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Abstract

Here presented is a unified approach to generalized Stirling functions by using
generalized factorial functions, k-Gamma functions, generalized divided differ-
ence, and the unified expression of Stirling numbers defined in [17]. Previ-
ous well-known Stirling functions introduced by Butzer and Hauss [4], Butzer,
Kilbas, and Trujilloet [6] and others are included as particular cases of our
generalization. Some basic properties related to our general pattern such as
their recursive relations, generating functions, and asymptotic properties are
discussed, which extend the corresponding results about the Stirling numbers
shown in [19] to the defined Stirling functions.
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1 Introduction

The classical Stirling numbers of the first kind and the second kind, denoted by
s(n, k) and S(n, k), respectively, can be defined via a pair of inverse relations

[z]n =

n∑
k=0

s(n, k)zk, zn =

n∑
k=0

S(n, k)[z]k, (1.1)

with the convention s(n, 0) = S(n, 0) = δn,0, the Kronecker symbol, where z ∈ C,
n ∈ N0 = N∪{0}, and the falling factorial polynomials [z]n = z(z−1) · · · (z−n+1).
|s(n, k)| presents the number of permutations of n elements with k disjoint cycles
while S(n, k) gives the number of ways to partition n elements into k nonempty sub-
sets. The simplest way to compute s(n, k) is finding the coefficients of the expansion
of [z]n.
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Another way of introducing classical Stirling numbers is via their exponential
generating functions

(log(1 + x))k

k!
=
∑
n≥k

s(n, k)
xn

n!
,

(ex − 1)k

k!
=
∑
n≥k

S(n, k)
xn

n!
, (1.2)

where |x| < 1 and k ∈ N0. In [21], Jordan said that, “Stirling’s numbers are of the
greatest utility. This however has not been fully recognized.” He also thinks that,
“Stirling’s numbers are as important or even more so than Bernoulli’s numbers.”

Besides the above two expressions, the Stirling numbers of the second kind has
the following third definition (see [11] and [21]), which is equivalent to the above two
definitions but makes a more important rule in computation and generalization.

S(n, k) :=
1

k!
∆kzn

∣∣
z=0

=
1

k!

k∑
j=1

(−1)k−j
(
k

j

)
jn

=
1

k!

k∑
j=1

(−1)j
(
k

j

)
(k − j)n. (1.3)

Expressions (1.1) - (1.3) are starting points in [17] to extend the classical Stirling
number pair and the Stirling numbers to the defined generalized Stirling numbers.

Denote 〈z〉n,α := z(z+α) · · · (z+(n−1)α) for n = 1, 2, . . ., and 〈z〉0,α = 1, where
〈z〉n,α is called the generalized factorial of z with increment α. Thus, 〈z〉n,−1 = [z]n
is the classical falling factorial with [z]0 = 1, and 〈z〉n,0 = zn. More properties of
〈z〉n,α are shown in [17]. For the sake of convenience, we give a brief survey in the
following .

With a closed observation, Stirling numbers of two kinds defined in (1.1) can be
written as a unified Newton form:

〈z〉n,−α =

n∑
k=0

S(n, k, α, β)〈z〉n,−β , (1.4)

with S(n, k, 1, 0) = s(n, k), the Stirling numbers of the first kind and S(n, k, 0, 1) =
S(n, k). the Stirling numbers of the second kind. Inspired by (1.4) and many ex-
tensions of classical Stirling numbers or Stirling number pairs introduced by [3], [7],
[8], [9], [10], [16], [?], [20], [25], [26], [28], [31], [30], in particular, [19]. [17] define a
unified generalized Stirling numbers S(n, k, α, β, r) as follows.

Definition 1.1 [17] Let n ∈ N and α, β, r ∈ R. A generalized Stirling number
denoted by S(n, k, α, β, r) is defined by

〈z〉n,−α =

n∑
k=0

S(n, k, α, β, r)〈z − r〉k,−β . (1.5)

In particular, if (α, β, r) = (1, 0, 0), S(n, k, 1, 0, 0) is reduced to the unified form of
Classical Stirling numbers defined by (1.4).
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From [2], each 〈z〉n,−α does have exactly one such expansion (1.5) for any given
z. Since deg 〈z−r〉k,−β = k for all k, which generates a graded basis for Π ⊂ F→ F,
the linear spaces of polynomials in one real (when F = R) or complex (when F = C),
in the sense that, for each n, {〈z− r〉n,−β} is a basis for Πn ⊂ Π, the subspace of all
polynomials of degree < n. In other wards, the column map

Wz : FN0 → Π : s 7→
∑
k≥0

S(n, k, α, β, r)〈z〉k,−β ,

from the space FN0 of scalar sequences with finitely many nonzero entries to the
space Π is one-to-one and onto, hence invertible. In particular, for each n ∈ N, the
coefficient c(n) in the Newton form (1.5) for 〈z〉n,−α depends linearly on 〈z〉n,−α,
i.e., 〈z〉n,−α 7→ s(n) = (W−1z 〈z〉n,−α)(n), the set of S(n, k, α, β, r), is a well-defined
linear functional on Π, and vanishes on Π<n−1.

Similarly to (1.1), from Definition 1.1 a Stirling-type pair {S1, S2} = {S1(n, k),
S2(n, k)} ≡ {S(n, k; α, β, r), S(n, k;β, α,−r)} (see also in [19]) can be defined by
the inverse relations

〈z〉n,−α =

n∑
k=0

S1(n, k)〈z − r〉k,−β

〈z〉n,−β =

n∑
k=0

S2(n, k)〈z + r〉k,−α, (1.6)

where n ∈ N and the parameter triple (α, β, r) 6= (0, 0, 0) is in R3 or C3. Hence, we
may call S1 and S2 an (α, β, r) and a (β, α,−r)− pair. Obviously,

S(n, k; 0, 0, 1) =

(
n

k

)
because zn =

∑n
k=0

(
n
k

)
(z − 1)k. In addition, the classical Stirling number pair

{s(n, k), S(n, k)} is the (1, 0, 0)− pair {S1, S2}, namely,

s(n, k) = S1(n, k; 1, 0, 0) S(n, k) = S2(n, k; 1, 0, 0).

For brevity, we will use S(n, k) to denote S(n, k, α, β, r) if there is no need to indicate
α, β, and r explicitly. From (1.5), one may find

S(0, 0) = 1, S(n, n) = 1, S(1, 0) = r, and S(n, 0) = 〈r〉n,−α. (1.7)

Evidently, substituting n = k = 0 into (1.5) yields the first formula of (1.7). Com-
paring the coefficients of the highest power terms on the both sides of (1.5), we
obtain the second formula of (1.7). Let n = 1 in (1.5) and noting S(1, 1) = 1, we
have the third formula. Finally, substituting z = r in (1.5), one can establish the
last formula of (1.7). The numbers σ(n, k) discussed by Doubilet et al. in [14] and
by Wagner in [32] is k!S(n, k; 0, 1, 0). More special cases of the generalized Stirling
numbers and Stirling-type pairs defined by (1.5) or (1.6) are surveyed in Table 1 of
[17].
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The classical falling factorial polynomials [z]n = z(z − 1) · · · (z − n + 1) and
classical rising factorial polynomials [z]n = z(z+ 1) · · · (z+n− 1), z ∈ C and n ∈ N,
can be unified to the expression

〈z〉n,±1 := z(z ± 1) · · · (z ± (n− 1)),

using the generalized factorial polynomial expression

〈z〉n,k := z(z + k) · · · (z + (n− 1)k) = 〈z + (n− 1)k〉n,−k (z ∈ C, n ∈ N). (1.8)

Thus 〈z〉n,1 = [z]n and 〈z〉n,−1 = [z]n. In addition, we immediately have the rela-
tionship between [z]n and 〈z〉n,k as

〈z〉n,k = kn[z/k]n (z ∈ C, n ∈ N, k > 0). (1.9)

Similarly, we obtain

〈z〉n,−k = z(z − k) · · · (z − (n− 1)k) = kn[z/k]n (z ∈ C, n ∈ N, k > 0). (1.10)

The history as well as some important basic results of the generalized factorials can
be found in Chapter II of [21], and an application of the generalized factorials in the
Lagrange interpolation is shown on Page 31 of [15].

It is known that the falling factorial polynomials and rising factorial polynomials
can be presented in terms of Gamma functions: [z]n = Γ(z + 1)/Γ(z − n + 1) and
[z]n = Γ(z + n)/Γ(z), and the gamma function Γ(z) can be defined in terms of
factorial functions by (see, for example, [23])

Γ(z) = lim
n→∞

n!nz−1

[z]n
(z ∈ C− kZ−). (1.11)

As an analogy, the k-gamma function Γk, a one parameter deformation of the clas-
sical gamma function, is defined by (see, for example [13])

Γk(z) := lim
n→∞

n!kn(nk)
z
k−1

〈z〉n,k
(k > 0, z ∈ C− kZ−). (1.12)

[z]n and 〈z〉n,k (k > 0) are also called the Pochhammer symbol and k-Pochhammer
symbol, respectively. Even the parameter k is replaced by other parameters, we still
call the corresponding Pochhammer symbol the k-Pochhammer.

For k > 0, from (1.9), (1.11) and (1.12) (see also [22]) we have

Γk(z) = k(z/k)−1Γ
( z
k

)
. (1.13)

Since [z]n = Γ(z + n)/Γ(z), [4] extends the classical raising and falling factorial
polynomials to generalized raising and falling functions associated with real number
γ by setting

[z]γ :=
Γ(z + γ)

Γ(z)
[z]γ :=

Γ(z + 1)

Γ(z − γ + 1)
, (1.14)
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respectively. We now extend 〈z〉n,k defined by (1.8) to a generalized form associated
with γ ∈ C using the relationship (1.9), namely,

〈z〉γ,k = kγ [z/k]γ , 〈z〉γ,−k = kγ [z/k]γ (z ∈ C, γ ∈ C, k > 0), (1.15)

which are called the generalized raising and falling factorial functions associated
with complex number γ, respectively. Using (1.13)-(1.15), we establish the following
result.

Theorem 1.2 If k > 0 and 〈z〉γ,k is defined by (1.15), then

〈z〉γ,k =
Γk(z + γk)

Γk(z)
〈z〉γ,−k =

Γk(z + k)

Γk(z − (γ − 1)k)
. (1.16)

Proof. For k > 0

〈z〉γ,k = kγ
[ z
k

]γ
= kγ

Γ
(
z
k + γ

)
Γ
(
z
k

)
=

k
z+γk
k −1Γ

(
z
k + γ

)
k
z
k−1Γ

(
z
k

) ,

which implies (1.16) because of (1.13). Similarly, for k > 0,

〈z〉γ,−k = kγ
[ z
k

]
γ

= kγ
Γ
(
z
k + 1

)
Γ
(
z
k − γ + 1

)
=

k
z+k
k −1Γ

(
z
k + 1

)
k
z+k
k −γ−1Γ

(
z
k − γ + 1

)
=

Γk(z + k)

Γk(z − (γ − 1)k)
.

There hold the following recurrence relations of the generalized raising and falling
factorial functions.

Proposition 1.3 If k > 0 and 〈z〉γ,k is defined by (1.15), then there hold

〈z〉γ,k = (z + (γ − 1)k)〈z〉γ−1,k, 〈z〉γ,−k = (z − (γ − 1)k)〈z〉γ−1,−k. (1.17)

Proof. It is easy to show that Γk(z+ k) = zΓk(z) from (1.13), which is an extension
of the classical formula Γ(z + 1) = zΓ(z). More precisely,

Γk(z + k) = k((z+k)/k)−1Γ

(
z + k

k

)
= kz/kΓ

( z
k

+ 1
)

= kz/k
z

k
Γ
( z
k

)
= zk(z/k)−1Γ

( z
k

)
= zΓk(z).
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Hence, from Theorem 1.2 we have

〈z〉γ,k =
Γk(z + γk)

Γk(z)
= (z + (γ − 1)k)

Γk(z + (γ − 1)k)

Γk(z)
= (z + (γ − 1)k)〈z〉γ−1,k.

Similarly, we have

〈z〉γ,−k =
Γk(z + k)

Γk(z − (γ − 1)k)
= (z − (γ − 1)k)

Γk(z + k)

(z − (γ − 1)k)Γk(z − (γ − 1)k)

= (z − (γ − 1)k)
Γk(zk)

Γk(z − (γ − 2)k)
= (z − (γ − 1)k)〈z〉γ−1,−k,

which completes the proof.

In next section, we use the k-Pochhammer symbol and k-Gamma functions to
extend the generalized Stirling numbers of integer orders to the complex number
orders, which are called the generalized Stirling functions. The convergence and the
recurrence relation of the generalized Stirling functions as well as their generating
functions will also be presented. Finally, in Section 3 we will give more properties of
generalized Stirling numbers and functions using the generating functions of gener-
alized Stirling function sequences shown in Section 2, which include the asymptotic
expansions of generalized Stirling functions.

2 Generalized Stirling functions

In [17], the author gives an equivalent form of the generalized Stirling numbers
S(n, k) defined by (1.5) by using the generalized difference operator in terms of β
(β 6= 0) defined by

∆k
βf = ∆β(∆k−1

β f) (k ≥ 2) and ∆βf(t) := f(t+ β)− f(t). (2.1)

It can be seen that ∆k
β〈z〉j,−β

∣∣∣
z=0

= βkk!δk,j , where δk,j is the Kronecker delta

symbol; i.e., δk,j = 1 when k = j and 0 otherwise. Evidently, from (1.10) there holds

∆k
β〈z〉j,−β

∣∣
z=0

= ∆k
ββ

j

[
t

β

]
j

∣∣∣∣∣
z=0

= βj∆k[t]j
∣∣
z=0

= βkk!δk,j . (2.2)

Denote the divided difference of f(t) at t+i, i = 0, 1, . . . , k, by f [t, t+1, . . . , t+k],
or [t, t+ 1, . . . , t+k]f(t). Using the well-known forward difference formula, it is easy
to check that

1

k!
∆kf(t) = f [t, t+ 1, . . . , t+ k] = [t, t+ 1, . . . , t+ k]f(t)

and
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1

βkk!
∆k
βf(t) = f [t, t+ β, t+ 2β, . . . , t+ kβ] = [t, t+ β, . . . , t+ kβ]f(t).

[17] gives the following definition of the generalized divided differences.

Definition 2.1 [17] We define 4k
β
f(t) by

4k
β
f(t) =

{ 1
βkk!

∆k
βf(t) = f [t, t+ β, . . . , t+ kβ] if β 6= 0

1
k!D

kf(t) if β = 0
, (2.3)

where ∆k
βf(t) is shown in (2.1), f [t, t+ β, . . . , t+ kβ] ≡ [t, t+ β, . . . , t+ kβ]f is the

kth divided difference of f in terms of {t, t + β, . . . , t + kβ}, and Dkf(t) is the kth
derivative of f(t).

From the well-known formula

f [t, t+ β, t+ 2β, . . . , t+ kβ] =
Dkf(ξ)

k!
,

where ξ is between t and t+ kβ, it is clear that

Dkf(t) = lim
β→0

1

βk
∆k
βf(t), (2.4)

which shows the generalized divided difference is well defined.
[17] gives a unified expression of the generalized Stirling numbers in terms of the

the generalized divided differences.

Theorem 2.2 [17] Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0) is in
R3 or C3. For the generalized Stirling numbers defined by (1.5), there holds

S(n, k, α, β, r) = 4k
β
〈z〉n,−α

∣∣∣
z=r

=

{
1

βkk!
∆k
β〈z〉n,−α

∣∣∣
z=r

= [r, r + β, . . . , r + kβ]〈z〉n,−α if β 6= 0
1
k! D

k〈z〉n,−α
∣∣
z=r

if β = 0.
(2.5)

In particular, for the generalized Stirling number pair defined by (1.6), we have the
expressions

S1(n, k) ≡ S1(n, k, α, β, r) = 4k
β
〈z〉n,−α

∣∣∣
z=r

=

{
1

βkk!
∆k
β〈z〉n,−α

∣∣∣
z=r

= [r, r + β, . . . , r + kβ]〈z〉n,−α, if β 6= 0
1
k!D

k〈z〉n,−α
∣∣
z=r

, if β = 0
(2.6)

S2(n, k) ≡ S2(n, k, β, α,−r) = 4k
α
〈z〉n,−β

∣∣∣
z=−r

=

{
1

αkk!
∆k
α〈z〉n,−β

∣∣
z=−r = [−r,−r + α, . . . ,−r + kα]〈z〉n,−β , if α 6= 0

1
k!D

k〈z〉n,−β
∣∣
z=−r , if α = 0

(2.7)
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Furthermore, if (α, β, r) = (1, 0, 0), then (2.5) is reduced to the classical Stirling
numbers of the first kind defined by (1.1) with the expression

s(n, k) = S(n, k, 1, 0, 0) =
1

k!
Dk[z]n

∣∣
z=0

.

If (α, β, r) = (0, 1, 0), then (2.5) is reduced to the classical Stirling numbers of the
second kind shown in (1.3) with the following divided difference expression form:

S(n, k) = S(n, k, 0, 1, 0) = [0, 1, 2, . . . , k]zn|z=0 . (2.8)

The following corollary is obvious due to the expansion formula of the divided
differences generated from their definition.

Corollary 2.3 [17] Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0) is in
R3 or C3. If β 6= 0, for the generalized Stirling numbers defined by (1.5), there holds

S(n, k) ≡ S(n, k, α, β, r) =
1

βkk!

n∑
j=0

(−1)j
(
k

j

)
〈r + (k − j)β〉n,−α (n 6= 0), (2.9)

and S(0, k) = δ0k.

[17] gives four algorithms for calculating the Stirling numbers and their gener-
alizations based on their unified expression, which include two comprehensive algo-
rithms using the characterization of Riordan arrays.

We now extend the Stirling numbers S(n, k)) expressed by (2.5) to a more wider
generation form using the idea of [6]. First, in order to cover as large a function class
as possible, we recall that the generalized fractional difference operator ∆η,ε

β with an
exponential factor, which is introduced in [6]. More precisely, for η ∈ C, β ∈ R+,
ε ≥ 0, the generalized fractional difference operator ∆η,ε

β is defined for “sufficient
good” functions f by

∆η,ε
β f(z) :=

∑
j≥0

(−1)j
(
η

j

)
e(η−j)εf(z + (η − j)β) (z ∈ C), (2.10)

where
(
η
j

)
are the general binomial coefficients given by(

η

j

)
=

[η]j
j!

:=
η(η − 1) · · · (η − j + 1)

j!
(j ∈ N), (2.11)

with [β]0 = 1. Noting the generalized Stirling numbers S(n, k) can be represented
by (2.6), or equivalently,

S(n, k) =
1

βkk!
lim
z→r

∆k
β〈z〉n,−α,

which has an extension shown in (2.9). We now extend (2.9) to a more generalized
form shown in the following definition.
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Definition 2.4 The generalized Stirling functions, S(γ, η, α, β, r; ε) for any complex
numbers γ and η are given by

S(γ, η; ε) ≡ S(γ, η, α, β, r; ε) :=
1

βηΓ(η + 1)
lim
z→r

∆η,ε
β (〈z〉γ,−α) (ε ≥ 0), (2.12)

provided the limit exists; or equivalently, by

S(γ, η; ε) ≡ S(γ, η, α, β, r; ε) =
1

βηΓ(η + 1)

∑
j≥0

(−1)j
(
η

j

)
e(η−j)ε〈r+(η−j)β〉γ,−α (γ 6= 0),

(2.13)
provided the series converges absolutely. and

S(0, η) =
(eε − 1)η

βηΓ(η + 1)
. (2.14)

From (2.13), we immediately have

S(γ, 0; ε) = 〈r〉γ,−α (γ 6= 0). (2.15)

Now, an explicit expression of S(γ, η; ε) can be given by the following result.

Theorem 2.5 If γ ∈ C and either of the conditions η ∈ C (η /∈ Z−), ε > 0, or
η ∈ C (η /∈ Z−, Re(η) > Re(γ)), ε = 0 hold, then the generalized Stirling functions
S(γ, η; ε) can be represented in the form (2.13) and S(0, η; ε) = δη,0. In particular,
if γ = n ∈ N0, η = k ∈ N, and ε ≥ 0, then the corresponding generalized Stirling
functions S(n, k; ε) has the representation (2.13).

Proof. First, from equation (1.51) in [29] we have the estimation∣∣∣∣(ηj
)∣∣∣∣ ≤ A

jRe(η) + 1
(2.16)

for any η ∈ C, η 6= −1,−2, . . ., and sufficiently large j ∈ N, where A > 0 is a
constant.

Secondly, from the second formula of (1.16) and expression (1.13), we obtain

〈r + (η − j)β〉γ,−α =
Γα(r + (η − j)β + α)

Γα(r + (η − j)β − (γ − 1)α)

=
α((r+(η−j)β+α)/α)−1Γ

(
r+(η−j)β+α

α

)
α((r+(η−j)β−(γ−1)h)/h)−1Γ

(
β−j−(γ−1)α

α

) = αγ
Γ
(
r+(η−j)β+α

α

)
Γ
(
r+(η−j)β−(γ−1)α

α

) .
From [5] or [29], we obtain

|〈r + (η − j)β〉γ,−α| ≤ BjRe(γ)

with a certain constant B. Thus,
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∣∣∣∣(−1)j
(
η

j

)
e(η−j)ε〈r + (η − j)β〉γ,−α

∣∣∣∣ ≤ C e−εj

jRe(η−γ)+1
,

where C = ABeRe(β)ε. Hence, the series on the right-hand side of (2.13) is absolutely
convergent if either ε > 0 or ε = 0 with Re(β) > Re(γ). Similarly, when n ∈ N0,
η = k ∈ N, and ε ≥ 0, the corresponding generalized Stirling functions S(n, k; ε) has
the representation (2.13), which completes the proof of the theorem.

We now present the recurrence relation of the generalized Stirling functions de-
fined by (2.13) by using the recurrence relations of the generalized raising and falling
factorial functions shown in Proposition 1.3.

Theorem 2.6 There hold the following three results.

(a) For γ ∈ C, η ∈ C (η /∈ Z−), and ε > 0, the generalized Stirling functions
S(γ, η; ε) defined by (2.13) satisfy

S(γ, η; ε) = (r + ηβ − (γ − 1)α)S(γ − 1, η; ε) + S(γ − 1, η − 1; ε). (2.17)

(b) Let γ ∈ C, η ∈ C (η /∈ Z−), and Re(η) > Re(γ)). The generalized Stirling
functions S(γ, η) ≡ S(γ, η; 0) satisfy

S(γ, η) = (r + ηβ − (γ − 1)α)S(γ − 1, η) + S(γ − 1, η − 1). (2.18)

(c) For γ ∈ C, k ∈ N, and ε ≥ 0, the generalized Stirling functions S(γ, k; ε;h)
defined by (2.13) satisfy

S(γ, k; ε) = (r + kβ − (γ − 1)α)S(γ − 1, k; ε) + S(γ − 1, k − 1; ε). (2.19)

In particular,

S(γ, k) = (r + kβ − (γ − 1)α)S(γ − 1, k) + S(γ − 1, k − 1).

Proof. In accordance with Theorem 2.5, all terms on both sides of equations (2.17)-
(2.19) are well defined for the given ranges of parameters γ, η, n, and ε. From (2.13),
we can write the right-hand side of (2.17) as
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(r + ηβ − (γ − 1)α)S(γ − 1, η; ε) + S(γ − 1, η − 1; ε)

=
r + ηβ − (γ − 1)α

βηΓ(η + 1)

∑
j≥0

(−1)j
(
η

j

)
e(η−j)ε〈r + (η − j)β〉γ−1,−α

+
1

βη−1Γ(η)

∑
j≥0

(−1)j
(
η − 1

j

)
e(η−1−j)ε〈β − 1− j〉γ−1,−α

=
r + ηβ − (γ − 1)α

βηΓ(η + 1)
eηε〈r + ηβ〉γ−1,−α

+
r + ηβ − (γ − 1)α

βηΓ(η + 1)

∑
j≥1

(−1)j
(
η

j

)
e(η−j)ε〈r + (η − j)β〉γ−1,−α

+
η

βη−1Γ(η + 1)

∑
j≥1

(−1)j+1

(
η − 1

j − 1

)
e(η−j)ε〈r + (η − j)β〉γ−1,−α

=
r + ηβ − (γ − 1)α

βηΓ(η + 1)
eηε〈r + ηβ〉γ−1,−α +

1

βηΓ(η + 1)

∑
j≥1

(−1)j
[
(r + ηβ − (γ − 1)α)

(
β

j

)

−ηβ
(
η − 1

j − 1

)]
e(η−j)ε〈r + (η − j)β〉γ−1,−α

=
1

βηΓ(η + 1)
eηε〈r + ηβ〉γ,−α +

1

βηΓ(η + 1)

∑
j≥1

(−1)j
[
(r + ηβ − (γ − 1)α)

(
η

j

)

−jβ
(
η

j

)]
e(η−j)ε〈r + (η − j)β〉γ−1,−α

=
1

βηΓ(η + 1)
eηε〈r + ηβ〉γ,−α

+
1

βηΓ(η + 1)

∑
j≥1

(−1)j(r + (η − j)β − (γ − 1)α)

(
η

j

)
e(η−j)ε〈r + (η − j)β〉γ−1,−α

=
1

βηΓ(η + 1)

∑
j≥0

(−1)j
(
η

j

)
e(η−j)ε〈r + (η − j)β〉γ,−α,

which is the right-hand side of (2.17). In the last step, we used the second recurrence
formula of (1.17) in Proposition 1.3. (2.18) and (2.19) can be proved similarly.

Clearly, Theorem 6 in [6] is a special case of Theorem 2.6 for α, β = 0. And
Theorem 3, Corollaries 3.1 and 3.2 in [6] are special cases of Theorem 2.6 for α, β = 0
and γ = n ∈ N.

Now we construct the exponential generating function for the generalized Stirling
functions S(n, η; ε).

Theorem 2.7 Let z ∈ C, η ∈ C, and ε ≥ 0. The generating function for the
generalized Stirling functions S(γ, η; ε) defined by (2.13) with γ = n and αβ 6= 0 is
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1

Γ(η + 1)
(1 + αz)r/α

(
eε(1 + αz)β/α − 1

β

)η
=
∑
n≥0

S(n, η; ε)
zn

n!
(2.20)

for η 6∈ Z− and ε > 0, and

1

k!
(1 + αz)r/α

(
eε(1 + αz)β/α − 1

β

)k
=
∑
n≥0

S(n, k; ε)
zn

n!
(2.21)

for η = k ∈ N0 and ε ≥ 0.

Proof. Denote the generating function for the generalized Stirling functions S(γ, η; ε)
defined by (2.13) with αβ 6= 0 by

xη(z) =
∑
n≥0

S(n, η; ε)
zn

n!
. (2.22)

It can be seen that for η 6= 0, xη(z) satisfies the differential equation

(1 + αz)
d

dz
xη(z)− (r + ηβ)xη(z) = xη−1(z) (2.23)

with initial condition

xη(0) = S(0, η; ε) =
(eε − 1)η

βηΓ(η + 1)
, (2.24)

and

x0(z) = (1 + αz)r/α. (2.25)

Evidently, using (2.17) one may write the left-hand side of (2.22) as

(1 + αz)
d

dz
xη(z)− (r + ηβ)xη(z)

= (1 + αz)
∑
n≥1

S(n, η; ε)
zn−1

(n− 1)!
−
∑
n≥0

(r + ηβ)S(n, η; ε)
zn

n!

=
∑
n≥0

zn

n!
(S(n+ 1, η; ε)− (r + ηβ − nα)S(n, η; ε))

=
∑
n≥0

S(n, η − 1; ε)
zn

n!
= xη−1(z).

Substituting z = 0 into (2.22) yields

xη(0) = S(0, η; ε),

which implies (2.24) by making use of (2.14). Finally, from (2.15) and (1.15) there
holds
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x0(z) =
∑
n≥0

S(n, 0; ε)
zn

n!
=
∑
n≥0

〈r〉n,−α
zn

n!

=
∑
n≥0

αn
[ r
α

]
n

zn

n!
=
∑
n≥0

(
r/α

n

)
(αz)n

n!
,

which implies (2.25).
Denote the left-hand side of Equation (2.20) by yη(z). It can be checked that

yη(z) is also the solution of initial-value problem (2.23) and (2.24) that satisfies
(2.25). Indeed,

(1 + αz)
d

dz
yη(z)− (r + ηβ)yη(z)

=
1 + αz

Γ(η + 1)

[
r(1 + αz)r/α−1

(
eε(1 + αz)β/α − 1

β

)η
+ ηeε(1 + αz)r/α+β/α−1

(
eε(1 + αz)β/α − 1

β

)η−1]
− r + ηβ

Γ(η + 1)
(1 + αz)r/α

(
eε(1 + αz)β/α − 1

β

)η

=
1

Γ(η)
(1 + αz)r/α

(
eε(1 + αz)β/α − 1

β

)η−1
= yη−1(z).

It is easy to see that

y0(z) = (1 + αz)r/α and yk(0) =
(eε − 1)η

βηΓ(η + 1)
.

Since the solution of the initial-value problem (2.23)-(2.25) is unique, we have yη(z) =
xη(z). Thus, from the definition (2.22), we obtain (2.20). A similar argument can
be used to prove (2.21).

Remark 3.1 The condition αβ 6= 0 is not necessary for the left-hand side of (2.20).
In fact, taking r = 0, β = 1, and letting α → 0+, we see that (2.20) yields the
generating function for the generalized Stirling functions of the second kind:

1

Γ(η + 1)
(ez+s − 1)η =

∑
n≥0

S(n, η, 0, 1, 0; ε)
zn

n!
,

which was studied in Theorem 4 of [6], and it can be considered as a particular case
of our Theorem 2.7.

Similarly, taking ε, r = 0, α = 1 and letting β → 0+ yields the generating function
of the generalized Stirling functions of the first kind:

1

Γ(η + 1)
(ln(1 + z))η =

∑
n≥0

S(n, η, 1, 0, 0)
zn

n!
.
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3 More properties of the generalized Stirling func-
tions

let us consider the set of formal power series (f.p.s.) F = R[[t; {ck}]] or C[[t; {c}]]
(where c = (c0, c1, c2, . . .) satisfies c0 = 1, ck > 0 for all k = 1, 2, . . .); the order of
f(t) ∈ F, f(t) =

∑∞
k=0 fkt

k/ck, is the minimal number r ∈ N such that fr 6= 0; Fr is
the set of formal power series of order r. It is known that F0 is the set of invertible
f.p.s. and F1 is the set of compositionally invertible f.p.s., that is, the f.p.s.’s f(t) for
which the compositional inverse f(t) exists such that f(f(t)) = f(f(t)) = t. We call

the element g ∈ F with the form g(x) =
∑
k≥0

xk

ck
a generalized power series (GPS)

associated with {cn} or, simply, a (c)-GPS, and F the GPS set associated with {cn}.
In particular, when c = (1, 1, . . .), the corresponding F and Fr denote the classical
formal power series and the classical formal power series of order r, respectively.

We now develop a kind of asymptotic expansions for the generalized Stirling
functions S(n, µ, r; ε) ≡ S(n, µ, α, β, r; ε) and S(n, µ, µr; ε) ≡ S(n, µ, α, β, µr; ε) and
generalized Stirling numbers S(n+µ, µ, r) ≡ S(n+µ, µ, α, β, r) and S(n+µ, µ, µr) ≡
S(n+µ, µ, α, β, µr) for large µ and n with the condition n = 0(µ1/2) (µ→∞). The
asymptotic expansions of Hsu and Shiue Stirling numbers in [19] and Tsylova Stirling
numbers in [31], involving a generalization of Moser and Wyman’s result [24], are
included as particular cases.

The major tool of construction of the asymptotic expansion is the known result
about the asymptotic formula for the coefficients of power-type generating functions
involving large parameters shown in [18]. Let σ(n) be the set of partition of n
(n ∈ N), which can be represented by 1k12k2 · · ·nkn with 1k1 + 2k2 + · · ·nkn = n,
kj ≥ 0 (j = 1, 2, . . . , n), and with k = k1 + k2 + · · · + kn expressing the number of
the parts of the partition. For given k (1 ≤ k ≤ n), we denote by σ(n, k) the subset
of σ(n) consisting of partitions of n having k parts.

Let φ(z) =
∑
n≥0 anz

n be a formal power series over the complex field C in F0,
with a0 = g(0) = 1. For every j (0 ≤ j < n) define

W (n, j) =
∑

σ(n,n−j)

ak11 a
k2
2 · · · aknn

k1!k2! · · · kn!
, (3.1)

where the summation is taken over all such partition 1k12k2 · · ·nkn of n that have
n− j parts. We have the following known result (see for instance [18]):

For a fixed m ∈ N and for large µ and n such that n = o(µ1/2) (µ → ∞), we
have the asymptotic expansion

1

[µ]n
[zn](φ(z))µ =

m∑
j=0

W (n, j)

[µ− n+ j]j
+ o

(
W (n,m)

[µ− n+m]m

)
, (3.2)

where W (n, j) are given by (3.1). (3.2) is used to derive the Hsu-Shiue Stirling num-
bers in [19]. We now generalize (3.2) and the corresponding argument to give asymp-
totic expansion formulas of generalized Stirling functions S(n, µ, r; ε) ≡ S(n, µ, α, β,
r; ε), S(n, µ, µr; ε) ≡ S(n, µ, α, β, µr; ε), S(n + µ, µ, r) ≡ S(n + µ, µ, α, β, r) and
S(n+µ, µ, µr) ≡ S(n+µ, µ, α, β, µr) for large µ and n with the condition n = 0(µ1/2)
as µ→∞.
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Let g(z) =
∑
n≥0 anz

n be a formal power series over the complex field C in F0,
with a0 = g(0) 6= 0. We may write

g(z) = a0
∑
n≥0

an
a0
zn.

For a fixed m ∈ N and for large µ and n such that n = o(µ1/2) (µ → ∞), From
formulas (3.1) and (3.2) we have the asymptotic expansion

1

[µ]n
[zn](g(z))µ =

m∑
j=0

W (n, j)

an−µ−j0 [µ− n+ j]j
+ o

(
W (n,m)

am−µ0 [µ− n+m]m

)
, (3.3)

where W (n, j) are given by (3.1). In particular, when n is fixed, the remainder
estimate becomes O(µ−m−1).

To apply (3.2) to the generalized Stirling numbers S(γ, η; ε) defined by (2.13)
with γ = n, η = µ and αβ 6= 0, let us use (2.21) to take

g(z) = (1 + αz)r/α
eε(1 + αz)β/α − 1

β
=
∑
n≥0

S(n, 1; ε)

n!
zn (3.4)

when ε 6= 0, and

ḡ(z) = (1 + αz)r/α
(1 + αz)β/α − 1

βz
=
∑
n≥0

S(n+ 1, 1)

(n+ 1)!
zn (3.5)

when ε = 0, so that g(0) = (eε − 1)/β (ε 6= 0) and ḡ(0) = 1 (ε = 0) not being zero in
both cases, where S(n, 1; ε) ≡ S(n, 1, α, β, r; ε) and S(n+ 1, 1) ≡ S(n+ 1, 1, α, β, r),
g(0) = (eε − 1)/β. Consequently, from (2.21) we have

(g(z))µ = (1 + αz)µr/α
(
eε(1 + αz)β/α − 1

β

)µ
= µ!

∑
n≥0

S(n, µ, α, β, µr; ε)

n!
zn (3.6)

for ε 6= 0, and

(ḡ(z))µ = (1 + αz)µr/α
(

(1 + αz)β/α − 1

βz

)µ
= µ!

∑
n≥0

S(n+ µ, µ, α, β, µr)

(n+ µ)!
zn (3.7)

for ε = 0. Therefore, making use of (3.3) yields
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S(n, µ, α, β, µr; ε)

[µ]n[n]µ

=

(
β

eε − 1

)n−µ m∑
j=0

(
eε − 1

β

)j
W (n, j)

[µ− n+ j]j
+ o

((
β

eε − 1

)n−µ
W (n,m)

[µ− n+m]m

)
(3.8)

for ε 6= 0, and

S(n+ µ, µ, α, β, µr)

[µ]n[n+ µ]µ
=

m∑
j=0

W (n, j)

[µ− n+ j]j
+ o

(
W (n,m)

[µ− n+m]m

)
(3.9)

for ε = 0, where n = o(µ1/2) as µ → ∞ and W (n, j) (j = 0, 1, 2, . . .) are given by
(3.1) with aj being determined by (3.4); namely, for ε 6= 0, a0 = (eε − 1)/β and

aj = [zj ]g(z) =
S(j, 1; ε)

j!
, (3.10)

while for ε = 0, a0 = 1 and

aj = [zj ]ḡ(z) =
S(j + 1, 1)

(j + 1)!
. (3.11)

The coefficients defined by (3.10) and (3.11) can be evaluated by using the Vandermonde-
Chu formula as follows. From (3.4), for j = 1, 2, . . . , we have

[zj ]g(z) = [zj ](1 + αz)r/α

eε − 1

β
+
eε

β

∑
k≥1

(
β/α

k

)
(αz)k


= [zj ]

eε − 1

β

∑
`≥0

(
r/α

`

)
(αz)` +

eε

β

∑
`≥0

∑
k≥1

(
r/α

`

)(
β/α

k

)
(αz)`+k


=

eε − 1

β
αj
(
r/α

j

)
+
eε

β
αj

j∑
k=1

(
r/α

j − k

)(
β/α

k

)
=

eε − 1

j!β
〈r〉j,−α +

eε

β
αj
[(
r/α+ β/α

j

)
−
(
r/α

j

)]
=

1

j!β
[〈r + β〉j,−α + (eε − 2)〈r〉j,−α] .

Here, the classical Vandermonde-Chu convolution formula we used above, regarded
as “perhaps the most widely used combinatorial identity” (see P. 8 in [27] by Riordan
and PP. 51, 61, 64, and 227 in [1] by Andrews), which can be written as

n∑
k=0

(
x

k

)(
y

n− k

)
=

(
x+ y

n

)
(x, y ∈ R, n ∈ N0).
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Similarly, we obtain

[zj ]ḡ(z) =
1

(j + 1)!β
[〈r + β〉j+1,−α − 〈r〉j+1,−α]

for j = 0, 1, 2, . . . . Hence, we may survey the above into the following theorem.

Theorem 3.1 For ε 6= 0, there holds the asymptotic expansion (3.8) of S(n, µ, µr; ε) ≡
S(n, µ, α, β, µr; ε) for n with n = o(µ1/2) (µ→∞), where W (n, j) is defined by (3.1)
with a0 = (eε − 1)/β and

aj =
1

j!β
[〈r + β〉j,−α + (eε − 2)〈r〉j,−α] (j = 1, 2, . . .).

For ε = 0, there holds the asymptotic expansion (3.9) of S(n + µ, µ, µr) ≡ S(n +
µ, µ, α, β, µr) for n with n = o(µ1/2) (µ → ∞), where W (n, j) is defined by (3.1)
with

aj =
1

(j + 1)!β
[〈r + β〉j+1,−α − 〈r〉j+1,−α] j = 0, 1, . . . .

Since the formulas (3.8) and (3.9) with W (n, j) and aj presented in (3.1) and
Theorem 3.1, respectively, are algebraic analytic identities, we may replace r by r/µ
in the formulas and obtain the following corollary.

Corollary 3.2 For ε 6= 0, by replacing the quantity r by r/µ, the asymptotic expan-
sion (3.8) is also applicable to S(n, µ, r; ε) ≡ S(n, µ, α, β, r; ε) for n with n = o(µ1/2)
(µ→∞), where W (n, j) is defined by (3.1) with a0 = (eε − 1)/β and

aj =
1

j!β

[〈
r

µ
+ β

〉
j,−α

+ (eε − 2)

〈
r

µ

〉
j,−α

]
(j = 1, 2, . . .).

For ε = 0, by replacing the quantity r by r/µ, the asymptotic expansion (3.9) is also
applicable to S(n + µ, µ, r) ≡ S(n + µ, µ, α, β, r) for n with n = o(µ1/2) (µ → ∞),
where W (n, j) is defined by (3.1) with

aj =
1

(j + 1)!β

[〈
r

µ
+ β

〉
j+1,−α

−
〈
r

µ

〉
j+1,−α

]
j = 0, 1, . . . .
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