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Abstract

Here presented is a unified expression of Stirling numbers and their
generalizations by using generalized factorial functions and general-
ized divided difference. Three algorithms for calculating the Stirling
numbers and their generalizations based on our unified form are also
given, which include a comprehensive algorithm using the character-
ization of Riordan arrays.
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1 Introduction

The classical Stirling numbers of the first kind and the second kind, denoted
by s(n, k) and S(n, k), respectively, can be defined via a pair of inverse
relations

[z]n =

n∑
k=0

s(n, k)zk, zn =

n∑
k=0

S(n, k)[z]k, (1.1)

with the convention s(n, 0) = S(n, 0) = δn,0, the Kronecker symbol, where
z ∈ C, n ∈ N0 = N ∪ {0}, and the falling factorial polynomials [z]n =

1
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z(z − 1) · · · (z − n+ 1). |s(n, k)| presents the number of permutations of n
elements with k disjoint cycles while S(n, k) gives the number of ways to
partition n elements into k nonempty subsets. The simplest way to compute
s(n, k) is finding the coefficients of the expansion of [z]n. [20] gives a simple
way to evaluate S(n, k) using Horner’s method.

Another way of introducing classical Stirling numbers is via their expo-
nential generating functions

(log(1 + x))k

k!
=
∑
n≥k

s(n, k)
xn

n!
,

(ex − 1)k

k!
=
∑
n≥k

S(n, k)
xn

n!
, (1.2)

where |x| < 1 and k ∈ N0. In [26], Jordan said that, “Stirling’s numbers
are of the greatest utility. This however has not been fully recognized.” He
also thinks that, “Stirling’s numbers are as important or even more so than
Bernoulli’s numbers.”

Besides the above two expressions, the Stirling numbers of the second
kind has the following third definition (see [11] and [26]), which is equiv-
alent to the above two definitions but makes a more important rule in
computation and generalization.

S(n, k) :=
1

k!
∆kzn

∣∣
z=0

=
1

k!

k∑
j=1

(−1)k−j
(
k

j

)
jn

=
1

k!

k∑
j=1

(−1)j
(
k

j

)
(k − j)n. (1.3)

Expressions (1.1) - (1.3) will be our starting points to extend the classical
Stirling number pair and the Stirling numbers.

Denote 〈z〉n,α := z(z+α) · · · (z+(n−1)α) for n = 1, 2, . . ., and 〈z〉0,α =
1, where 〈z〉n,α is called the generalized factorial of z with increment α.
Thus, 〈z〉n,−1 = [z]n is the classical falling factorial with [z]0 = 1, and
〈z〉n,0 = zn. More properties of 〈z〉n,α will be presented below.

With a closed observation, Stirling numbers of two kinds defined in (1.1)
can be written as a unified Newton form:

〈z〉n,−α =

n∑
k=0

S(n, k, α, β)〈z〉n,−β , (1.4)

with S(n, k, 1, 0) = s(n, k), the Stirling numbers of the first kind and
S(n, k, 0, 1) = S(n, k). the Stirling numbers of the second kind. Inspired by
(1.4) and many extensions of classical Stirling numbers or Stirling number
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pairs introduced by [6], [23], [46], [24], etc. Inspired with (1) and (2) in
[24], the author defines a unified the following generalized Stirling numbers
S(n, k, α, β, r) in [18].

Definition 1.1 Let n ∈ N and α, β, r ∈ R. A generalized Stirling number
denoted by S(n, k, α, β, r) is defined by

〈z〉n,−α =

n∑
k=0

S(n, k, α, β, r)〈z − r〉k,−β . (1.5)

In particular, if (α, β, r) = (1, 0, 0), S(n, k, 1, 0, 0) is reduced to the unified
form of Classical Stirling numbers defined by (1.4).

Each 〈z〉n,−α does have exactly one such expansion (1.5) for any given
z. Since deg 〈z − r〉k,−β = k for all k, which generates a graded basis for
Π ⊂ F → F, the linear spaces of polynomials in one real (when F = R) or
complex (when F = C), in the sense that, for each n, {〈z − r〉n,−β} is a
basis for Πn ⊂ Π, the subspace of all polynomials of degree < n. In other
wards, the column map

Wz : FN0 → Π : s 7→
∑
k≥0

S(n, k, α, β, r)〈z〉k,−β ,

from the space FN0 of scalar sequences with finitely many nonzero entries to
the space Π is one-to-one and onto, hence invertible. In particular, for each
n ∈ N, the coefficient c(n) in the Newton form (1.5) for 〈z〉n,−α depends
linearly on 〈z〉n,−α, i.e., 〈z〉n,−α 7→ s(n) = (W−1

z 〈z〉n,−α)(n), the set of
S(n, k, α, β, r), is a well-defined linear functional on Π, and vanishes on
Π<n−1.

Similarly to (1.1), from Definition 1.1 a Stirling-type pair {S1, S2} =
{S1(n, k), S2(n, k)} ≡ {S(n, k; α, β, r), S(n, k;β, α,−r)} (see also in [24])
can be defined by the inverse relations

〈z〉n,−α =

n∑
k=0

S1(n, k)〈z − r〉k,−β

〈z〉n,−β =

n∑
k=0

S2(n, k)〈z + r〉k,−α, (1.6)

where n ∈ N and the parameter triple (α, β, r) 6= (0, 0, 0) is in R3 or C3.
Hence, we may call S1 and S2 an (α, β, r) and a (β, α,−r)− pair. Obviously,

S(n, k; 0, 0, 1) =

(
n

k

)
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because zn =
∑n
k=0

(
n
k

)
(z − 1)k. In addition, the classical Stirling number

pair {s(n, k), S(n, k)} is the (1, 0, 0)− pair {S1, S2}, namely,

s(n, k) = S1(n, k; 1, 0, 0) S(n, k) = S2(n, k; 1, 0, 0).

For brevity, we will use S(n, k) to denote S(n, k, α, β, r) if there is no need
to indicate α, β, and r explicitly. From (1.5), one may find

S(0, 0) = 1, S(n, n) = 1, S(1, 0) = r, and S(n, 0) = 〈r〉n,−α. (1.7)

Evidently, substituting n = k = 0 into (1.5) yields the first formula of (1.7).
Comparing the coefficients of the highest power terms on the both sides of
(1.5), we obtain the second formula of (1.7). Let n = 1 in (1.5) and noting
S(1, 1) = 1, we have the third formula. Finally, substituting z = r in (1.5),
one can establish the last formula of (1.7). The numbers σ(n, k) discussed
by Doubilet et al. in [15] and by Wagner in [47] is k!S(n, k; 0, 1, 0). More
special cases of the generalized Stirling numbers and Stirling-type pairs
defined by (1.5) or (1.6) are surveyed below in Table 1.

The classical falling factorial polynomials [z]n = z(z − 1) · · · (z − n+ 1)
and classical rising factorial polynomials [z]n = z(z+1) · · · (z+n−1), z ∈ C
and n ∈ N, can be unified to the expression

〈z〉n,±1 := z(z ± 1) · · · (z ± (n− 1)),

using the generalized factorial polynomial expression

〈z〉n,k := z(z + k) · · · (z + (n− 1)k) = 〈z + (n− 1)k〉n,−k (z ∈ C, n ∈ N).
(1.8)

Thus 〈z〉n,1 = [z]n and 〈z〉n,−1 = [z]n.

In next section, we will present the unified expression and some proper-
ties of the generalized Stirling numbers of integer orders. Two algorithms
based on the unified expression will be given. The third algorithm of the
computation of the generalized Stirling numbers, including the classical
Stirling numbers as a special case, will be shown using the characteriza-
tions of their Riordan arrays in the last section.
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(α, β, r) S(n, k) Name of Stirling numbers

(−1, 1, 0)
n!
(
n−1
k−1

)
/k!

(−1)n−kn!
(
n−1
k−1

)
/k!

Lah number pair[25]

(−1, 0, 0)
|s(n, k)|

(−1)n−kS(n, k)
signless Stirling numbers[37]

(1, θ, 0)(θ 6= 0)
S(n, k, 1, θ, 0)
S(n, k, θ, 1, 0)

Carlitz′s degenerate Stirling
number pair[5]

(1, 0,−λ)
S(n, k, 1, 0,−λ)
S(n, k, 0, 1, λ)

Carlitz′s weighted Stirling
number pair[6]

(1, θ,−λ)
S(n, k, 1, θ,−λ)
S(n, k, θ, 1, λ)

Howard′s weighted degenerate
Stirling number pair[23]

(0, 1,−a+ b)
S(n, k, 0, 1,−a+ b)
S(n, k, 1, 0,−b+ a)

Gould−Hopper′s non− central Lah
number pair[17]

(1/s, 1,−a+ b)
S(n, k, 1/s, 1,−a+ b)
S(n, k, 1, 1/s,−b+ a)

Charalambides−Koutras′s non−
central C number pair[7, 8]

(1, 0, b− a)
S(n, k, 1, 0, b− a)
S(n, k, 0, 1, a− b)

Riordan′s non− central Stirling
number pair[34]

(α, β, 0)
Aαβ(r,m)
Bαβ(r,m)

Tsylova′s Stirling number pair[46]

(α, β, r)
S(n, k, α, β, r)
S(n, k, β, α,−r)

Hsu− Shiue′s Stirling
number pair[24]

(1, x, 0) ank(x) Todorov′s Stirling numbers[45]

(−1/r, 1, 0) B(n, r, k)
Ahuja− Enneking′s associated
Lah numbers[31]

(−1, 0, r) S(n− r, k − r,−1, 0, r) Broder′s r − Stirling numbers[3]

Table 1. Some generalized Stirling Numbers and Stirling Number pairs

2 Expressions of generalized Stirling numbers

First, we give an equivalent form of the generalized Stirling numbers S(n, k)
defined by (1.5) by using the generalized difference operator in terms of β
(β 6= 0) defined by

∆k
βf = ∆β(∆k−1

β f) (k ≥ 2) and ∆βf(t) := f(t+ β)− f(t). (2.1)
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It can be seen that ∆k
β〈z〉j,−β

∣∣∣
z=0

= βkk!δk,j , where δk,j is the Kronecker

delta symbol; i.e., δk,j = 1 when k = j and 0 otherwise. Evidently, from
(??) there holds

∆k
β〈z〉j,−β

∣∣
z=0

= ∆k
ββ

j

[
t

β

]
j

∣∣∣∣∣
z=0

= βj∆k[t]j
∣∣
z=0

= βkk!δk,j . (2.2)

Denote the divided difference of f(t) at t+ i, i = 0, 1, . . . , k, by f [t, t+
1, . . . , t + k], or [t, t + 1, . . . , t + k]f(t). Using the well-known forward dif-
ference formula, it is easy to check that

1

k!
∆kf(t) = f [t, t+ 1, . . . , t+ k] = [t, t+ 1, . . . , t+ k]f(t)

and

1

βkk!
∆k
βf(t) = f [t, t+ β, t+ 2β, . . . , t+ kβ] = [t, t+ β, . . . , t+ kβ]f(t).

We now give the following definition of the generalized divided differences.

Definition 2.1 We define 4k
β
f(t) by

4k
β
f(t) =

{ 1
βkk!

∆k
βf(t) = f [t, t+ β, . . . , t+ kβ] if β 6= 0

1
k!D

kf(t) if β = 0
, (2.3)

where ∆k
βf(t) is shown in (2.1), f [t, t+β, . . . , t+kβ] ≡ [t, t+β, . . . , t+kβ]f

is the kth divided difference of f in terms of {t, t+β, . . . , t+kβ}, and Dkf(t)
is the kth derivative of f(t).

From the well-known formula

f [t, t+ β, t+ 2β, . . . , t+ kβ] =
Dkf(ξ)

k!
,

where ξ is between t and t+ kβ, it is clear that

Dkf(t) = lim
β→0

1

βk
∆k
βf(t), (2.4)

which shows the generalized divided difference is well defined.
We now give a unified expression of the generalized Stirling numbers in

terms of the the generalized divided differences.



Generalized Stirling Functionss 7

Theorem 2.2 Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0)
is in R3 or C3. For the generalized Stirling numbers defined by (1.5), there
holds

S(n, k, α, β, r) = 4k
β
〈z〉n,−α

∣∣∣
z=r

=

{
1

βkk!
∆k
β〈z〉n,−α

∣∣∣
z=r

= [r, r + β, . . . , r + kβ]〈z〉n,−α if β 6= 0
1
k! D

k〈z〉n,−α
∣∣
z=r

if β = 0.
(2.5)

In particular, for the generalized Stirling number pair defined by (1.6), we
have the expressions

S1(n, k) ≡ S1(n, k, α, β, r) = 4k
β
〈z〉n,−α

∣∣∣
z=r

=

{
1

βkk!
∆k
β〈z〉n,−α

∣∣∣
z=r

= [r, r + β, . . . , r + kβ]〈z〉n,−α, if β 6= 0
1
k!D

k〈z〉n,−α
∣∣
z=r

, if β = 0
(2.6)

S2(n, k) ≡ S2(n, k, β, α,−r) = 4k
α
〈z〉n,−β

∣∣∣
z=−r

=

{
1

αkk!
∆k
α〈z〉n,−β

∣∣
z=−r = [−r,−r + α, . . . ,−r + kα]〈z〉n,−β , if α 6= 0

1
k!D

k〈z〉n,−β
∣∣
z=−r , if α = 0

(2.7)

Furthermore, if (α, β, r) = (1, 0, 0), then (2.5) is reduced to the classical
Stirling numbers of the first kind defined by (1.1) with the expression

s(n, k) = S(n, k, 1, 0, 0) =
1

k!
Dk[z]n

∣∣
z=0

.

If (α, β, r) = (0, 1, 0), then (2.5) is reduced to the classical Stirling num-
bers of the second kind shown in (1.3) with the following divided difference
expression form:

S(n, k) = S(n, k, 0, 1, 0) = [0, 1, 2, . . . , k]zn|z=0 . (2.8)

Proof. If β 6= 0, taking forward kth differences in terms of β on the both
sides of (1.5) and letting z = r, from formula (2.2) we have

∆k
β〈z〉n,−α

∣∣
z=r

= ∆k
β

n∑
j=0

S(n, j, α, β, r)〈z − r〉j,−β |z=r

=

n∑
j=0

S(n, j, α, β, r) ∆k
β〈z − r〉j,−β

∣∣
z=r

= βkk!S(n, k, α, β, r).
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which implies the expression of S(n, k, α, β, r) in (1.5) for the case of β 6= 0.
If β = 0, we take kth derivative in terms of z on the both sides of (1.5) and
let z = r, which yields

Dk〈z〉n,−α
∣∣
z=r

= ∆k
β

n∑
j=0

S(n, j, α, β, r)(z − r)j
∣∣
z=r

= k!S(n, k, α, 0, r),

completing the proof of (2.5).
Similarly, if β 6= 0, taking forward kth difference in terms of β and α

on the both sides of two equations of (1.6), respectively, and letting z = r
and z = −r, respectively, we immediately obtain

∆k
β〈z〉n,α

∣∣
z=r

= βkk!S1(n, k, α, β, r)

∆k
α〈z〉n,β

∣∣
z=−r = αkk!S1(n, k, β, α,−r).

which imply two first formulas of (2.6) for β 6= 0. Two formulas for the
case of β = 0 in (2.6) can be obtained by using kth differentiation and a
similar argument in the proof of their unified form (2.5).

The following corollary is obvious due to the expansion formula of the
divided differences generated from their definition.

Corollary 2.3 Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0)
is in R3 or C3. If β 6= 0, for the generalized Stirling numbers defined by
(1.5), there holds

S(n, k) ≡ S(n, k, α, β, r) =
1

βkk!

n∑
j=0

(−1)j
(
k

j

)
〈r+ (k− j)β〉n,−α (n 6= 0),

(2.9)
and S(0, k) = δ0k.

Remark 2.1 It can be seen from (2.9) that

S(n, 0) ≡ S(n, 0, α, β, r) = 〈r〉n,−α, (2.10)

which is independent of β and has been shown in (1.7). The difference is
deriving (2.10) from (2.9) needs (α, r) 6= (0, 0) when β = 0. However, we
have seen from (1.7) that the condition is not necessary. Another way to
derive (2.10) using the characterization of the Riordan arrays of the gen-
eralized Stirling numbers will be presented in the Algorithm 3.3 in Section
4.
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Remark 2.2 If αβ 6= 0, by taking the nth forward differences in terms of
α and β on the both sides of two equations of (1.6), respectively, one may
obtain identities

n!αn =

n∑
k=0

S1(n, k) ∆n
α〈z − r〉k,−β |z=0

n!βn =

n∑
k=0

S2(n, k) ∆n
β〈z + r〉k,−α

∣∣
z=0

.

The above two identities can be unified to be one:

n!αn =

n∑
k=0

S(n, k, α, β, r)∆n
α〈z − r〉k,−β |z=0 .

When α = 0, the above identity turns to

n! =

n∑
k=0

S(n, k, 0, β, r) Dn〈z − r〉k,−β |z=0 .

Remarker 2.3 There exists another expression of the divided difference

4k
β
〈z〉n,−α

∣∣∣
z=r

in terms of Peano kernel of B-spline. Assume that the set

τ := {t, t+β, . . . , t+kβ} lies in the interval [a, b]. Then on the interval, we
have Taylor’s identity

〈z〉n,−α =
∑
j<k

(z − a)j

j!
Dj〈z〉n,−α

∣∣
z=a

+

∫ b

a

(x− y)k−1
+

(k − 1)!
〈y〉n,−αdy.

If β > 0, then 4k
β

is a weighted sum of values of derivatives of order < k,

hence commutes with the integral in the above Taylor’s expansion, which
annihilates any polynomial of degree < k. Therefore,

4k
β
〈z〉n,−α

∣∣∣
z=r

=

∫ b

a

M(y|τ)

k!
〈y〉n,−αdy,

where

M(y|τ) := k[r, r + β, . . . , r + kβ](· − y)k−1
+

is the Curry-Schoenberg B-spline (see [12]) with the knot set τ and nor-
malized to have integral 1. In particular,
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S(n, n, α, β, r) = 4k
β
〈z〉n,−α

∣∣∣
z=r

=

∫ b

a

M(y|r, r + β, . . . , r + nβ)dy = 1.

We now present two algorithms for calculating generalized Stirling num-
bers. If β 6= 0, we denote

4j
β
f(t+ `β) := f [t, t+ `β, t+ (`+ 1)β, . . . , t+ jβ] (2.11)

Thus, from (2.5) in Theorem 2.2, based on the recursive definition of the
divided difference with respect to β (see Definition 2.1)

4j
β
f(t+ `β) =

1

jβ
(4j−1

β
f(t+ (`+ 1)β)−4j−1

β
f(t+ `β)), (2.12)

we obtain an algorithm shown below.

Algorithm 2.4 This algorithm of evaluating the generalized Stirling num-
bers is based on the construction of the following lower triangle array by
using (2.11) and (2.12).

〈z〉n,−α|z=r
〈z + β〉n,−α|z=r 4

β
〈z〉n,−α

∣∣∣
z=r

〈z + 2β〉n,−α|z=r 4
β
〈z + β〉n,−α

∣∣∣
z=r

42

β
〈z〉n,−α

∣∣∣
z=r

...
...

...
. . .

〈z + kβ〉n,−α|z=r 4
β
〈z + (k − 1)β〉n,−α

∣∣∣
z=r

42

β
〈z + (k − 2)β〉n,−α

∣∣∣
z=r

· · · 4k
β
〈z〉n,−α

∣∣∣
z=r

Table 2. The generalized Stirling numbers

Thus, the diagonal of the above lower triangle array gives S(n, i, α, β, r) =

4i
β
〈z〉n,−α

∣∣∣
z=r

for i = 0, 1, . . . , k.

Example 2.1 We now use Algorithm 2.4 shown in Table 2 to evaluate
the classical Stirling numbers of the second kind S(4, k) = S(4, k, 0, 1, 0)
(k = 1, 2, 3, 4), which are re-expressed by (2.8). Thus,

0
1 1
24 = 16 15 7
34 = 81 65 25 6
44 = 256 175 55 10 1
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From the diagonal of the above lower triangular matrix, we may read
S(4, 0) = 0, S(4, 1) = 1, S(4, 2) = 7, S(4, 3) = 6, and S(4, 4) = 1. Mean-
while, the subdiagonal gives S(5, 1) = 1, S(5, 2) = 15, S(5, 3) = 25, and
S(5, 4) = 10.

Example 2.2 For the Howard’s weighted degenerate Stirling numbers
S(4, k) = S(4, k, 1, 1,−1), a similar argument of Example 2.1 yields

〈z〉4,−1|z=−1 = 24

〈z + 1〉4,−1|z=−1 = 0 −24

〈z + 2〉4,−1|z=−1 = 0 0 12

〈z + 3〉4,−1|z=−1 = 0 0 0 −4

〈z + 4〉4,−1|z=−1 = 0 0 0 0 1

Thus, S(4, 0) = 24, S(4, 1) = −24, S(4, 2) = 12, S(4, 3) = −4, and
S(4, 4) = 1.

Example 2.3 For the Howard’s weighted degenerate Stirling numbers
S(4, k) = S(4, k, 1, 2,−1), using Algorithm 2.4, we obtain S(4, 0) = 24,
S(4, 1) = −12, S(4, 2) = 3, S(4, 3) = 2, and S(4, 4) = 1 reading from the
following table.

〈z〉4,−1|z=−1 = 24

〈z + 2〉4,−1|z=−1 = 0 −12

〈z + 4〉4,−1|z=−1 = 0 0 3

〈z + 6〉4,−1|z=−1 = 120 60 15 2

〈z + 8〉4,−1|z=−1 = 840 360 75 10 1

Remark 2.4 Obviously, Algorithm 2.4 is not limited to the case of β 6= 0

since when β = 0, 4k
β
〈z〉n,−α

∣∣∣
z=r

(k = 0, 1, . . . , n) on the diagonal of

the lower triangle matrix in Table 1 are simply the 1/k! multiply of the
derivatives Dk〈z〉n,−α

∣∣
z=r

(see Theorem 2.2).
Another algorithm based on the Horner’s method can be established

using a modified argument in the computation of the classical Stirling num-
bers of the second kind shown in [20]. More precisely, we have the following
algorithm.

Algorithm 2.5 First, we may write the generalized Stirling numbers S(n, k) =
S(n, k, α, β, r) defined by (1.5) (see Definition 1.1) as

〈z〉n,−α =

n∑
k=0

S(n, k)〈z − r〉k,−β

= S(n, 0) + (z − r)(S(n, 1) + (z − r − β)(S(n, 2) + (z − r − 2β)(S(n, 3) + · · ·
(z − r − (n− 1)β)S(n, n)))). (2.13)
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Secondly, Use synthetic division to obtain 〈z〉n,−α/(z − r), a polynomial of
degree ≤ n − 1, with the remainder S(n, 0). Then, evaluate (〈z〉n,−α/(z −
r)−S(n, 0))/(z−r−β) to find the quotient polynomial of degree ≤ n−2 as
well as the remainder S(n, 1). Continue this process until a polynomial of
degree ≤ 1 left, which is S(n, n−1)+(z−r−(n−1)β)S(n, n). A equivalent
description of the above process can be presented as follows. Use Horner’s
method to find

f(r) ≡ 〈z〉n,−α = S(n, 0) + (z − r)f1(z), deg f1(z) ≤ n− 1,

where the remainder is S(n, 0)). Then, use Horner’s method again to eval-
uate

f1(z) = S(n, 1) + (z − r − β)f2(z), deq f2(z) ≤ d− 2,

which generates the remainder S(n, 1). Continue the process and finally
obtain

fn−1 = S(n, n− 1) + (z − r − (n− 1)β)S(n, n).

In short, we obtain S(n, 0) = 〈z〉n,−α|z=r, S(n, 1) = (〈z〉n,−α − S(n, 0))/(z − r)|z=r+β,
etc.

Algorithm 2.5 can be demonstrated by the following examples.

Example 2.4 For the classical Stirling numbers of the second kind in the
case of n = 5 and (α, β, r) = (0, 1, 0), from expansion (2.13) we have

z5 = S(5, 0)+z(S(5, 1)+(z−1)(S(5, 2)+(z−2)(S(5, 3)+(z−3)(S(5, 4)+(z−4)S(5, 5))))),

which implies S(5, 0) = 0 and

z4 = S(5, 1)+(z−1)(S(4, 2)+(z−2)(S(4, 3)+(z−3)(S(4, 4)+(z−4)S(5, 5)))).

Thus, we may use the following division to evaluate S(5, k) (k = 1, 2, 3, 4, 5).
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1 1 0 0 0 0

1 1 1 1

2 1 1 1 1 1

2 6 14

3 1 3 7 15

3 18

4 1 6 25

4

1 10

Hence, S(5, 1) = 1, S(5, 2) = 15, S(5, 3) = 25, S(5, 4) = 10, and S(5, 5) = 1.

From (2.13) we also immediately know that S(n, n) = 1 because it is the
coefficient of zn on the right-hand side while the coefficient on the left-hand
side is 1.

Example 2.5 Consider the Howard’s weighted degenerate Stirling num-
bers with n = 4 and (α, β, r) = (1, 2,−1), we now calculate S(n, k) =
S(n, k, 1, 2,−1) using Horner’s method based on expansion (2.13), which
can be reduced to

〈z〉4,−1 = z4 − 6z3 + 11z2 − 6z

= S(4, 0) + (z + 1)(S(4, 1) + (z − 1)(S(4, 2) + (z − 3)(S(4, 3) + (z − 5)(S(4, 4))))).

Therefore, we have synthetic division scheme as
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−1 1 −6 11 −6 0

−1 7 −18 24

1 1 −7 18 −24 24

1 −6 12

3 1 −6 12 -12

3 −9

5 1 −3 3

5

1 2

Thus, S(4, 0) = 24, S(4, 1) = −12, S(4, 2) = 3, S(4, 3) = 2, and S(4, 4) = 1,
which yield the same results obtained in Example 2.3 by a different method.

Similarly, for the case of n = 5 and (α, β, r) = (1, 2,−1), we may estab-
lish the following expansion

〈z〉5,−1 = z5 − 10z4 + 35z3 − 50z2 + 24z

= S(5, 0) + (z + 1)(S(5, 1) + (z − 1)(S(5, 2) + (z − 3)(S(5, 3)

+(z − 5)(S(5, 4) + (z − 7)S(5, 5))))).

Thus, we may also read S(5, 0) = −120, S(5, 1) = 60, S(5, 2) = −15,
S(5, 3) = 5, S(5, 4) = 5, and S(5, 5) = 1 from the table:
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−1 1 −10 35 −50 24 0

−1 11 −46 96 −120

1 1 −11 46 −96 120 -120

1 −10 36 −60

3 1 −10 36 −60 60

3 −21 45

5 1 −7 15 -15

5 −10

7 1 −2 5

7

1 5

Let {tj}nj=1 be a strictly increasing n-sequence, and let σ = {σ(j)}kj=1 be
any strictly increasing integer sequence in [1, n]. There holds the following
well-known refinement formula of divided difference (see, for example, [2])

f [t, t− tσ(1), . . . , t− tσ(k)] =

σ(k)−k)∑
j=σ(1)−1

c(j)f [t, tj+1, . . . , t− tj+k],

where c(j) = ct,σ > 0. Using this refinement formula one may obtain the
refinement formula of the generalized Stirling numbers defined by (1.5).

Proposition 2.6 Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0)
is in R3 or C3. Then there holds refinement formula,

4(βσ(1:k)) 〈z〉n,−α|z=r =

σ(k)−k)∑
j=σ(1)−1

c(j)4(βj+1:j+k) 〈z〉n,−α|z=r ,

where

4(β`:j)f := f [t, t+ `β, t+ (`+ 1)β, . . . , t+ jβ]
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3 A comprehensive method of computation
of generalized Stirling numbers

Let us consider the set of formal power series (f.p.s.) F = R[[t; {ck}]]
or C[[t; {c}]] (where c = (c0, c1, c2, . . .) satisfies c0 = 1, ck > 0 for all
k = 1, 2, . . .); the order of f(t) ∈ F, f(t) =

∑∞
k=0 fkt

k/ck, is the minimal
number r ∈ N such that fr 6= 0; Fr is the set of formal power series of
order r. It is known that F0 is the set of invertible f.p.s. and F1 is the
set of compositionally invertible f.p.s., that is, the f.p.s.’s f(t) for which
the compositional inverse f(t) exists such that f(f(t)) = f(f(t)) = t. We

call the element g ∈ F with the form g(x) =
∑
k≥0

xk

ck
a generalized power

series (GPS) associated with {cn} or, simply, a (c)-GPS, and F the GPS set
associated with {cn}. In particular, when c = (1, 1, . . .), the corresponding
F and Fr denote the classical formal power series and the classical formal
power series of order r, respectively.

In the recent literature, special emphasis has been given to the concept
of Riordan arrays, which are a generalization of the well-known Pascal
triangle. Riordan arrays are infinite, lower triangular matrices defined by
the generating function of their columns. They form a group, called the
Riordan group (see Shapiro et al. [42]). Some of the main results on the
Riordan group and its application to combinatorial sums and identities
can be found in Sprugnoli [43, 44], on subgroups of the Riordan group
in Peart and Woan [33] and Shapiro [39], on some characterizations of
Riordan matrices in Rogers [36], Merlini et al. [28] and He et al. [21],
and on many interesting related results in Cheon et al. [9, 10], He et al.
[19], Nkwanta [32], Shapiro [40, 41], and so forth. We now generalize the
Riordan arrays associated with classical power series to those associated
with (c)-GPS, where c = {ck = k!}k≥0. The Riordan arrays associated
with other (c)-GPS can be found in author’s later paper. More precisely,
let c = {ck = k!}k≥0. The (c)-Riordan array generated by d(t) ∈ F0 and
h(t) ∈ F1 with respect to {ck}k≥0 is an infinite complex matrix [dn,k]0≤k≤n,
whose bivariate generating function has the form

F (t, x) =
∑
n,k

dn,k
tn

n!
xk = d(t)exh(t), (3.1)

which is called a Sheffer type Riordan array.
Thus, the (n, k) entry of (c)-Riordan array [dn,k] is

dn,k =

[
tn

n!

]
d(t)

(h(t))k

k!
= [tn]

n!

k!
d(t)(h(t))k (3.2)

for all 0 ≤ k ≤ n and dn,k = 0 otherwise. It is easy to see that a
lower triangular array [dn,k] is a (c)-Riordan array if and only if the array
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(k!dn,k/n!) is a (1)-Riordan array, i.e., a classical Riordan array. Evidently,
[dn,k] = (d(t), h(t)) can be written as

[dn,k] = D[[tn]d(t)(h(t))k]n≥k≥0D
−1, (3.3)

where D = diag(1, 1, 2!, . . .).
Rogers [36] introduced the concept of the A-sequence for the classi-

cal Riordan arrays; Merlini et al. [28] introduced the related concept of
the Z-sequence and showed that these two concepts, together with the el-
ement d0,0, completely characterize a proper classical Riordan array. In
[21], Sprugnoli and the author consider the characterization of Riordan
arrays, their multiplications, and their inverses by means of the A- and
Z-sequences.

In [36], Rogers states that for every proper Riordan arrayD = (d(t), h(t))
there exists a sequence A = (ak)k∈N such that for every n, k ∈ N we have:

[tn+1]d(t)(h(t))k+1

= a0[tn]d(t)(h(t))k + a1[tn]d(t)(h(t))k+1 + a2[tn]d(t)(h(t))k+2 + · · ·

=

∞∑
j=0

aj [t
n]d(t)(h(t))k+j (3.4)

where the sum is actually finite since dn,k = 0, ∀k > n. We can reformulate
it to the generalized (c)-Riordan array as follows.

Theorem 3.1 An infinite lower triangular array D = (dn,k)n,k∈N = (d(t), h(t))

is a (c)-Riordan array if and only if a sequence A = (a0 6= 0, a1, a2, . . .) ex-
ists such that for every n, k ∈ N relation

ck+1

cn+1
dn+1,k+1 =

c0
cn
a0dn,k+

c1
cn
a1dn,k+1+

c2
cn
a2dn,k+2+· · · =

∞∑
j=0

ck+j

cn
ajdn,k+j

(3.5)
holds. In addition, the generating function A(t) of A− sequence is uniquely
determined by tA(h(t)) = h(t).

Proof. Using expression (3.2) and expression (3.4), we obtain formula (3.5)
immediately. From a similar argument of the proof of Theorem 2.1 in
[21], we have tA(h(t)) = h(t), where A(t) is the generating function of A−
sequence.

The sequence A = (an)n∈N0 is the A-sequence of the Riordan array
D = (d(t), h(t)) and it only depends on h(t). In fact, as we have shown
during the proof of the theorem, we have:

h(t) = tA(h(t)) or A(y) =

[
h(t)

t

∣∣∣ y = h(t)

]
=
[y
t

∣∣∣ y = h(t)
]

(3.6)
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and this uniquely determines A when h(t) is given and vice versa, h(t) is
uniquely determined when A is given.

We now use Theorem 3.1 to establish a new recursive relationship of
generalized Stirling numbers. From expression (12) in Theorem 2 of [24]
with αβ 6= 0, we have the generating function of the generalized Stirling
numbers shown below:

1

k!
(1 + αz)r/α

(
(1 + αz)β/α − 1

β

)k
=
∑
n≥0

S(n, k)
zn

n!
. (3.7)

Theorem 3.2 Let αβ 6= 0. The A− sequence (an)n∈N0
of the Riordan

array of the generalized Stirling number array [dn,k = k!S(n, k)/n!]0≤k≤n
satisfies

a0 = 1, an = − 1

α

n∑
k=1

an−k
〈α〉k+1,−β

(k + 1)!
(3.8)

for all n ≥ 1.

Proof. Denote the compositional inverse of h(z) = ((1 + αz)β/α − 1)/β by
h̄(z). Thus,

h̄(z) =
(1 + βz)α/β − 1

α
.

Thus, the generating function, A(z) =
∑
k≥0 akz

k, of the A-sequence char-
acterized the Riordan array of (3.7), [dn,k]0≤k≤n, satisfies zA(h(z)) = h(z),
or equivalently,

A(z) =
z

h̄(z)
=

αz

(1 + βz)α/β − 1
=

αz∑
k≥1

(
α/β
k

)
(βz)k

=
α∑

k≥0〈α〉k+1,−βzk/(k + 1)!
,

(3.9)
which implies

∑
k≥0

akz
k

∑
k≥0

〈α〉k+1,−β

(k + 1)!
zk

 =
∑
n≥0

zn

(
n∑
k=0

an−k
〈α〉k+1,−β

(k + 1)!

)
= α

using the Cauchy multiplication formula. Comparing the coefficients of
powers zn, we obtain a system that can be solved to obtain the solution of
(an)n∈N shown in (3.8).
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To find the fist column of the array [dn,k]0≤k≤n, we consider (3.7) for
k = 0 and have

(1 + αz)r/α =
∑
n≥0

S(n, 0)

n!
zn.

On the other hand,

(1 + αz)r/α =
∑
n≥0

(
r/α

n

)
(αz)n.

Comparing the right-hand sides of the last two equations, we obtain

S(n, 0) ≡ S(n, 0, α, β, r) = n!

(
r/α

n

)
αa = 〈r〉n,−α. (3.10)

Formula (3.10) was given in (1.7) and also in (2.9), which are derived by
different approaches.

From (3.7) we have

[dn,k]0≤k≤n =

[
k!

n!
S(n, k)

]
0≤k≤n

, (3.11)

where S(n, k) ≡ S(n, k, α, β, r) (αβ 6= 0). Therefore, surveying the above
process, we obtain an algorithm to evaluate generalized Stirling numbers
S(n, k) ≡ S(n, k, α, β, r) with αβ 6= 0.

Algorithm 3.3 Denote d(t) = (1+αz)r/α and h(z) = ((1+αz)β/α−1)/β
(αβ 6= 0). Let n, k ∈ N0 and αβ 6= 0. Then we may find A-sequence
(an)n∈N0

shown in (3.8) and establish the array (3.11) except its first col-
umn by using the recursive relation (3.5) shown in Theorem 3.1, i.e.,

k!

n!
S(n, k) =

∑
j≥0

aj
(k + j − 1)!

(n− 1)!
S(n− 1, k + j − 1) (3.12)

for all 1 ≤ k ≤ n. The first column of array (3.11) can be constructed by
using (3.10). Thus, the nth entry of the first column is

1

n!
S(n, 0) =

〈r〉n,−α
n!

. (3.13)

Finally, all S(n, k) ≡ S(n, k, α, β, r) (0 ≤ k ≤ n) can be read from a
modification of array (3.11); namely from[

n!

k!
dn,k

]
0≤k≤n

= [S(n, k)]0≤k≤n ,
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where S(n, k) = n
∑
j≥0 aj [k+ j− 1]j−1S(n− 1, k+ j− 1) when 1 ≤ k ≤ n,

and S(n, 0) can be obtained from (3.13) or (3.10).

Remark 3.1 The condition αβ 6= 0 in Theorem 3.2 and Algorithm 3.3
is not necessary. Algorithm 3.3 can be modified to adapt some of cases
when αβ = 0. We will show the application of Algorithm 3.3 to the cal-
culations of the classical Stirling numbers of the second and the first kind,
i.e., S(n, k, α, β, r)) = S(n, k, 0, 1, 0) and S(n, k, α, β, r) = S(n, k, 1, 0, 0), in
Examples 4.2 and 4.3, respectively.

Example 3.1 For the Howard’s weighted degenerated Stirling numbers
S(n, k) ≡ S(n, k, 1, 1,−1). From Algorithm 3.3 or Theorem 3.2, we imme-
diately have generating function of the corresponding A-sequence A(z) = 1.
Then, using (3.12) and (3.13) we obtain the Riordan array [dn,k]0≤k≤n =[
k!
n!S(n, k)

]
0≤k≤n as

[
k!

n!
S(n, k)

]
0≤k≤n

=


1
−1 1

1 −1 1
−1 1 −1 1

1 −1 1 −1 1

 .
Therefore,

[S(n, k)]0≤k≤n =


1
−1 1

2 −2 1
−6 6 −3 1
24 −24 12 −4 1

 ,
which gives S(0, 0) = 1; S(1, 0) = −1, S(1, 1) = 1; S(2, 0) = 2, S(2, 1) =
−2, S(2, 2) = 1; S(3, 0) = −6, S(3, 1) = 6, S(3, 2) = −3, S(3, 3) = 1; and
S(4, 0) = 24, S(4, 1) = −24, S(4, 2) = 12, S(4, 3) = −4, and S(4, 4) = 1
row by row.

Example 3.2 As we have presented in Remark 4.1, the condition αβ 6= 0
in Theorem 3.2 and Algorithm 3.3 is not necessary. Here, we demon-
strate how to modify Algorithm 3.3 for the case of (α, β, r) = (0, 1, 0).
The generating function of the corresponding classical Stirling numbers
{S(n, k) ≡ S(n, k, 0, 1, 0)}0≤k≤n of the second kind is

1

k!
(ez − 1)k =

∑
n≥0

S(n, k)
zn

n!
.

Thus the corresponding Riordan array has generating functions d(z) = 1
and h(z) = ez − 1. Since the compositional inverse of h(z) is h̄(z) = ln(1 +
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z), the A-sequence characterization of the Riordan array has generating
function

A(z) =
z

ln(1 + z)
=

z∑
k≥1

(−1)k−1

k zk
=

1∑
k≥0

(−1)k

k+1 z
k
,

which coefficients {an}n≥0, i.e., the elements of A-sequence, can be solved
from the above equation as

a0 = 1, an = −
n∑
k=1

an−k
(−1)k

k + 1
=

n+1∑
k=2

an−k+1
(−1)k

k
(n ≥ 1).

Thus, we obtain the first few an:

a0 = 1, a1 =
1

2
, a2 = − 1

12
, a3 =

1

24
, a4 = − 19

720
, etc.

Similar to Algorithm 3.3, we may find the Riordan array

[dn,k]0≤k≤n =

[
k!

n!
S(n, k)

]
0≤k≤n

=

[
k!

n!
S(n, k)

]
0≤k≤n

=


1
0 1
0 1

2 1
0 1

6 1 1
0 1

24
7
12

3
2 1

 .
The Riordan Stirling array of the Stirling numbers of the second kind is

[S(n, k)]0≤k≤n =

[
k!

n!
S(n, k)

]
0≤k≤n

=


1
0 1
0 1 1
0 1 3 1
0 1 7 6 1

 ,
which gives all S(n, k) = S(n, k, 0, 1, 0) for 0 ≤ k ≤ 4. For instance,
S(4, 0) = 0, S(4, 1) = 1, S(4, 2) = 7, S(4, 3) = 6, and S(4, 4) = 1.

Example 4.3 For (α, β, r) = (1, 0, 0), we can also applied a modification
of Algorithm 3.3 to evaluate the classical Stirling numbers of the first kind
s(n, k) ≡ S(n, k, 1, 0, 0) as follows. In this case, we have the corresponding
Riordan array (d(z), h(z)) = (1, ln(1 + z)). Thus the compositional inverse
of h̄(z) = ez − 1. Thus the A-sequence {an}n≥0 has its generating function

A(z) =
z

h̄(z)
=

z∑
k≥1

zk

k!

=
1∑

k≥0
zk

(k+1)!

.



22 T. X. He

Solve the above equation to obtain

a0 = 1, a1 = −1

2
, a2 =

1

12
, a3 = 0, a4 = − 1

720
etc.,

which brings us the Riordan array

[dn,k]0≤k≤n =

[
k!

n!
s(n, k)

]
0≤k≤n

=

[
k!

n!
s(n, k)

]
0≤k≤n

=


1
0 1
0 − 1

2 1
0 1

3 −1 1
0 − 1

4
11
12 − 3

2 1

 .
The Riordan Stirling array of the signed Stirling numbers of the first kind
is

[s(n, k)]0≤k≤n =

[
k!

n!
s(n, k)

]
0≤k≤n

=


1
0 1
0 −1 1
0 2 −3 1
0 −6 11 −6 1

 ,
which gives all s(n, k) = S(n, k, 1, 0, 0) for 0 ≤ k ≤ 4. For instance, s(4, 0) =
0, s(4, 1) = −6, s(4, 2) = 11, s(4, 3) = −6, and s(4, 4) = 1. Of course, the
Stirling numbers of the first kind can be evaluated more easily by using
formula (2.5) in Theorem 2.2, namely,

s(n, k) ≡ S(n, k, 1, 0, 0) =
1

k!

dk

dz2
[z]n

∣∣∣∣
z=0

,

which are simply the coefficients of the powers of z in the expansion of [z]n.
If c = {ck = k!}k≥0, the corresponding (c)-Riordan array [dn,k]n≥k≥0

shown in (3.3) is called an exponential Riordan array in [13]), where dn,k
is presented in (3.2). [13] gives an interesting algorithm in computation
of dn,k by using two different sequences, c-sequence and r-sequence. More
precisely, we cite Proposition 4.1 of [13] as follows.

Proposition 3.4 ([13], Proposition 4.1) Let [dn,k]n≥k≥k≥0 = (d(z), h(z))
be an exponential Riordan array and let

c(x) = c0 + c1x+ c2x
2 + · · · , r(x) = r0 + r1x+ r2x

2 + · · · (3.14)

be two formal power seeies such that
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c(h(z)) = d′(z)/d(z), r(h(z)) = h′(z). (3.15)

Then

dn+1,0 =
∑
i≥0

i!cidn,i, (3.16)

dn+1,k = r0dn,k−1 +
1

k!

∑
i≥k

i!(ci−k + kri−k+1)dn,i, (3.17)

or, defining c−1 = 0,

dn+1,k =
1

k!

∑
i≥k−1

i!(ci−k + kri−k+1)dn,i (3.18)

for all k ≥ 0.
Conversely, starting from the sequence defined by (3.14), the infinite

array [dn,k]n≥k≥0 defined by (3.18) is an exponential Riordan array.

The exponential Riordan array [S(n, k)] ≡ [S(n, k, α, β, r)] of the gener-
alized Stirling numbers have the generating functions shown in (3.7). Thus
[S(n, k)] = (d(z), h(z)), where

d(z) = (1 + αz)r/α, h(z) =
(1 + αz)β/α − 1

β
. (3.19)

It is obvious that the compositional inverse of h(t) is

h̄(z) =
(1 + βz)α/β − 1

α
. (3.20)

From (3.15) we obtain the generating functions of c-sequence and r-sequence

c(x) =
d′(x)

d(x)

∣∣∣∣
x=h̄(x)

=
r

1 + αx

∣∣∣∣
x=h̄(x)

= r(1 + βx)−α/β (3.21)

r(x) = h′(x)|x=h̄(x) = (1 + αz)(β/α)−1
∣∣∣
x=h̄(x)

= (1− βx)1−α/β .(3.22)

In particular, if α = β 6= 0, then

c(x) = r(1 + βx)−1 = r − rβx+ rβ2x2 − rβ3x3 + · · ·
r(x) = 1. (3.23)



24 T. X. He

Thus, we obtain a recursive formula for the computation of S(n, k) =
S(n, k, β, β, r):

S(n+ 1, 0) =

n∑
i=0

i!ciS(n, i), (3.24)

S(n+ 1, k) = S(n, k − 1) +
1

k!

n∑
i=k

i!ci−kS(n, i), k > 0, (3.25)

where c0 = r, c1 = −rβ, c2 = rβ2, . . ., shown in (3.23).
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