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1 Introduction

Many number and polynomial sequences can be defined, characterized,
evaluated, and classified by linear recurrence relations with certain or-
ders. A polynomial sequence {an(x)} is called a sequence of order 2 if
it satisfies the linear recurrence relation of order 2:

an(x) = p(x)an−1 + q(x)an−2(x), n ≥ 2, (1)

for some coefficient p(x) 6≡ 0 and q(x) 6≡ 0 and initial conditions a0(x)
and a1(x). To construct an explicit formula of its general term, one may
use a generating function, characteristic equation, or a matrix method
(See Comtet [1], Hsu [2], Strang [3], Wilf [4], etc.) In [5], the authors
presented a new method to construct an explicit formula of {an(x)}
generated by (1). For the sake of the reader’s convenience, we cite this
result as follows.

Proposition 1.1 Let {an(x)} be a sequence of order 2 satisfying the
linear recurrence relation (1). Then

an(x) =

{ (
a1(x)−β(x)a0(x)

α(x)−β(x)

)
αn(x)−

(
a1(x)−α(x)a0(x)

α(x)−β(x)

)
βn(x), if α(x) 6= β(x);

na1(x)αn−1(x)− (n− 1)a0(x)αn(x), if α(x) = β(x),
(2)

where α(x) and β(x) are roots of t2 − p(x)t− q(x) = 0, namely,

α(x) =
1

2
(p(x) +

√
p2(x) + 4q(x)), β(x) =

1

2
(p(x)−

√
p2(x) + 4q(x)).

(3)

In [6], Aharonov, Beardon, and Driver have proved that the solution
of any sequence of numbers that satisfies a recurrence relation of order
2 with constant coefficients and initial conditions a0 = 0 and a1 = 1,
called the primary solution, can be expressed in terms of Chebyshev
polynomial values. For instance, the authors show Fn = i−nUn(i/2)
and Ln = 2i−nTn(i/2), where Fn and Ln are, respectively, Fibonacci
numbers and Lucas numbers, and Tn(x) and Un(x) are the Cheby-
shev polynomials of the first kind and the second kind, respectively.
Some identities drawn from those relations were given by Beardon in
[7]. Marr and Vineyard in [8] use the relationship to establish explicit
expression of five-diagonal Toeplitz determinants. In [5], the authors
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presented a new method to construct an explicit formula of {an(x)}
generated by (1). Inspired with those results, in [9], the authors and
Weng established a relationship between the number sequences defined
by recurrence relation (1) and the generalized Gegenbauer-Humbert
polynomial value sequences. The results are suitable for all such num-
ber sequences defined by (1) with arbitrary initial conditions a0 and a1,
which includes the results in [6] and [7] as the special cases. Many new
and known formulas of Fibonacci, Lucas, Pell, Jacobsthal numbers in
terms of the generalized Gegenbauer-Humbert polynomial values were
presented in [9]. In this paper, we will give an alternative form of (2)
and find a relationship between all polynomial sequences defined by (1)
and the generalized Gegenbauer-Humbert polynomial sequences.

A sequence of the generalized Gegenbauer-Humbert polynomials
{P λ,y,C

n (x)}n≥0 is defined by the expansion (see, for example, [1], Gould
[10], and the authors with Hsu [11])

Φ(t) ≡ (C − 2xt+ yt2)−λ =
∑
n≥0

P λ,y,C
n (x)tn, (4)

where λ > 0, y and C 6= 0 are real numbers. As special cases of (4), we
consider P λ,y,C

n (x) as follows (see [11])

P 1,1,1
n (x) = Un(x), Chebyshev polynomial of the second kind,

P 1/2,1,1
n (x) = ψn(x), Legendre polynomial,

P 1,−1,1
n (x) = Pn+1(x), P ell polynomial,

P 1,−1,1
n

(x
2

)
= Fn+1(x), F ibonacci polynomial,

P 1,1,1
n

(x
2

+ 1
)

= Bn(x), Morgan− V oyc polynomial, [12] by Koshy,

P 1,2,1
n

(x
2

)
= Φn+1(x), Fermat polynomial of the first kind,

P 1,2a,2
n (x) = Dn(x, a), Dickson polynomial of the second kind,

a 6= 0 (see, for example, [13]) by Lidl, Mullen, and Turnwald,

where a is a real parameter, and Fn = Fn(1) is the Fibonacci number.
In particular, if y = C = 1, the corresponding polynomials are called
Gegenbauer polynomials (see [1]). More results on the Gegenbauer-type
polynomials can be found in Hsu[14] and Hsu and Shiue [15], etc. It is
interesting that for each generalized Gegenbauer-Humbert polynomial
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sequence there exists a non generalized Gegenbauer-Humbert polyno-
mial sequence, for instance, corresponding to the Chebyshev polynomi-
als of the second kind, Pell polynomials, Fibonacci polynomials, Fermat
polynomials of the first kind, and the Dickson polynomials of the second
kind, we have the Chebyshev polynomials of the first kind, Pell-Lucas
polynomials (see [16] by Horadam and Mahon), Lucas polynomials, the
Fermat polynomials of the second kind (see [17] by Horadam), and the
Dickson polynomials of the first kind, respectively.

Similarly, for a class of the generalized Gegenbauer-Humbert poly-
nomial sequences defined by

P λ,y,C
n (x) = 2x

λ+ n− 1

Cn
P λ,y,C
n−1 (x)− y2λ+ n− 2

Cn
P λ,y,C
n−2 (x) (5)

for all n ≥ 2 with initial conditions

P λ,y,C
0 (x) = Φ(0) = C−λ,

P λ,y,C
1 (x) = Φ′(0) = 2λxC−λ−1,

the following theorem is obtained

Theorem 1.2 ([5]) Let x 6= ±
√
Cy. The generalized Gegenbauer-

Humbert polynomials {P 1,y,C
n (x)}n≥0 defined by expansion (4) can be

expressed as

P 1,y,C
n (x) = C−n−2

(
x+

√
x2 − Cy

)n+1

−
(
x−

√
x2 − Cy

)n+1

2
√
x2 − Cy

. (6)

In next section, we shall use an alternative form of (2) to establish
a relationship between the polynomial sequences defined by recurrence
relation (1) and the generalized Gegenbauer-Humbert polynomial se-
quences defined by (5). Many new and known formulas of polynomials
in terms of the generalized Gegenbauer-Humbert polynomials and ap-
plications of the established relationship to the construction of identities
of polynomial sequences will be presented in Section 3.
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2 Main results

We now modify the explicit formula of the polynomial sequences defined
by linear recurrence relation (2) of order 2. If α(x) 6= β(x), the first
formula in (2) can be written as

an(x) =
a1(x)((α(x))n − (β(x))n)− a0(x)α(x)β(x)((α(x))n−1 − (β(x))n−1)

α(x)− β(x)
.

Noting that −α(x)β(x) = α(x)(α(x) − p(x)) = β(x)(β(x) − p(x)), we
may further write the above expression of an(x) as

an(x)

=
1

α(x)− β(x)
[a1(x)((α(x))n − (β(x))n) + a0(x)α(x)(α(x)− p(x))

×(α(x))n−1 − a0(x)β(x)(β(x)− p(x))(β(x))n−1
]

=
a0(x)((α(x))n+1 − (β(x))n+1) + (a1(x)− a0(x)p(x))((α(x))n − (β(x))n)

α(x)− β(x)
.

(7)

Denote r(x) = x+
√
x2 − Cy and s(x) = x−

√
x2 − Cy. To find a

transfer formula between expressions (6) and (7), we set

α(x) :=
r(x)

k(x)
and β(x) :=

s(x)

k(x)
(8)

for a non-zero real or complex valued function k(x), which are two roots
of t2 − p(x)t − q(x) = 0. Thus, adding and multiplying two equations
of (8) side by side, we obtain

α(x) + β(x) = p(x) =
2x

k(x)

α(x)β(x) = −q(x) =
Cy

(k(x))2
.

The above system implies

k(x) = ±

√
Cy

−q(x)
,
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and at

x =
p(x)k(x)

2
= ±p(x)

2

√
Cy

−q(x)
,

r(x) and s(x) give expressions of α(x) and β(x) as

α(x) =
r
(
±p(x)

2

√
Cy
−q(x)

)
±
√

Cy
−q(x)

, and β(x) =
s
(
±p(x)

2

√
Cy
−q(x)

)
±
√

Cy
−q(x)

. (9)

It is clear that α(x) and β(x) satisfy α(x)+β(x) = p(x) and α(x)β(x) =
−q(x).

We first consider the case of k(x) =
√
−Cy/q(x). Substituting the

corresponding (9) with positive sign into (7), we have

an(x)

=
a0(x)(rn+1(x)− sn+1(x)) + k(x)(a1(x)− a0(x)p(x))(rn(x)− sn(x))

kn(x)(r(x)− s(x))

= a0(x)Cn+2

(√
−q(x)

Cy

)n

P 1,y,C
n

(
k(x)p(x)

2

)

+(a1(x)− a0(x)p(x))Cn+1

(√
−q(x)

Cy

)n−1

P 1,y,C
n−1

(
k(x)p(x)

2

)

= a0(x)Cn+2

(√
−q(x)

Cy

)n

P 1,y,C
n

(
p(x)

2

√
Cy

−q(x)

)

+(a1(x)− a0(x)p(x))Cn+1

(√
−q(X)

Cy

)n−1

P 1,y,C
n−1

(
p(x)

2

√
Cy

−q(x)

)
.

(10)

Similarly, for k(x) = −
√
−Cy/q(x), we have
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an(x) = a0(x)Cn+2

(
−

√
−q(x)

Cy

)n

P 1,y,C
n

(
−p(x)

2

√
Cy

−q(x)

)

+(a1(x)− a0(x)p(x))Cn+1

(
−

√
−q(x)

Cy

)n−1

P 1,y,C
n−1

(
−p(x)

2

√
Cy

−q(x)

)
.

(11)

Therefore, we obtain our main result.

Theorem 2.1 Let sequence {an(x)}n≥0 be defined by an(x) = p(x)an−1(x)+
q(x)an−2(x) (n ≥ 2) with initial conditions a0(x) and a1(x). Then,
an(x) can be presented as

an(x) = a0(x)Cn+2

(
±

√
−q(x)

Cy

)n

P 1,y,C
n

(
±p(x)

2

√
Cy

−q(x)

)

+(a1(x)− a0(x)p(x))Cn+1

(
±

√
−q(X)

Cy

)n−1

P 1,y,C
n−1

(
±p(x)

2

√
Cy

−q(x)

)
,

(12)

where {P 1,y,c
n } is the sequence of any generalized Gegenbauer-Humbert

polynomials with λ = 1. In particular, an(x) can be expressed in terms
of {P 1,1,1

n = Un}, the sequence of the Chebyshev polynomials of the
second kind:

an(x) = a0(x)
(
±
√
−q(x)

)n
Un

(
± p(x)

2
√
−q(x)

)

+(a1(x)− a0(x)p(x))
(
±
√
−q(x)

)n−1

Un−1

(
± p(x)

2
√
−q(x)

)
,

(13)

which is a special case of (12) for (y, C) = (1, 1).
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Corollary 2.2 For (y, C) = (−1, 1), (1, 1), (2, 1), and(2a, 2)(a 6= 0),
respectively, from (12), we have transfer formulas

an(x) = a0(x)
(
±
√
q(x)

)n
Pn+1

(
± p(x)

2
√
q(x)

)

+(a1(x)− a0(x)p(x))
(
±
√
q(x)

)n−1

Pn

(
± p(x)

2
√
q(x)

)
,

an(x) = a0(x)
(
±
√
q(x)

)n
Fn+1

(
± p(x)√

q(x)

)

+(a1(x)− a0(x)p(x))
(
±
√
q(x)

)n−1

Fn

(
± p(x)√

q(x)

)
,

an(x) = a0(x)
(
±
√
−q(x)

)n
Bn

(
± p(x)√
−q(x)

− 2

)

+(a1(x)− a0(x)p(x))
(
±
√
−q(x)

)n−1

Bn−1

(
± p(x)√
−q(x)

− 2

)
,

an(x) = a0(x)

(
±
√
−q(x)

2

)n

Φn+1

(
±p(x)

√
2

−q(x)

)

+(a1(x)− a0(x)p(x))

(
±
√
−q(x)

2

)n−1

Φn

(
±p(x)

√
2

−q(x)

)
,

an(x)

= 4a0(x)

(
±
√
−q(x)

a

)n

Dn

(
±p(x)

√
a

−q(x)
, a

)

+4(a1(x)− a0(x)p(x))

(
±
√
−q(x)

a

)n−1

Dn−1

(
±p(x)

√
a

−q(x)
, a

)
,

where Un(x), Pn(x), Fn(x), Φn(x), and Dn(x, a) are the Chebyshev poly-
nomials of the second order, Pell polynomials, Fibonacci polynomials,
Fermat polynomials, and the Dickson polynomials of the second kind,
respectively.
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Example 1 As the first example, we consider the Chebyshev poly-
nomials of the first kind Tn(x) = cos(narccosx) satisfying recurrence
relation (1) with p(x) = 2x and q = −1 and initial conditions T0(x) = 1
and T1(x) = x. From Corollary 2.2, we have

Tn(x) = Un(x)− xUn−1(x),

Tn(x) = (−1)n(Un(−x) + xUn−1(x)),

Tn(x) = (±i)nPn+1(∓xi)− x(±i)n−1Pn(∓xi),
Tn(x) = (±i)nFn+1(∓2xi)− x(±i)n−1Fn(∓2xi),

Tn(x) = (±1)nBn(±2x− 2)− (±1)n−1xBn−1(±2x− 2),

Tn(x) = Bn(±2x− 2)− xBn−1(±2x− 2),

Tn(x) =

(
± 1√

2

)n
Φn+1(∓2

√
2x)− x

(
± 1√

2

)n−1

Φn(∓2
√

2x),

Tn(x) =

(
± 1√

4a

)n
Dn(∓2

√
ax, a)− x

(
± 1√

4a

)n−1

Dn−1(∓2
√
ax, a),

in which the first relation is equivalent to the well-known result 2Tn(x) =
Un(x)− Un−2(x) due to

2Tn(x) = 2Un(x)−2xUn−1(x) = Un(x)+(2xUn−1(x)−Un−2(x))−2xUn−1(x).

For the special cases of a0(x) and a1(x), we have the following corol-
laries.

Corollary 2.3 Let sequence {an(x)}n≥0 be defined by an(x) = p(x)an−1(x)+
q(x)an−2(x) (n ≥ 2) with initial conditions a0(x) = 0 and a1(x) = d.
Then
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an(x) = d
(
±
√
−q(x)

)n−1

Un−1

(
± p(x)

2
√
−q(x)

)
,

an(x) = d
(
±
√
q(x)

)n−1

Pn

(
± p(x)

2
√
q(x)

)
,

an(x) = d
(
±
√
q(x)

)n−1

Fn

(
± p(x)√

q(x)

)
,

an(x) = d
(
±
√
−q(x)

)n−1

Bn−1

(
± p(x)√
−q(x)

− 2

)
,

an(x) = d

(
±
√
−q(x)

2

)n−1

Φn

(
±p(x)

√
2

−q(x)

)
,

an(x) = 4d

(
±
√
−q(x)

a

)n−1

Dn−1

(
±p(x)

√
a

−q(x)
, a

)
.

Corollary 2.4 Let sequence {an(x)}n≥0 be defined by an(x) = p(x)an−1(x)+
q(x)an−2(x) (n ≥ 2) with initial conditions a0(x) = c and a1(x) =
cp(x). Then

an(x) = c
(
±
√
−q(x)

)n
Un

(
± p(x)

2
√
−q(x)

)
,

an(x) = c
(
±
√
q(x)

)n
Pn+1

(
± p(x)

2
√
q(x)

)
,

an(x) = c
(
±
√
q(x)

)n
Fn+1

(
± p(x)√

q(x)

)
,

an(x) = c
(
±
√
−q(x)

)n
Bn

(
± p(x)√
−q(x)

− 2

)
,

an(x) = c

(
±
√
−q(x)

2

)n

Φn+1

(
±p(x)

√
2

−q(x)

)
,

an(x) = 4c

(
±
√
−q(x)

a

)n

Dn

(
±p(x)

√
a

−q(x)
, a

)
.
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We now give another special case of Theorem 2.1 for the sequence
defined by (1) with initial cases a0(x) = 2 and a1(x) = p(x).

Corollary 2.5 Let sequence {an(x)}n≥0 be defined by an(x) = p(x)an−1(x)+
q(x)an−2(x) (n ≥ 2) with initial conditions a0(x) = 2 and a1(x) = p(x).
Then

an(x) = 2
(
±
√
−q(x)

)n
Un

(
± p(x)

2
√
−q(x)

)

−p(x)
(
±
√
−q(x)

)n−1

Un−1

(
± p(x)

2
√
−q(x)

)
,

an(x) = 2
(
±
√
q(x)

)n
Pn+1

(
± p(x)

2
√
q(x)

)

−p(x)
(
±
√
q(x)

)n−1

Pn

(
± p(x)

2
√
q(x)

)
,
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an(x) = 2
(
±
√
q(x)

)n
Fn+1

(
± p(x)√

q(x)

)

−p(x)
(
±
√
q(x)

)n−1

Fn

(
± p(x)√

q(x)

)
,

an(x) = 2
(
±
√
−q(x)

)n
Bn

(
± p(x)√
−q(x)

− 2

)

−p(x)
(
±
√
−q(x)

)n−1

Bn−1

(
± p(x)√
−q(x)

− 2

)
,

an(x) = 2

(
±
√
−q(x)

2

)n

Φn+1

(
±p(x)

√
2

−q(x)

)

−p(x)

(
±
√
−q(x)

2

)n−1

Φn

(
±p(x)

√
2

−q(x)

)
,

an(x) = 23

(
±
√
−q(x)

a

)n

Dn

(
±p(x)

√
a

−q(x)
, a

)

−p(x)22

(
±
√
−q(x)

a

)n−1

Dn−1

(
±p(x)

√
a

−q(x)
, a

)
.

In addition, we have

an(x) = 2
(
±
√
−q(x)

)n
Tn

(
± p(x)

2
√
−q(x)

)
, (14)

where Tn(x) are the Chebyshev polynomials of the first kind.

Proof. It is sufficient to prove the positive case of (14). From the first
formula shown in Corollary 2.5 and the recurrence relation Un(x) =
2xUn−1(x)− Un−2(x), one easily sees

an(x) =
(√
−q(x)

)n [
2Un

(
p(x)

2
√
−q(x)

)
− p(x)√

−q(x)
Un−1

(
p(x)

2
√
−q(x)

)]
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=
(√
−q(x)

)n [
2Un

(
p(x)

2
√
−q(x)

)
−

(
Un

(
p(x)

2
√
−q(x)

)

+Un−2

(
p(x)

2
√
−q(x)

))]

=
(√
−q(x)

)n [
Un

(
p(x)

2
√
−q(x)

)
− Un−2

(
p(x)

2
√
−q(x)

)]
.

From the first formula of Example 1, the above last expression of an(x)
implies the positive case of (14). The negative case can be proved
similarly.

Example 2 As an example, the Lucas polynomial sequence {Ln(x)}
defined by (1) with p(x) = x and q(x) = 1 and initial conditions
L0(x) = 2 and L1(x) = x has an explicit formula for its general term:

Ln(x) = 2(±i)nTn
(
∓xi

2

)
. (15)

Using Corollary 2.5, we also have

Ln(x) = 2(±i)nUn
(
∓xi

2

)
− x(±i)n−1Un−1

(
∓xi

2

)
,

Ln(x) = 2Pn+1

(
±x

2

)
− xPn

(
±x

2

)
,

Ln(x) = 2Fn+1 (±x)− xFn (±x) ,

Ln(x) = 2 (±i)nBn(∓xi− 2)− x (±i)n−1Bn−1(∓xi− 2),

Ln(x) = 2

(
± i√

2

)n
Φn+1

(
∓
√

2xi
)
− x

(
± i√

2

)n−1

Φn

(
∓
√

2xi
)
,

Ln(x) = 23

(
± i√

a

)n
Dn

(
∓
√
axi, a

)
− x22

(
± i√

a

)n−1

Dn−1

(
∓
√
axi, a

)
.

From Theorem 2.1, one may obtain transfer formulas between gen-
eralized Gegenbauer-Humbert polynomials.
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3 Examples and applications

We first give some examples of Theorem 2.1 for sequences {an(x)} de-
fined by (1).

Example 3 The Chebyshev polynomials of the third kind and
fourth kind satisfy the same recurrence relationship as the Chebyshev
polynomials of the first kind with the same constant initial term 1 and
different linear initial terms, 2x − 1 and 2x + 1, respectively (See, for
examples, Mason and Handscomb [18] and Rivlin [19]). Hence, the

Chebyshev polynomials of the third kind, T
(3)
n (x), and the Chebyshev

polynomials of the fourth kind, T
(4)
n (x), when x2 6= 1, have the following

expressions using the argument shown in [5].

T (3)
n (x) =

√
x2 − 1 + x− 1

2
√
x2 − 1

(
x+
√
x2 − 1

)n
+

√
x2 − 1− x+ 1

2
√
x2 − 1

(
x−
√
x2 − 1

)n
,

T (4)
n (x) =

√
x2 − 1 + x+ 1

2
√
x2 − 1

(
x+
√
x2 − 1

)n
+

√
x2 − 1− x− 1

2
√
x2 − 1

(
x−
√
x2 − 1

)n
.

Similarly to the Chebyshev polynomials of the first kind (see Exam-

ple 1), we can transfer T
(3)
n (x) and T

(4)
n (x) to the generalized Gegenbauer-

Humbert polynomials with λ = 1.

T (3)
n (x) = Un(x)− Un−1(x),

T (3)
n (x) = (−1)n(Un(−x) + Un−1(x)),

T (3)
n (x) = (±i)nPn+1(∓xi)− (±i)n−1Pn(∓xi),
T (3)
n (x) = (±i)nFn+1(∓2xi)− (±i)n−1Fn(∓2xi),

T (3)
n (x) = (±1)nBn(±2x− 2)− (±1)n−1Bn−1(±2x− 2),

T (3)
n (x) =

(
± 1√

2

)n
Φn+1(∓2

√
2x)−

(
± 1√

2

)n−1

Φn(∓2
√

2x),

T (3)
n (x) =

(
± 1√

4a

)n
Dn(∓2

√
ax, a)−

(
± 1√

4a

)n−1

Dn−1(∓2
√
ax, a),
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and

T (4)
n (x) = Un(x) + Un−1(x),

T (4)
n (x) = (−1)n(Un(−x)− Un−1(x)),

T (4)
n (x) = (±i)nPn+1(∓xi) + (±i)n−1Pn(∓xi),
T (4)
n (x) = (±i)nFn+1(∓2xi) + (±i)n−1Fn(∓2xi),

T (4)
n (x) = (±1)nBn(±2x− 2) + (±1)n−1Bn−1(±2x− 2),

T (4)
n (x) =

(
± 1√

2

)n
Φn+1(∓2

√
2x) +

(
± 1√

2

)n−1

Φn(∓2
√

2x),

T (3)
n (x) =

(
± 1√

4a

)n
Dn(∓2

√
ax, a) +

(
± 1√

4a

)n−1

Dn−1(∓2
√
ax, a).

From the above formulas, one may obtain some identities between the
Chebyshev polynomials of different kinds. For instance,

T (3)
n (x) + T (4)

n (x) = 2Un(x),

Tn(x) + xT (4)
n (x) = (1 + x)Un(x),

Tn(x)− xT (3)
n (x) = (1− x)Un(x).

Since Tn(x) = cosnθ, Un(x) = sin(n+ 1)θ/ sin θ, T
(3)
n (x) = cos(n+

1
2
)θ/ cos 1

2
θ, and T

(4)
n (x) = sin(n + 1

2
)θ/ sin 1

2
θ, where x = cos θ, the

above identities of Chebyshev polynomials also present the following
identities of trigonometric functions, respectively.

cos
(
n+ 1

2

)
θ

cos 1
2
θ

+
sin
(
n+ 1

2

)
θ

sin 1
2
θ

= 2
sin (n+ 1) θ

sin θ
,

cosnθ + cos θ
sin
(
n+ 1

2

)
θ

sin 1
2
θ

= (1 + cos θ)
sin (n+ 1) θ

sin θ
,

cosnθ − cos θ
sin
(
n+ 1

2

)
θ

sin 1
2
θ

= (1− cos θ)
sin (n+ 1) θ

sin θ
.

Example 4 Consider the Jacobsthal polynomials {Jn(x)} defined
by (1) with coefficients p(x) = 1 and q(x) = 2x and initial conditions
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J0(x) = J1(x) = 1. One may use Corollary 2.4 to obtain transfer
formulas:

Jn(x) =
(
±
√
−2x

)n
Un

(
± 1

2
√
−2x

)
,

Jn(x) =
(
±
√

2x
)n
Pn+1

(
± 1

2
√

2x

)
,

Jn(x) =
(
±
√

2x
)n
Fn+1

(
± 1√

2x

)
,

Jn(x) =
(
±
√
−2x

)n
Bn

(
± 1√
−2x

− 2

)
,

Jn(x) =
(
±
√
−x
)n

Φn+1

(
± 1√
−x

)
,

Jn(x) = 22

(
±
√
−2x

a

)n

Dn

(
±
√

a

−2x
, a

)
.

The first formula and its inverse (see the first formula below) were given
on page 76 of [20] by Riordan using a different method. The positive
case of the third formula is easily to be transfered to the formula of
Theorem 1 in [21], where they used a different recurrence relation with
p(x) = 1 and q(x) = x for constructing the Jacobsthal polynomials.
[20] also gave the inverse formula to present Un(x) in terms of Jn(x).
Actually, we can easily have the inverse formulas of Un(x), Pn+1(x),
Fn+1(x), Φn+1(x), and Dn(x, a) interms of Jn(x) as follows.

Un(x) = (2x)n Jn

(
− 1

8x2

)
,

Pn+1(x) = (2x)n Jn

(
1

8x2

)
,

Fn+1(x) = xnJn

(
1

2x2

)
,

Bn(x) = (x+ 2)nJn

(
− 1

2(x+ 2)2

)
,

Φn+1(x) = xnJn

(
− 1

x2

)
,
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Dn(x, a) =
1

4
xnJn

(
− a

2x2

)
.

Example 5 In Eu [22], the polynomial sequence {Hn(x)} is defined
by Sn(x) = xSn−1(x) − Sn−2(x) with initial conditions S0(x) = 1 and
S1(x) = x. Using Corollary 2.4, we obtain

Sn(x) = Un

(
±x

2

)
,

Sn(x) = (±i)n Pn+1

(
∓x

2
i
)
,

Sn(x) = (±i)n Fn+1 (∓xi) ,
Sn(x) = (±1)nBn(±x− 2),

Sn(x) =

(
± 1√

2

)n
Φn+1

(
±
√

2x
)
,

Sn(x) = 4

(
± 1√

a

)n
Dn

(
±
√
ax, a

)
,

in which the first formula was given in [22] using a different approach.
Similar to the case of the Jacobsthal polynomial sequence shown in
Example 4, we have the inverse formulas:

Un(x) = Sn(±2x),

Pn+1(x) = (∓i)n Sn (±2xi) ,

Fn+1(x) = (∓i)n Sn (±xi) ,
Bn(x) = (±1)nSn(±(x+ 2)),

Φn+1(x) =
(
±
√

2
)n
Sn

(
± x√

2

)
,

Dn(x, a) =
1

4

(
±
√
a
)n
Sn

(
± x√

a

)
.

Another polynomial sequence {Hn(x)} is defined by Hn(x) = (1 −
x)Hn−1(x)−x2Hn−2(x) with initial conditions H0(X) = 1 and H1(x) =
1− x [22]. Using Corollary 2.4, we obtain
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Hn(x) = (±x)n Un

(
±1− x

2x

)
,

Hn(x) = (±ix)n Pn+1

(
∓1− x

2x
i

)
,

Hn(x) = (±ix)n Fn+1

(
∓1− x

x
i

)
,

Hn(x) = (±x)nBn

(
±1− x

x
− 2

)
,

Hn(x) =

(
± x√

2

)n
Φn+1

(
±
√

2
1− x
x

)
,

Hn(x) = 4

(
± x√

a

)n
Un

(
±
√
a

1− x
x

, a

)
,

where the first formula has been established in [22] by using a different
method. The inverse of the above formulas can be found similarly. For
instance,

Un(x) = (2x± 1)nHn

(
1

1± 2x

)
.

Example 6 In Riordan [23], the associate Legendre polynomial
sequence {ρn(x)} is defined by ρn(x) = (2 + x)ρn−1(x) − ρn−2(x) with
initial conditions ρ0(x) = 1 and ρ1(x) = 1 + x. Then we use Theorem
2.1 and Corollary 2.2 to generate the following transfer formulas:
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ρn(x) = Un

(
±
(

1 +
x

2

))
− Un−1

(
±
(

1 +
x

2

))
,

ρn(x) = (±i)n Pn+1

(
∓i
(

1 +
x

2

))
− (±i)n−1 Pn

(
∓i
(

1 +
x

2

))
,

ρn(x) = (±i)n Fn+1 (∓i (x+ 2))− (±i)n−1 Fn (∓i (x+ 2)) ,

ρn(x) = (±1)nBn (±(x+ 2)− 2)− (±1)n−1Bn−1 (±(x+ 2)− 2) ,

ρn(x) =

(
± 1√

2

)n
Φn+1

(
±
√

2 (x+ 2)
)

−
(
± 1√

2

)n−1

Φn

(
±
√

2 (x+ 2)
)
,

ρn(x) = 4

(
± 1√

a

)n
Dn

(
±
√
a (x+ 2) , a

)
−4

(
± 1√

a

)n−1

Dn−1

(
±
√
a (x+ 2) , a

)
,

where the first formula was given on page 85 of [20] using a different
method.

Example 7 In Chow and West [24], the polynomial sequence {pn(x)}
is defined by pn(x) = −xpn−1(x) − xpn−2(x) with initial conditions
p0(x) = 1 − x−1 and p1(x) = 2 − x (x 6= 0). From Theorem 2.1 and
Corollary 2.2, we obtain

pn(x) = (1− x−1)
(
±
√
x
)n
Un

(
∓
√
x

2

)
+
(
±
√
x
)n−1

Un−1

(
∓
√
x

2

)
,

pn(x) = (1− x−1)
(
±
√
xi
)n
Pn+1

(
±
√
xi

2

)
+
(
±
√
xi
)n−1

Pn

(
±
√
xi

2

)
,

pn(x) = (1− x−1)
(
±
√
xi
)n
Fn+1

(
±
√
xi
)

+
(
±
√
xi
)n−1

Fn
(
±
√
xi
)
,

pn(x) =
(
1− x−1

) (
±
√
x
)n
Bn

(
∓
√
x− 2

)
+
(
±
√
x
)n−1

Bn−1

(
∓
√
x− 2

)
,
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pn(x) = (1− x−1)

(
±
√
x

2

)n
Φn+1

(
±
√

2xi
)

+

(
±
√
x

2

)n−1

Φn

(
±
√

2xi
)
,

pn(x) = 4(1− x−1)

(
±
√
x

a

)n
Dn

(
±
√
axi, a

)
+4

(
±
√
x

a

)n−1

Dn−1

(
±
√
axi, a

)
.

Since Un+1(y) = 2yUn(y)− Un−1(y), we have

Un+2(y) = 2yUn+1(y)− Un(y)

= 2y (2yUn(y)− Un−1(y))− Un(y)

= (4y2 − 1)Un(y)− 2yUn−1(y).

Hence, from the last expression of Un+2 and the transfer formula of
pn(x) in terms of Un(x) shown above, we obtain

pn(x) = (±1)nx(n−2)/2Un+2

(
∓
√
x

2

)
,

in which the case of

pn(x) = (−1)nx(n−2)/2Un+2

(√
x

2

)

was established in [24] using mathematical induction.

Equaling the right-hand expressions of the polynomials shown in
each example, one may obtain various identities of generalized Gegenbauer-
Humbert polynomials. For instance, from Example 1, we have
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Un(x)− xUn−1(x)

= (−1)n(Un(−x) + xUn−1(x))

= (±i)nPn+1(∓xi)− x(±i)n−1Pn(∓xi)
= (±i)nFn+1(∓2xi)− x(±i)n−1Fn(∓2xi)

= (±1)nBn(±2x− 2)− (±1)n−1xBn−1(±2x− 2)

=

(
± 1√

2

)n
Φn+1(∓2

√
2x)− x

(
± 1√

2

)n−1

Φn(∓2
√

2x)

=

(
± 1√

4a

)n
Dn(∓2

√
ax, a)− x

(
± 1√

4a

)n−1

Dn−1(∓2
√
ax, a).

Using the relationship established in Theorem 2.1 and Corollaries
2.2-2.5, we may obtain some identities of polynomial sequences from
the generalized Gegenbauer-Humbert polynomial sequence identity de-
scribed in [5]:

P 1,y,C
n (x) = α(x)P 1,y,C

n−1 (x) + C−2(2x− α(x)C) (β(x))n−1 , (16)

where P 1,y,C
n (x) satisfies the recurrence relation of order 2, P 1,y,C

n (x) =
p(x)P 1,y,C

n−1 (x)+q(x)P 1,y,C
n−2 (x) with coefficients p(x) and q(x), and α(x)+

β(x) = p(x) and α(x)β(x) = −q(x). Clearly (see (19) and (20) in [5]),

α(x) =
1

C

{
x+

√
x2 − Cy

}
and (17)

β(x) =
1

C

{
x−

√
x2 − Cy

}
. (18)

For y = C = 1, we have P 1,1,1
n (x) = Un(x), where Un(x) are the Cheby-

shev polynomials of the second kind, and we can write (16) as

Un(x) = α(x)Un−1(x)+(2x−α(x)) (β(x))n−1 = α(x)Un−1(x)+(β(x))n ,
(19)

where α(x) = x +
√
x2 − 1 and β(x) = x −

√
x2 − 1. From the first

formula of Example 4 and using transform ±1/(2
√
−2x) 7→ x, we have

Un(x) = (2x)nJn

(
− 1

8x2

)
.



22 T. X. He and P. J.-S. Shiue

Substituting the above expression to (19) yields the identity

(2x)nJn

(
− 1

8x2

)
= (x+

√
x2 − 1)(2x)n−1Jn−1

(
− 1

8x2

)
+ (x−

√
x2 − 1)n.

Similarly, from Example 5, we obtain identities

Sn(±2x) = (±x+
√
x2 − 1)Sn−1(±2x) +

(
±x−

√
x2 − 1

)n
and

(2x± 1)nHn

(
1

1± 2x

)
= (2x± 1)n−1(x+

√
x2 − 1)Hn−1

(
1

1± 2x

)
+
(
x−
√
x2 − 1

)n
.

One may also extend some well-known identities of a polynomial
sequence to other polynomial sequences using the relationships we have
established. For instance from the Cassini-like formula for Fibonacci
polynomials

Fn+1(x)Fn−1(x)− F 2
n(x) = (−1)n

we use the relationship shown in Example 4 to obtain the Cassini-like
formula for the Jacobsthal polynomials:

Jn(x)Jn−2(x)− J2
n−1(x) = (−2x)n,

which can be transfered to the formula of Theorem 2 in [21] using the
same argument in Example 4.

Similarly, from the transform

Fn+1(x) = (±i)n Un
(
∓xi

2

)
we have
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Un

(
∓xi

2

)
Un−2

(
∓xi

2

)
− U2

n−1

(
∓xi

2

)
= (−1)n.

To construct a transform relationship for the polynomials defined by
recurrence relation with coefficients related to the order of polynomials
is much more difficulty. One special example can be found on page 240
in [25] by Andrews, Askey, and Roy. It seems there is no a general
method applied to such polynomial sequences.
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