0

(−1)`

ρ`+1
5`bs,0

zs−`

(s− `)!
eρz −

s∑
`=0

(−1)`

ρ`+1
4`b0,s

zs−`

(s− `)!
,

where the last equality follows from the identity 4`bs−`,` = 5`bs,0. Hence, we
obtain (2.3).

We are now ready to prove the main result of the paper.
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Proof of Theorem 1.1. By simple calculations, we have

P̂n(ξ) =
∫

∆A1A2A3

e−iξ·xPn(x)dx = 2VT

n∑
j=0

n−j∑
k=0

aj,k,n−j−k
n!

j!k!(n− j − k)!

×
∫ 1

0

∫ 1−u

0
e−iξ1

(
a3+(a1−a3)u+(a2−a3)v

)
e−iξ2

(
b3+(b1−b3)u+(b2−b3)v

)
ujvk(1− u− v)n−j−kdvdu

= 2VT e−i(a3ξ1+b3ξ2)
n∑

j=0

n−j∑
k=0

aj,k,n−j−k
n!

j!k!(n− j − k)!

∫ 1

0
eβuuj

∫ 1−u

0
eγvvk(1− u− v)n−j−kdvdu

= 2VT e−i(a3ξ1+b3ξ2)
n∑

j=0

n−j∑
k=0

aj,k,n−j−k
n!

j!(n− j + 1)!

×
∫ 1

0
eβuuj(1− u)n−j+1

1F1(k + 1, n− j + 2; (1− u)γ)du

= 2VT n!e−i(a3ξ1+b3ξ2)
n∑

j=0

∫ 1

0
eβu uj

j!

×

{
n−j∑
k=0

aj,k,n−j−k
1

(n− j + 1)!
(1− u)n−j+1

1F1(k + 1, n− j + 2; (1− u)γ)

}
du,

where the third equality follows from (2.2). Applying Lemma 2.1 to the summa-
tion inside the curly brackets of the rightmost equality with z = 1 − u, ρ = γ,
and s = n − j, bm,` = aj,m,` (so that 4bm,` = 423aj,m,`,5bm,` = 523aj,m,`), we
see that

P̂n(ξ) = 2VT n!e−i(a3ξ1+b3ξ2)
n∑

j=0

∫ 1

0
eβu uj

j!

×

{
n−j∑
`=0

(−1)`

γ`+1
5`

23aj,n−j,0
(1− u)n−j−`

(n− j − `)!
e(1−u)γ −

n−j∑
`=0

(−1)`

γ`+1
4`

23aj,0,n−j
(1− u)n−j−`

(n− j − `)!

}
du
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= 2VT n!e−i(a2ξ1+b2ξ2)
n∑

j=0

n−j∑
`=0

(−1)`

γ`+1
5`

23aj,n−j,0
1

j!(n− j − `)!

∫ 1

0
uj(1− u)n−j−`eαudu

−2VT n!e−i(a3ξ1+b3ξ2)
n∑

j=0

n−j∑
`=0

(−1)`

γ`+1
4`

23aj,0,n−j
1

j!(n− j − `)!

∫ 1

0
uj(1− u)n−j−`eβudu

= 2VT n!e−i(a2ξ1+b2ξ2)
n∑

j=0

n−j∑
`=0

(−1)`

γ`+1
5`

23aj,n−j,0
1

(n− ` + 1)!1
F1(j + 1, n− ` + 2;α)

−2VT n!e−i(a3ξ1+b3ξ2)
n∑

j=0

n−j∑
`=0

(−1)`

γ`+1
4`

23aj,0,n−j
1

(n− ` + 1)!1
F1(j + 1, n− ` + 2;β)

= 2VT n!e−i(a2ξ1+b2ξ2)
n∑

`=0

(−1)`

γ`+1

n−∑̀
j=0

5`
23aj,n−j,0

1
(n− ` + 1)!1

F1(j + 1, n− ` + 2;α)

−2VT n!e−i(a3ξ1+b3ξ2)
n∑

`=0

(−1)`

γ`+1

n−∑̀
j=0

4`
23aj,0,n−j

1
(n− ` + 1)!1

F1(j + 1, n− ` + 2;β).

Finally, applying Lemma 2.1 to the first and second terms in the above equa-
tion with s = n − `, bm,k = 5`

23am,k+`,0, z = 1, ρ = α and s = n − `, bm,k =
5`

23am,0,k+`, z = 1, ρ = β, respectively, we have

P̂n(ξ) = 2VT n!e−i(a2ξ1+b2ξ2)
n∑

`=0

(−1)`

γ`+1

×

{
n−∑̀
k=0

(−1)k

αk+1
5k

125`
23an−`,`,0

eα

(n− `− k)!
−

n−∑̀
k=0

(−1)k

αk+1
4k

125`
23a0,n,0

1
(n− `− k)!

}

−2VT n!e−i(a3ξ1+b3ξ2)
n∑

`=0

(−1)`

γ`+1

×

{
n−∑̀
k=0

(−1)k

βk+1
5k

134`
23an−`,0,`

eβ

(n− `− k)!
−

n−∑̀
k=0

(−1)k

βk+1
4k

134`
23a0,0,n

1
(n− `− k)!

}

= 2VT

n∑
`=0

n−∑̀
k=0

(−1)k+` n!
(n− k − `)!

1
γ`+1

×
{

1
αk+1

(
5k

125`
23an−`,`,0 e−i(a1ξ1+b1ξ2) −4k

125`
23a0,n,0 e−i(a2ξ1+b2ξ2)

)
− 1

βk+1

(
5k

134`
23an−`,0,` e−i(a1ξ1+b1ξ2) −4k

134`
23a0,0,n e−i(a3ξ1+b3ξ2)

)}
,
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as desired.
Remark 1. By applying Lemma 2.1 and following the above procedure,

the main result in this paper can be extended to higher dimensions. That is,
explicit formulae of the Fourier transform of Bernstein-Bézier representations of
multivariate polynomials on simplexes can be derived in a similar way.

3 Application to refinable bivariate splines on triangles

Refinable spline functions (see, for example, [1] for a precise definition) are in-
strumental to surface subdivisions. For example, the bi-cubic B-spline is used in
the Catmull-Clark scheme [2] and the three-direction box-spline B222 is used in
the Loop scheme [11]. (See, for example, [3, pp. 15-18] for the definition of box
splines and their direction sets.) The simple reasons are that firstly, the refine-
ment masks of such spline functions immediately give the so-called “local aver-
aging rules” for the subdivision schemes; and secondly, the spline representations
are precisely the subdivision surfaces. In the Fourier domain, the refinement mask
P of a refinable function, or function vector Φ, is defined by Φ̂(·) = P (·/2)Φ̂(·/2)
provided that the Fourier transform Φ̂ exists. While the refinement masks of
the bi-cubic B-spline and the box-spline B222, being defined by convolutions of
the characteristic function of the unit square along the appropriate directions,
are readily computable, computation of the refinement masks for others, such
as basis functions with minimum and quasi-minimum supports, is usually very
tedious. Examples of the recent development in this direction are the refinable
bivariate C2-cubic, C2-quartic, and C2-quintic spline functions in [7, 8, 9], in-
troduced for matrix-valued surface subdivisions to gain such desirable properties
as surface geometric shape control parameters, smaller subdivision template size
(to better address the often unavoidable extraordinary vertices), and interpola-
tion of the position components of the (initial) control vertices. Computation
of the refinement masks of these bivariate spline functions requires formulating
and solving large linear systems in terms of Bernstein-Bézier coefficients, see
[8, 9]. For this reason, the original motivation for this research was to extend the
standard Fourier approach to computing the (scalar-valued) refinement masks of
refinable spline functions to computing the matrix-valued refinement masks of
refinable spline function vectors.

As an application, let us consider the Fourier transform of the minimum-
supported (ms) and quasi-minimum-supported (qms) bivariate spline functions
in Sn

m(n)(∆
(i)), i = 1 and 2, where ∆(1) and ∆(2) denote the 3-direction mesh

and 4-direction mesh, respectively, in R2 with integer grid points, obtained by
partitioning R2 with the two sets of grid lines x = j, y = j, x− y = j and x = j,
y = j, x − y = j, x + y = j, respectively, where j = . . . ,−1, 0, 1 . . .. Here, the
bivariate spline spaces Sn

m(n)(∆
(i)), i = 1 and 2, are the spaces of functions in Cn
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whose restrictions on the triangular cells of ∆(i) are polynomials of (total) degree
m(n), where m(n) denotes the smallest nonnegative integer for which Sn

m(n)(∆
(i))

contains at least one nontrivial locally supported function. It is well-known that
for ∆(1), we have m(2n − 1) = 3n and m(2n) = 3n + 1; and for ∆(2), we have
m(3n− 1) = 4n, m(3n) = 4n + 1, and m(3n + 1) = 4n + 2 (see [3, 4] for details).

In the following, Bjkl and Bjklm denote the box splines in the spaces Sn
m(n)(∆

(1))

and Sn
m(n)(∆

(2)) for m(n) = j +k+ l−2 or m(n) = j +k+ l+m−2, respectively.
Here, j, k, l and m denote the numbers of repetition of the vectors (1, 0), (0, 1),
(1, 1), and (1,−1), respectively, in the direction sets that determine ∆(i). (See,
for example, [3, pp. 17-18] for details). Bivariate splines with local supports
that are ms and qms, as studied in [3, 4, 5], are defined as follows. The support
of a locally supported function f in a spline space is the closure of the set on
which f does not vanish and is denoted by supp(f). A set S is called a minimal
support of a spline space if there is some f , called an ms spline, in the space with
supp(f) = S, but there does not exist a nontrivial g in the space with supp(g)
properly contained in S. A function f in a spline space is called a qms spline if
(i) f cannot be written as a (finite) linear combination of ms splines in the space,
and (ii) for any h in the space properly contained in supp(f), h is some (finite)
linear combination of ms spines in the space.

For example, for the 3-direction mesh ∆(1), while the spline space S0
1(∆(1))

has only one ms spline g0
1, which is the box spline B111 with direction set {(1, 0),

(0, 1), (1, 1)}, the space S−1
0 (∆(1)) has two ms splines g0

2 and g0
3 which are not

box-splines, but are characteristic functions of the sets χA and χB, respectively,
where A is the triangle bounded by the 3 lines: x = 0, y = 1, and y = x, and B
the triangle bounded by the 3 lines: x = 1, y = 0 and y = x.

On the other hand, for the 4-direction mesh ∆(2), the space S1
2(∆(2)) has only

one ms spline f0
1 = B1111, the box spline with direction set {(1, 0), (0, 1), (1, 1),

(1,−1)}; but there are two ms splines f0
2 and f0

3 in the space S0
1(∆(2)), where f0

2

is the Courant hat function with support given by the diamond having vertices
at (1, 0), (0, 1), (−1, 0), and (0,−1), and with the value of 1 at the center (0, 0)
of the support; and f0

3 is the other Courant hat function supported on the unit
square [0, 1]2 with the value 1 at its center (1/2, 1/2). Furthermore, there are
two ms splines f0

4 and f0
5 and one qms spline f0

6 in S2
4(∆(2)) (see [3, 4, 5]).

In the following, let us consider the k-fold 2-dimensional convolutions: gk
1 =

g0
1 ∗ g0

1 ∗ · · · ∗ g0
1︸ ︷︷ ︸

k+1

and fk
1 = f0

1 ∗ f0
1 ∗ · · · ∗ f0

1︸ ︷︷ ︸
k+1

of g0
1 and f0

1 , respectively. Now, the

spline function vectors of interest are:

Gk ≡
[

gk
2

gk
3

]
:= gk−1

1 ∗
[

g0
2

g0
3

]
, F k ≡

[
fk
2

fk
3

]
:= fk−1

1 ∗
[

f0
2

f0
3

]
, (3.1)
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where k ≥ 1 and f ∗
[

g
h

]
:=
[

f ∗ g
f ∗ h

]
.

We remark that among the functions gk
i , fk

i , i = 1, 2, 3, only gk
1 and fk

1 are box
splines, while all of them are the unique ms and qms splines in the corresponding
spline spaces (where the notion of uniqueness is according to the statement of
Theorem 3.2 in [3]).

The Fourier transforms of the “initial” ms splines g0
i , f0

i , i = 2, 3, can be
evaluated by using the formula provided in this paper, and the Fourier transforms
of the other splines are given by the corresponding products with those of gk

1 or
fk
1 .

Finally, the refinement masks of Gk, F k can be easily computed by making
use of (3.1) from the refinements of the “initial” G0 and F 0.

Example 1. The Fourier transform of Gk is given by Ĝk(ξ1, ξ2) = [ĝk
2 , ĝk

3 ]T (ξ1, ξ2),
where ĝk

2 = ĝ0
2(ĝ

0
1)

k and ĝk
3 = ĝ0

3(ĝ
0
1)

k. Here, we have

ĝ0
1(ξ1, ξ2) = B̂111(ξ1, ξ2) =

1− e−iξ1

iξ1

1− e−iξ2

iξ2

1− ei(ξ1+ξ2)

i(ξ1 + ξ2)
,

ĝ0
2(ξ1, ξ2) =

1− e−i(ξ1+ξ2)

ξ1(ξ1 + ξ2)
− 1− e−iξ2

ξ1ξ2
, (3.2)

and

ĝ0
3(ξ1, ξ2) =

1− e−i(ξ1+ξ2)

ξ2(ξ1 + ξ2)
− 1− e−iξ1

ξ1ξ2
. (3.3)

Next, let us compute the Fourier transform of F k. For this purpose, recall
that (

φ(A · −k)
)∧(ξ) = |det(A)|−1e−iξT ·(A−1k)φ̂

(
(A−1)T ξ

)
, (3.4)

for any invertible matrix A of dimension s.

Example 2. Let f0
2 , f0

3 be the two Courant hat functions in S0
1(4(2)) as intro-

duced previously. To compute the Fourier transform of f0
2 , we use the x-y axes

to partition its support into four triangles: ∆1, ∆2, ∆3, and ∆4 in the the first,
second, third, and fourth quadrants, respectively. Then f0

2 can be written as the
sum of four functions: φ1, φ2, φ3, and φ4, with supports given by ∆1, ∆2, ∆3,
and ∆4, respectively.

By the formula (1.3), the Fourier transform of φ1 is given by

φ̂1(ξ1, ξ2) = − 1
ξ1ξ2

+ i
1− e−iξ1

ξ2
1(ξ1 − ξ2)

+ i
1− e−iξ2

ξ2
2(ξ2 − ξ1)

. (3.5)
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Since φ2(x, y) = φ1(−x, y), it follows from (3.5) and (3.4) that

φ̂2(ξ1, ξ2) = φ̂1(−ξ1, ξ2) =
1

ξ1ξ2
− i

1− eiξ1

ξ2
1(ξ1 + ξ2)

+ i
1− e−iξ2

ξ2
2(ξ1 + ξ2)

.

Similarly, since φ3(x, y) = φ1(−x,−y) and φ4(x, y) = φ1(x,−y), we have

φ̂3(ξ1, ξ2) = − 1
ξ1ξ2

+ i
1− eiξ1

ξ2
1(ξ2 − ξ1)

+ i
1− eiξ2

ξ2
2(ξ1 − ξ2)

;

φ̂4(ξ1, ξ2) =
1

ξ1ξ2
+ i

1− e−iξ1

ξ2
1(ξ1 + ξ2)

− i
1− eiξ2

ξ2
2(ξ1 + ξ2)

.

Consequently, we arrive at

f̂0
2 (ξ1, ξ2) =

4∑
j=1

φ̂j(ξ1, ξ2) = 2i
eiξ2 − e−iξ2

ξ2(ξ1 + ξ2)(ξ2 − ξ1)
+ 2i

eiξ1 − e−iξ1

ξ1(ξ1 + ξ2)(ξ1 − ξ2)
.

(3.6)

Next, observe that the linear transformation B

[
x
y

]
−
[

1
0

]
, with

B =
[

1 1
1 −1

]
,

maps the supp(f0
3 ) to supp(f0

2 ), with the vertices (0, 0), (1, 0), (1, 1), and (0, 1)
of supp(f0

3 ) corresponding to the vertices (−1, 0), (0, 1), (1, 0), and (0,−1) of
supp(f0

2 ), respectively. Hence, we may write

f0
3 (x, y) = f0

2

(
B

[
x
y

]
−
[

1
0

] )
,

and apply (3.4) to obtain

f̂0
3 (ξ1, ξ2) =

1
2
e−iξ· 1

2
B[1,0]T f̂0

2 (
1
2
Bξ) =

1
2
e−i

ξ1+ξ2
2 f̂0

2 (
ξ1 + ξ2

2
,
ξ1 − ξ2

2
)

=
2i

ξ1ξ2

(
e−iξ2 − e−iξ1

ξ2 − ξ1
+

1− e−i(ξ1+ξ2)

ξ1 + ξ2

)
. (3.7)

Finally, to compute the refinement masks of Gk and F k in (3.1), we observe
that the convolution of two finitely refinable functions (i.e., refinable functions
whose refinement masks consist of finitely many terms) remains to be finitely
refinable, and that Gk is the convolution of G0 with the refinable box spline gk

1 ,
and F k the convolution of F 0 with the refinable box spline fk

1 . Hence, we only
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need to compute the refinement masks of the initial ms splines. Precisely, from
ĝ0
2 and ĝ0

3 given by (3.2) and (3.3), we have

Ĝ0(2ξ1, 2ξ2) = Q0(ξ1, ξ2)Ĝ0(ξ1, ξ2)

where

Q0(ξ1, ξ2) =
[

1 + z2 + z1z2 z2

z1 1 + z1 + z1z2

]
, z1 = e−iξ1 , z2 = e−iξ2 ;

and from f̂0
2 and f̂0

3 given by (3.6) and (3.7), we have

F̂ 0(2ξ1, 2ξ2) = R0(ξ1, ξ2)F̂ 0(ξ1, ξ2)

where

R0(ξ1, ξ2) =
1
4

[
1 + 1

2(z1 + 1
z2

)(z1 + z2) 1
2(1 + 1

z1
)(1 + 1

z2
)

z1z2
1
2(1 + z1)(1 + z2)

]
, z1 = e−iξ1 , z2 = e−iξ2 .

The interested reader is referred to [6] for computing the refinement mask for
F 0(x) by calculating the BB coefficients of F 0(B−1x) directly.

Therefore, we conclude, from the definitions in (3.1), that

Ĝk(2ξ1, 2ξ2) = Qk(ξ1, ξ2)Ĝk(ξ1, ξ2), F̂ k(2ξ1, 2ξ2) = Rk(ξ1, ξ2)F̂ k(ξ1, ξ2)

with

Qk(ξ1, ξ2) =
(
q(ξ1, ξ2)

)k
Q0(ξ1, ξ2), Rk(ξ1, ξ2) =

(
r(ξ1, ξ2)

)k
R0(ξ1, ξ2) (3.8)

where q(ξ1, ξ2) = 1
8(1 + e−iξ1)(1 + e−iξ2)(1 + e−i(ξ1+ξ2)) is the mask (or two-scale

symbol) of g0
1, and r(ξ1, ξ2) = 1

16(1+e−iξ1)(1+e−iξ2)(1+e−i(ξ1+ξ2))(1+e−i(ξ1−ξ2))
the mask (or two-scale symbol) of f0

1 .
That is, we have the following result.

Theorem 3.1 The vector-valued functions Gk and F k are finitely refinable with
refinement masks given by (3.8).

Similarly,

fk−1
1 ∗

 f0
4

f0
5

f0
6


is also finitely refinable, with refinement mask given by(

r(ξ1, ξ2)
)k

S0(ξ1, ξ2),

where S0 is the refinement mask of

 f0
4

f0
5

f0
6

. Computation of S0 as well as the

refinement masks of other initial ms and qms bivariate splines in general is usually
nontrivial and requires further investigation.
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