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Abstract

Here presented are the definitions of (c)-Riordan arrays and (c)-Bell polynomials which are extensions
of the classical Riordan arrays and Bell polynomials. The characterization of (c)-Riordan arrays by
means of the A- and Z-sequences is given, which corresponds to a horizontal construction of a (c)-
Riordan array rather than its definition approach through column generating functions. There exists a
one-to-one correspondence between Gegenbauer-Humbert-type polynomial sequences and the set of (c)-
Riordan arrays, which generates the sequence characterization of Gegenbauer-Humbert-type polynomial
sequences. The sequence characterization is applied to construct readily a (c)-Riordan array. In addition,
subgrouping of (c)-Riordan arrays by using the characterizations is discussed. The (c)-Bell polynomials
and its identities by means of convolution families are also studied. Finally, the characterization of
(c)-Riordan arrays in terms of the convolution families and (c)-Bell polynomials is presented.
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1 Introduction

In the recent literature, special emphasis has been given to the concept of Riordan arrays, which are a
generalization of the well-known Pascal triangle. Riordan arrays are infinite, lower triangular matrices
defined by the generating function of their columns. They form a group, called the Riordan group (see
Shapiro et al. [26]). Some of the main results on the Riordan group and its application to combinatorial
sums and identities can be found in Sprugnoli [29, 30], on subgroups of the Riordan group in Peart and Woan
[18] and Shapiro [23], on some characterizations of Riordan matrices in Rogers [19], Merlini et al. [16] and
[14] by the authors, and on many interesting related results in Cheon et al. [3, 4], He et al. [12], Nkwanta
[17], Shapiro [24, 25], [11], and so forth.

In [10] a generalized Sheffer type polynomials are defined. Based on the isomorphism between the
Sheffer type polynomials and Riordan arrays (see for example, [20] and [12]), one may give the definition
of the generalized Riordan arrays. More formally, let us consider the set of formal power series (f.p.s.)
F = R[[t; {ck}]] (where c = (c0, c1, c2, . . .) satisfies c0 = 1, ck > 0 for all k = 1, 2, . . .); the order of f(t) ∈ F ,
f(t) =

∑∞
k=0 fkt

k/ck, is the minimal number r ∈ N such that fr 6= 0; Fr is the set of formal power series
of order r. It is known that F0 is the set of invertible f.p.s. and F1 is the set of compositionally invertible
f.p.s., that is, the f.p.s.’s f(t) for which the compositional inverse f(t) exists such that f(f(t)) = f(f(t)) = t.
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We call the element g ∈ F with the form g(x) =
∑
k≥0

xk

ck
a generalized power series (GPS) associated with

{cn} or, simply, a (c)-GPS, and F the GPS set associated with {cn}.

Definition 1.1 Let g be a (c)-GPS associated with {cn}, where {ck}k≥0 is a sequence of non-zero constants
with c0 = 1. A (c)-Riordan array generated by d(t) ∈ F0 and h(t) ∈ F1 with respect to g(x) and {ck}k≥0 is
an infinite complex matrix [dn,k]0≤k≤n, whose bivariate generating function has the form

F (t, x) =
∑
n,k

dn,k
tn

cn
xk = d(t)g(xh(t)). (1.1)

Hence, we denote [dn,k] = (d(t), h(t)). In particular, if h′(0) 6= 0, the corresponding Riordan array is called
a proper Riordan array. Otherwise, it is called a non-proper Riordan array.

Furthermore, if ck = 1 (k = 0, 1, 2, . . .), i.e., the corresponding series d(t) and h(t) are ordinary power
series, then expression (1.1) is written as

F (t, x) =
∑
n,k

dn,kt
nxk =

d(t)

1− xh(t)
, (1.2)

which deffines the classical Riordan array, called (1)-Riordan array. If ck = k! (k = 0, 1, 2, . . .), i.e., the
corresponding series d(t) and h(t) are exponential power series, then expression (1.1) is written as

F (t, x) =
∑
n,k

dn,k
tn

n!
xk = d(t)exh(t), (1.3)

which defines the Sheffer type Riordan array. If c0 = 1 and ck = 1/k (k = 1, 2, . . .), i.e., the corresponding
series d(t) and h(t) are Dirichlet series, then expression (1.1) is written as

F (t, x) = d0,0 +
∑

1≤k≤n

dn,k
tn

n
xk = d(t) (1− ln(1− xh(t))) , (1.4)

which is called the Dirichlet Riordan series.

Theorem 1.1 In definition (1.1), the (n, k) entry of (c)-Riordan array [dn,k] is

dn,k =

[
tn

cn

]
d(t)

(h(t))k

ck
= [tn]

cn
ck
d(t)(h(t))k (1.5)

for all 0 ≤ k ≤ n and dn,k = 0 otherwise. In particular, for the classical (1)−Riordan array, dn,k =
[tn]d(t)(h(t))k (o ≤ k ≤ n); for the Sheffer Riordan array, dn,k = [tn/n!]d(t)(h(t))k/k! (0 ≤ k ≤ n); and for
the Dirichlet Riordan array, dn,k = [tn/n]d(t)(h(t))k/k (1 ≤ k ≤ n).

Proof: First, we can see (1.5) in Theorem 1.1 satisfies (1.1). By substituting (1.5), the expression of
dn,k, into the left-hand side of (1.1):

∑
n≥0

n∑
k=0

dn,k
tn

cn
xk

=
∑
n≥0

∑
k≥0

[
tn

cn

]
d(t)

(h(t))k

ck

tn

cn
xk

=
∑
n≥0

[
tn

cn

]
d(t)

tn

cn

∑
k≥0

(xh(t))k

ck

= d(t)g(xh(t)),

which implies (1.1). Conversely, from (1.1), one may obtain (1.5).

[33] defined a type of generalized Riordan arrays in terms of a given non-zero sequence {cn} with c0 = 1
using expression (1.5). Let d(t) ∈ F0 and h(t) ∈ F1; the pair (d(t), h(t)) defines the Riordan array
D = (dn,k)n,k∈N having
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dn,k =

[
tn

cn

]
d(t)

h(t)k

ck
=
cn
ck

[tn]d(t) (h(t))
k

(1.6)

or, in other words, having cn
ck
d(t)h(t)k as the generating function whose coefficients make-up the entries of

column k. For the relationship of the (1)−Riordan arrays and (c)−Riordan arrays, we have the following
result.

Theorem 1.2 A lower triangular array [dn,k] is a (c)-Riordan array if and only if the array (ckdn,k/cn) is
a (1)-Riordan array. Equivalently, [dn,k] = (d(t), h(t)) can be written as

[dn,k] = D[[tn]d(t)(h(t))k]n≥k≥0D
−1, (1.7)

where D = diag(c0, c1, c2, . . .).

Proof: From (1.6), if (dn,k) is a (c)−Riordan array, then

ck
cn
dn,k = [tn] d(t) (h(t))

k
,

which implies (ckdn,k/cn) is a (1)−Riordan array. Conversely, if (ckdn,k/cn) is a (1)−Riordan array (d(t), h(t)),
then

dn,k =

[
tn

cn

]
d(t)

(h(t))k

ck
.

Thus using the argument in the proof of Theorem 1.1, we have the bivariate GF of lower triangular matrix
(dn,k) ∑

0≤k≤n

dn,k
tn

cn
xk = d(t)g(xh(t)),

which means (dn,k) is a (c)−Riordan array.

From now on, we denote by (d(t), h(t)), D−1[[tn]d(t)(h(t))k]D, or [dn,k = (cn/ck)[tn]d(t)(h(t))k]n≥k≥0 a
(c)-Riordan array generated by d(t) ∈ F0 and h(t) ∈ F1 associated with the (c)-GPS g(t) =

∑
k≥0 t

k/ck.
Rogers [19] introduced the concept of the A-sequence for the classical Riordan arrays; Merlini et al. [16]

introduced the related concept of the Z-sequence and showed that these two concepts, together with the
element d0,0, completely characterize a proper classical Riordan array. In [14], the authors consider the
characterization of Riordan arrays by means of the A- and Z-sequences. [14] also shows how the A- and
Z-sequences of the product of two Riordan arrays are derived from those of the two factors; similar results
are obtained for the inverse. This paper aims to study (c)-Riordan arrays through their A- and Z-sequence
characterization, simply referred to as sequence characterization. Thus, Theorem 1.2 can be applied to find
out the characterization of (c)-Riordan arrays from the characterization of classical Riordan arrays.

The generating functions (GFs) of the Gegenbauer-Humbert-type polynomials defined by (see, for exam-
ple, [6], Gould [9], and Shiue, Hsu and one of the authors [13]).

Φ(t) = (1−mxt+ ytm)−λ =

∞∑
k=0

Pm,y,λk (x)tk. (1.8)

We consider Pm,y,λk (x) as follows

P 2,1,1
k (x) = Uk(x), Chebyshev polynomial of the 2nd kind,

P
2,1,1/2
k (x) = ψk(x), Legendre polynomial,

P 2,−1,1
k (x) = Pk+1(x), P ell polynomial,

P 2,−1,1
k (x/2) = Fk+1(x), F ibonacci polynomial,

P 2,2,1
k (x/2) = Φk+1(x), F ermat polynomial of the 1st kind,
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where Fk+1 = Fk+1(1) is the Fibonacci number. From (1.8) we immediately have

∞∑
k=0

Pm,y,λk (x)tk =
1

(1−mxt+ ytm)λ
=

1

(1 + ytm)λ

[
1

(1−mxt)λ

]
t=t/(1+ytm)

. (1.9)

Since

1

(1−mxt)λ
=
∑
k≥0

(
k + λ− 1

k

)
xk,

from Theorem 1.2, we have

Corollary 1.3 The generating functions of the Gegenbauer-Humbert-type polynomials defined by (1.8) can
be represented by (c)-Riordan arrays

D−1
(

1

(1 + ytm)λ
,

t

1 + ytm

)
D,

where the matrices are

D = diag

(
1, 1/λ, 1/

(
λ+ 1

2

)
, 1/

(
λ+ 2

3

)
, . . .

)
.

We will establish a one-to-one correspondence between the set of Gegenbauer-Humbert-type polynomial
sequences and the set of (c)-Riordan arrays in next section (see Theorem 2.4).

[15] presented a relationship between the convolution family and the power of series. From the result,
one may find the convolution polynomial sequence including the binomial sequence make an important rule
in the construction of Riordan arrays (Although the paper itself does not mention the concept of Riordan
arrays). Let us give the definition of (c)-convolution polynomial sequence first.

Definition 1.2 A family of polynomials {Fk(x)}k≥0 forms a convolution family if Fn(x) posses degree ≤ n
and if the convolution condition

Fn(x+ y) =

n∑
k=0

Fk(x)Fn−k(y) (1.10)

holds for all x and y and for all n ≥ 0. We say {Fk(x)}k≥0 forms a convolution family associated with a
(c)-sequence {ck}k≥0 (c0 = 1, ck > 0 for every k > 0) if {Fk(x)}k≥0 is a convolution family and Fk(x) =

F̃k(x)/ck, namely, {F̃k(x)}k≥0 satisfies

F̃n(x+ y) =

n∑
k=0

cn
cn−kck

F̃k(x)F̃n−k(y).

In particular, if {ck = k!}k≥0, the corresponding {Fk = F̃k(x)/k!}k≥0 is called binomial sequence.

As examples (see e.g., P. 87 in [32]), power xn, falling factorial (x)n, Abel polynomial x(x − na)n−1

(a 6= 0), generating functions
∑n
k=0 s(n, k)(x)k and

∑n
k=0 S(n, k)xk form convolution family, where s(n, k)

and S(n, k) are respectively the Stirling numbers of the first kind and the second kind.
In [15], the convolution polynomials arise as the coefficients of the power x of a power series via its

expansion. Although [15] did not mention it, the expansion actually defines the Bell polynomials. We now
extend the result of [15] starting from the following definition of the (c)-Bell polynomials.

Definition 1.3 The (c)-Bell polynomials associated with (c)-sequence {ck}k≥0 (c0 = 1, ck > 0 for every
k > 0) are the polynomials Bcn,k(x1, x2, . . .) in an infinite number of variables x1, x2, . . ., defined by

1

ck

∑
m≥1

xm
zm

cm

k

=
∑

n≥k≥0

Bcn,k(x1, x2, . . .)
zn

cn
, (1.11)
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in which

Bcn,k(x1, x2, . . .) =
∑
π(n)

n!

k1!k2! · · ·

(
x1
c1

)k1 (x2
c2

)k2
. . . , (1.12)

where π(n) denotes a partition of n with k1 + 2k2 + · · · = n; ki is the number of parts of size i. In addition,
k1 + k2 + · · · = k, the number of parts of partition.

In particular, if {ck = k!}k≥0, then the (c)-Bell polynomials are the exponential Bell polynomials Bn,k(x1, x2, . . .).
For {ck = 1}k≥0 and {ck = 1/k}k>0 with c0 = 1, the corresponding Bell polynomials are called, respectively,
the ordinary and Dirichlet Bell polynomials.

Similar to [6] (see P. 133), Bcn,k can be also defined by the formal double series expansion of g(x) =∑
k≥0 x

k/ck

Φ ≡ Φ(z, x) := g

x∑
m≥1

xm
zm

cm

 =
∑
n,k≥0

Bcn,k
zn

cn
xk

= 1 +
∑
n≥1

zn

cn

{
n∑
k=1

xkBcn,k(x1, x2, . . .)

}
. (1.13)

Bell polynomials are a wide class of polynomials related to many well-known numbers such as (see e.g.,
[6], P. 135) Stirling numbers of the first kind, |s(n, k)| = Bn,k(0!, 1!, 2!, . . .), and the second kind, S(n, k) =
Bn,k(1, 1, 1 . . .), Lah number,

(
n−1
k−1
)
n!/k! = Bn,k(1!, 2!, 3!, . . .), Idempotent number,

(
n
k

)
kn−k = Bn,k(1, 2, 3, . . .),

etc.
By using (c)-Bell polynomials, we can rewrtite dn,k, the entries of the Riordan array (d(t), h(t)) shown

in (1.5), as

dn,k =

n∑
`=k

cn
c`cn−`

αn−`B
c
`,k(h1, h2, . . .), (1.14)

where {αm}m≥0 and {hn}n≥1 are the set of coefficients of (c)-power series d(t) and h(t), respectively. In
fact, from (1.5) and (1.11) we have

dn,k =

[
tn

cn

]
d(t)

(h(t))k

ck
=

[
tn

cn

] ∑
m≥0

αm
tm

cm

∑
`≥k≥0

Bc`,k
t`

c`

= [tn]cn
∑
n≥0

n∑
`=k

αn−`
c`cn−`

Bc`,k(h1, h2, . . . , hn−`−k+1)tn,

which implies (1.14). A special case of dn,k = k!
∑n
`=k

(
n
r

)
αn−`B

c
`,k(h1, h2, . . .) for cn = n! (n ≥ 0) was given

in [12].
Denote

sn(x) :=

n∑
k=0

xkdn,k, (1.15)

where dn,k is the (c)-Riordan array. Then (1.1) can be written as

F (t, x) = d(t)g(xh(t)) =
∑
n≥0

sn(x)
tn

cn
. (1.16)

And we call sn(x) the Sheffer polynomials for (d(t), h(t)) with respective to sequence {ck}k≥0. When d(t) = 1,
we say the corresponding Sheffer for (1, h(t)) is the (c)-associated sequence, and the Sheffer for (d(t), t) the
(c)-Appell sequence for d(t). Here, the definition of Sheffer polynomial for (d(t), h(t)) is different from those
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defined in [20, 22], where the Sheffer is for (1/d(h̄(t)), h̄(t)) and h̄(t) is the composite inversion of h(t). Those
two Sheffer polynomials consist of a pair that was studied in [12]. From (1.14), we immediately have

sn(x) =

n∑
k=0

xk
n∑
`=k

cn
c`cn−`

αn−`B
c
`,k(h1, h2, . . .). (1.17)

We will establish more connections between (c)-Riordan arrays and (c)-Bell polynomials. In [29], the Riordan
arrays are used to construct some identities related to the Stirling numbers. We will study the problem in a
more deeper way by extending the sum problems to more general case such as Bell’s polynomials and Bell’s
numbers based on the above observation.

[15] presents the following characterization of all convolution family defined in Definition 1.2. Here, we
give a modified expression via a different approach in its proof by using the Bell polynomials.

Theorem 1.4 A family of polynomials {Fk(x)}k≥0 forms a convolution family if and only if there exists a
delta series f(z) (i.e., f ∈ F1) with f(z) =

∑
n≥1 fnz

n/n! (f1 6= 0), such that

Fn(x) =

n∑
k=0

xkBn,k

(
f1
1!
,
f2
2!
, . . . ,

fn−k+1

(n− k + 1)!

)
. (1.18)

Proof: Let F (z) ∈ F0 with F (0) = 1. [15] proves that polynomials

Fn(x) = [zn]F (z)x

form a convolution family. Conversely, every convolution family can be constructed in this way or is identi-
cally zero. Let

f(z) = lnF (z) =
∑
n≥1

fn
zn

n!
.

Then F (z)x = exp(xf(z)). Hence,

Fn(x) := [zn]F (z)x =

n∑
k=0

xkBn,k

(
f1
1!
,
f2
2!
, . . . ,

fn−k+1

(n− k + 1)!

)
,

which proves the theorem.

We shall show how the (c)-Bell polynomials are used to perform the elements of a (c)-Riordan array.
Hence, the identities of (c)-Bell polynomials and those of the entries of the corresponding (c)-Riordan array
can be interchanged each other.

It is immediate can be shown from Definition 1.1 with x = 1 that the usual row-by-column product of
two (c)-Riordan arrays associated with the same sequence {ck > 0}k≥0 (c0 = 1) is also a (c)-Riordan array
associated with the sequence:

(d(t), h(t)) ∗ (f(t), g(t)) = D−1[[tn]d(t)(h(t))k]DD−1[[tn]f(t)(g(t))k]D

= D−1[[tn]d(t)f(h(t))(g(h(t))k]D = (d(t)f(h(t)), g(h(t))) (1.19)

because [[tn]d(t)(h(t))k]·f(t)(g(t))k = d(t)f(h(t))(g(h(t)))k. The Riordan array I = (1, t) is zero everywhere
except that it contains all 1’s on the main diagonal; it is easily seen that I acts as an identity for this product,
that is, (1, t) ∗ (d(t), h(t)) = (d(t), h(t)) ∗ (1, t) = (d(t), h(t)). From these facts, we deduce a formula for the
inverse Riordan array:

(d(t), h(t))−1 =

(
1

d(h(t))
, h(t)

)
(1.20)

where h(t) is the compositional inverse of h(t). In this way, the set R of proper (c)-Riordan arrays is a group.
And there is a semidirect product decomposition of the group of (c)-Riordan arrays R ≈ A o B, where A
and B are shown below, since (d(t), h(t)) =

(
td(t)
h(t) , t

)(
h(t)
t , h(t)

)
. Particular subgroups of R including the

mentioned A and B are important and have been considered in the literature:
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• the set A of (c)-Appell arrays, that is the (c)-Riordan arrays D = (d(t), h(t)) for which h(t) = t; it is
an invariant subgroup and is isomorphic to F0, the group of f.p.s.’s of order 0, with the usual product
as group operation;

• the set L of (c)-Lagrange arrays, that is the (c)-Riordan arrays D = (d(t), h(t)) for which d(t) = 1;
it is also called the associated subgroup; it is isomorphic to F1, the group of f.p.s.’s of order 1, with
composition as group operation;

• the set B of (c)-Bell or (c)-renewal arrays, that is the (c)-Riordan arrays D = (d(t), h(t)) for which
h(t) = td(t); it is the set originally considered by Rogers in [19];

• the set C of (c)-Checkerboard arrays, that is, the (c)-Riordan arrays D = (d(t), h(t)) for which d(t) is
an even function and h(t) is an odd function.

• the set H of (c)-hitting time arrays, that is, the (c)-Riordan arrays D = (d(t), h(t)) for which d(t) =
th′(t)
h(t) ; it is the subgroup with the usual Riordan product defined by Peart and Woan in [18].

The paper has the following structure; in Section 2 we consider the sequence characterization of (c)-
Riordan arrays, proving its main properties and its relation to the previously defined subgroups; in addition,
we shall show how the sequence approach characterizes the product of two (c)-Riordan arays and the inversion
of a (c)-Riordan array. Section 3 will discuss the convolution family and (c)-Bell polynomials and sums and
(c)-Riordan arrays related to those concepts. In Section 4 we show the relationship between the (c)-Bell
polynomials and the entries of (c)-Riordan arrays.

2 The sequence characterization of (c)-Riordan arrays

In [19], Rogers states that for every proper Riordan arrayD = (d(t), h(t)) there exists a sequenceA = (ak)k∈N
such that for every n, k ∈ N we have:

[tn+1]d(t)(h(t))k+1 = a0[tn]d(t)(h(t))k+a1[tn]d(t)(h(t))k+1+a2[tn]d(t)(h(t))k+2+· · · =
∞∑
j=0

aj [t
n]d(t)(h(t))k+j

(2.21)
where the sum is actually finite since dn,k = 0, ∀k > n. A proof of this fact was given in Sprugnoli [31], and
we can reformulate it according to the modified definition of a (c)-Riordan array used in the present paper.

Theorem 2.1 An infinite lower triangular array D = (dn,k)n,k∈N = (d(t), h(t)) is a (c)-Riordan array if

and only if a sequence A = (a0 6= 0, a1, a2, . . .) exists such that for every n, k ∈ N relation

ck+1

cn+1
dn+1,k+1 =

c0
cn
a0dn,k +

c1
cn
a1dn,k+1 +

c2
cn
a2dn,k+2 + · · · =

∞∑
j=0

ck+j
cn

ajdn,k+j (2.22)

holds. In addition, the generating function A(t) of A− sequence satisfies tA(h(t)) = h(t).

Proof: Using Theorem 1.1 and expression (2.21), we obtain formula (2.22) immediately. From a similar
argument of the proof of Theorem 2.1, we have tA(h(t)) = h(t), where A(t) is the generating function of A−
sequence.

The sequence A = (ak)k∈N is the A-sequence of the Riordan array D = (d(t), h(t)) and it only depends
on h(t). In fact, as we have shown during the proof of the theorem, we have:

h(t) = tA(h(t)) or A(y) =

[
h(t)

t

∣∣∣ y = h(t)

]
=
[y
t

∣∣∣ y = h(t)
]

(2.23)

and this uniquely determines A when h(t) is given and vice versa, h(t) is uniquely determined when A is
given.

Although the two functions d(t) and A(t) completely characterize a proper Riordan array, we are mainly
interested in another type of characterization. Let us consider the following result:
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Theorem 2.2 Let (dn,k)n,k∈N be any infinite, lower triangular array with dn,n 6= 0, ∀n ∈ N (in particular,

let it be a proper GRA); then a unique sequence Z = (zk)k∈N exists such that every element in column 0 can
be expressed as a linear combination of all the elements in the preceding row, i.e.:

1

cn+1
dn+1,0 =

1

cn
z0dn,0 +

c1
cn
z1dn,1 +

c2
cn
z2dn,2 + · · · = 1

cn

∞∑
j=0

cjzjdn,j . (2.24)

Proof: Let z0 = d1,0/(c1d0,0). Now we can uniquely determine the value of z1 by expressing d2,0 in terms
of the elements in row 1, i.e.:

1

c2
d2,0 =

1

c1
(z0d1,0 + c1z1d1,1) or z1 =

c21d0,0d2,0 − c2d21,0
c21c2d0,0d1,1

.

Similarly, we can determine z2 by expressing d3,0 in terms of the elements in row 2 with the substitution of
the obtained values of z0 and z1. By using (2.24) and the same processing succursively, we determine the
elements of the sequence Z one-by-one uniquely.

The sequence Z is called the Z-sequence of the (c)-Riordan array; it characterizes column 0, except for
the element d0,0. Therefore, we can say that the triple (d0,0, A(t), Z(t)) completely characterizes a proper
Riordan array. Usually, we denote d0,0 as δ.

To see how the Z-sequence is obtained by starting with the usual definition of a Riordan array, let us
prove the following result.

Theorem 2.3 Let (d(t), h(t)) be a proper Riordan array and let Z(t) be the generating function of the
corresponding Z-sequence. We have:

d(t) =
δ

1− tZ(h(t))
or Z(y) =

[
d(t)− δ
td(t)

∣∣∣ t = h(y)

]
. (2.25)

Proof: By the preceding theorem, the Z-sequence exists and is unique. Therefore, equation (2.24) is valid
for every n ∈ N, and we can pass to its generating function form. Since d(t)h(t)k is the generating function
for column k, we have:

d(t)− d0,0
t

= z0d(t) + z1d(t)h(t) + z2d(t)h(t)2 + · · · = d(t)(z0 + z1h(t) + z2h(t)2 + · · ·) = d(t)Z(h(t)).

By solving this equation in d(t), we obtain the first relation of (2.25). The second relation is an immediate
consequence, when we set y = h(t).

Example 2.1 Riordan arrays were introduced as a generalization of the Pascal triangle P . Actually, we
have

P =

(
1

1− t
,

t

1− t

)
;

as can be easily checked Pn,k =
(
n
k

)
, the A-sequence is (1, 1, 0, 0, . . .) and the Z-sequence is (1, 0, 0, 0, . . .).

See, e.g., [29].

From Corollary 1.3, we have the following result.

Theorem 2.4 There exists a one-to-one correspondence between the set of Gegenbauer-Humbert-type poly-
nomial sequences and the set of (c)-Riordan arrays

D−1
(

1

(1 + ytm)λ
,

t

1 + ytm

)
D,

where the matrices

D = diag

(
1, 1/λ, 1/

(
λ+ 1

2

)
, 1/

(
λ+ 2

3

)
, . . .

)
.
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n\k 0 1 2 3 4 5 6
0 1
1 0 1
2 −1 0 1
3 0 −2 0 1
4 1 0 −3 0 1
5 0 3 0 −4 0 1
6 −1 0 6 0 −5 0 1

n\k 0 1 2 3 4 5 6
0 1
1 0 1
2 1 0 1
3 0 2 0 1
4 1 0 3 0 1
5 0 3 0 4 0 1
6 1 0 6 0 5 0 1

Table 1: The Chebyshev triangle U and the Pell triangle P

The generating functions of corresponding A− and Z− sequences are

A(s) =
s

t
, s =

t

1 + ytm

and

Z(s) =
1− (1 + ytm)λ

t
, t = h̄(s),

where h̄ is the compositional inverse of h(t) = t
1+ytm . If m = 2, then t = h̄(s) =

1−
√

1−4ys2
2ys .

Proof: The proof of the one-to-one correspondence is straightforward. The generating functions A(t) and
Z(t) of the A− and Z− sequences can be constructed using theorems 2.1 and 2.3, respectively. For the case

m = 2, another inverse function of h(t),
1+
√

1−4ys2
2ys , cannot be considered because we need h(0) = h̄(0) = 0.

Example 2.2 For the Chebyshev polynomials of the 2nd kind, Uk(x), we have Uk(x) = P 2,1,1
k (x). From

(1.8), by noting m = 2 and y = λ = 1, we may find the corresponding c sequence is c = (1, 1, 1, . . .) and the

(c)-Riordan array is
(

1
1+t2 ,

t
1+t2

)
which entries are shown in table 1.

It is easy to see the A-sequence is (1, 0,−1, 0,−1, 0,−2, 0,−5, . . .) and the Z-sequence is (0,−1, 0,−1, 0,−2,
0,−5, . . .), or equivalently,

A(s) =
2s2

1−
√

1− 4s2
, and Z(s) =

√
1− 4s2 − 1

2s
.

Similarly, Pell polynomial sequence {P 2,−1,1
k (x)}k≥0 has a triangle representation, the Pell triangle

P =

(
1

1− t2
,

t

1− t2

)
,

which possesses A− sequence (1, 0, 1, 0,−1, 0, 2, 0,−5, . . .) and Z− sequence (0, 1, 0,−1, 0, 2, 0,−5, . . .). And
the generating functions of A− sequence and Z− sequence are

A(s) =
2s2√

1 + 4s2 − 1
, and Z(s) =

√
1 + 4s2 − 1

2s
,

respectively.

Example 2.3 For the Legendre polynomials, P
2,1,1/2
k (x) = ψk(x), noting m = 2, y = 1, λ = 1/2, and(

1/2 + k − 1

k

)
=

(1/2 + k − 1)k
k!

=
(1/2 + k − 1)(1/2 + k − 2) · · · (1/2)

k!

for k = 1, 2, . . ., we obtain the corresponding c sequence
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n\k 0 1 2 3 4 5 6
0 1
1 0 1
2 − 1

2 0 1
3 0 − 3

2 0 1
4 3

8 0 − 5
2 0 1

5 0 15
8 0 − 7

2 0 1
6 − 5

16 0 35
8 0 − 9

2 0 1

Table 2: The triangle (1/
√

1 + t2, t/(1 + t2)) used to constructed the Legendre triangle

c = (1, 2,
8

3
,

16

5
, . . .)

and

(d(t), h(t)) =

(
1√

1 + t2
,

t

1 + t2

)
,

which generates the Legendre triangle L = D−1(d(t), h(t))D, where D = diag(1, 2, 8/3, 16/5, . . .) and (d(t), h(t))
is shown in Table 2. The A− and Z− sequences are (1, 0,−1, 0,−1, 0,−2, 0,−5, . . .) and (0,− 1

2 , 0,−
3
8 , 0,−

11
16 , 0,

− 211
128 , . . .), which have the generating functions

A(s) =
2s2

1−
√

1− 4s2
, and Z(s) =

1−
√

1 + t2

t
, where t =

1−
√

1− 4s2

2s
,

respectively.

Example 2.4 Clearly, in the Pascal triangle we have ZP = (1, 0, 0, 0, . . .) and so ZP (t) = 1. Formula (2.25)
gives immediately dP (t) = 1/(1− t). The Z-sequence for the Fibonacci triangle is a bit more complicated. If
we set y = hF (t) = (1−

√
1− 4t)/2, we can invert the function hF (t) and find t = y−y2. We now substitute

this expression in:
dF (t)− δF
tdF (t)

=

(
1

1− t− t2
− 1

)
· 1− t− t2

t
= 1 + t

and find ZF (t) = 1 + t− t2; the Z-sequence is ZF = (1, 1,−1, 0, 0, . . .).

Obviously, we can characterize the main subgroups of R by means of their A- and/or Z-sequences as the
same as Theorems 2.4, 2.5, and 6.3 in [14]. Here, we list them as follows.

Theorem 2.5 Let us consider a Riordan array (d(t), h(t)). (1) (d(t), h(t)) belongs to the (c)-Appell sub-
group A if and only if its A-sequence satisfies A(t) = 1. Besides, in that case, we also have:

Z(t) =
d(t)− δ
td(t)

.

(2) (d(t), h(t)) belongs to the (c)-Lagrange subgroup L if and only if its Z-sequence satisfies Z(t) = 0 and
δ = 1. (3) (d(t), h(t)) belongs to the (c)-checkerboard subgroup C if and only if the generating functions A(t)
of its A-sequence is even and Z(t) of its Z-sequence is odd.

For the Bell subgroup of renewal arrays we have a more elaborate result:

Theorem 2.6 Let (d(t), h(t)) be a (c)-Riordan array in which d(0) = h′(0) 6= 0. Then d(t) = h(t)/t if and
only if: A(y) = δ + yZ(y).

The reader can check this result for the Pascal triangle, which is a renewal array.
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n\k 0 1 2 3 4 5 6 7 8
0 1
1 0 1
2 0 0 1
3 0 0 0 1
4 −1 0 0 0 1
5 0 −2 0 0 0 1
6 −1 0 −3 0 0 0 1
7 0 −2 0 −4 0 0 0 1
8 0 0 −3 0 −5 0 0 0 1

n\k 0 1 2 3 4 5 6
0 1
1 0 1
2 0 0 1
3 0 0 0 1
4 −1 0 0 0 1
5 0 −2 0 0 0 1
6 1 0 −3 0 0 0 1
7 0 2 0 −4 0 0 0 1
8 0 0 3 0 −5 0 0 0 1

Table 3: The triangles Q = P ∗ U and G = U ∗ P

Theorem 2.7 A monic Riordan array D = (d(t), h(t)) belongs to the (c)-hitting-time subgroup if and only
if Z(t) = A′(t), where A(t) and Z(t) are the generating functions of its A- and Z-sequences.

According to Formula (1.19), the product of two (c)-GRAs, (d1(t), h1(t)) and (d2(t), h2(t)), associated
with sequence {cn 6= 0} and c0 = 1 is a (c)-GRA associated with {cn}. The A- and Z-sequences of the
product depend on the analogous sequences of the two factors are exactly equal to those given in [14] for the
classical Riordan Arrays. In order to describe the results, let us consider two proper (c)-GRAs (d1(t), h1(t))
and (d2(t), h2(t)) and their product:

(d1(t)d2(h1(t)), h2(h1(t)))

so that:
d3(t) = d1(t)d2(h1(t)) and h3(t) = h2(h1(t)).

We can now give the formula for the A-sequence and the Z-sequence of the product of two GRAs (see
[14]):

Theorem 2.8 The A-sequence and the Z-sequence, A3(t) and Z3(t) are given by:

A3(t) = A2(t)A1

(
t

A2(t)

)
.

and

Z3(t) =

(
1− t

A2(t)
Z2(t)

)
Z1

(
t

A2(t)

)
+A1

(
t

A2(t)

)
Z2(t).

Since the proofs are the same as [14], we omit them.

Example 2.5 Let us perform the products Q = P ∗ U and G = U ∗ P . The A− sequence and Z− sequence
of Q are A = (1, 0, 0, 0,−1, 0,−1, . . .) and Z = (0, 0, 0,−1, 0,−1, 0, . . .), respectively. The A− sequence and
Z− sequence of G are A = (1, 0, 0, 0,−1, 0, 1, . . .) and Z = (0, 0, 0,−1, 0, 1, 0, . . .), respectively.

Formula (1.20) allows us to find the inverse of any (c)-GRA given by the pair (d(t), h(t)), provided we
are able to find the compositional inverse h(t) of h(t).

The sequence characterization of the inverse of a (c)-GRA (d(t), h(t)) = D−1[[tn]d(t)(h(t))k]D, where
D = diag(c0, c1, c2, . . .), can be found using a pattern similar to the one used in [14]. In fact,

(d(t), h(t))−1 =
(
D−1[[tn]d(t)(h(t))k]D

)−1
= D−1[[tn]d(t)(h(t))k]−1D

= D−1
[
[tn]

1

d(h̄(t))
(h̄(t))k

]
D =

(
1

d(h̄(t))
, h̄(t)

)
.

Let A(t) and Z(t) be the generating functions of the A- and Z-sequences of (d(t), h(t)) and let us denote
by d∗(t), h∗(t), A∗(t) and Z∗(t) the corresponding functions for the inverse (d(t), h(t))−1. We immediately
observe that, by Formula (1.20), h∗(t) = h(t). Now we have:
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n\k 0 1 2 3 4 5 6
0 1
1 0 1
2 1 0 1
3 0 2 0 1
4 2 0 3 0 1
5 0 5 0 4 0 1
6 5 0 9 0 5 0 1

n\k 0 1 2 3 4 5 6
0 1
1 0 1
2 1

2 0 1
3 0 3

2 0 1
4 7

8 0 5
2 0 1

5 0 27
8 0 7

2 0 1
6 33

16 0 55
8 0 9

2 0 1

Table 4: The inverse triangles U−1 and (1/
√

1 + t2, t/(1 + t2))−1

Theorem 2.9 The A-sequence and the Z-sequence of the inverse (c)-GRA (d(t), h(t))−1 are:

A∗(y) =

[
1

A(t)

∣∣∣ y =
t

A(t)

]
=

[
y

t

∣∣∣ y =
t

A(t)

]
and

Z∗(y) =

[
δ − d(y)

δt

∣∣∣ y = h(t)

(
=

t

A(t)

)]
=

[
−yZ(t)

t(1− yZ(t))

∣∣∣ y =
t

A(t)

]
.

Example 2.6 The initial parts of the inverses of (c)-GRAs U−1 and (1/
√

1 + t2, t/(1+ t2))−1 are shown in
Table 4. The inverse of Legendre triangle L is D−1(1/

√
1 + t2, t/(1+t2))−1D, where D = diag(1, 2, 8/3, 16/5, . . .).

The A− sequence and Z− sequence of U−1 are A = (1, 0, 1, 0, 0, . . .) and Z = (0, 1, 0, 0, 0, 0, . . .), respec-
tively. The A− sequence and Z− sequence of (1/

√
1 + t2, t/(1 + t2))−1 are A = (1, 0, 1, 0, 0, 0, . . .) and

Z = (0, 12 , 0,
1
8 , 0, 0,−

1
16 , 0, . . .), respectively. It is easy to see both generating functions of A− sequences of

U−1 and (1/
√

1 + t2, t/(1 + t2))−1 are A(t) = 1 + t2.

For the Pascal triangle, the 0-th element of every row is 1, and every other element is computed by
the A-sequence (1, 1, 0, 0, . . .) corresponding to the basic recurrence of binomial coefficients. In the Pascal
triangle the Z-sequence is particularly simple, [14] pointed out that this is not always the case. Sometimes
it is more favorable another characterization of Riordan arrays:

Theorem 2.10 A Riordan array D = (d(t), h(t)) is completely characterized by the function d(t) and by
its A-sequence.

Proof: By Formula 2.23, the A-sequence determines the function h(t).

Using the above result and Theorem 3.1 we have the following corollary.

Corollary 2.11 A subset of R characterized by A(t) = a0 + a1t (a0, a1 ∈ R) is a subgroup.

[14] also pointed out that an important point relative to the construction of a Riordan array using A-
sequence, is our ability in finding the compositional inverse of a delta series, that is a formal power series
h(t) ∈ F1. We may set y = h(t) and solved this equation in t = t(y), but this is not always feasible. In
the simple case that h(t) is a polynomial of third degree, technical problems can arise, and if the degree is
greater than 4, the solution (in terms of radicals) can become at all impossible. In these cases, we can use
the Lagrange Inversion Formula (LIF) to find out the coefficients of h(t). In fact, the LIF gives:

hn =
1

n
[tn−1]

(
t

h(t)

)n
and we can compute the coefficients of the A-sequence (or vice versa):

Theorem 2.12 Let D = (d(t), h(t)) be a (c)-Riordan array; then the coefficients of its A-sequence are given
by:

an =
1

n
[tn−1]

h′∗(t)

h∗(t)n
and conversely hn =

1

n
[tn−1]A(t)n,

where h∗(t) = h(t)/t.

From this theorem, it follows h1 = a0, h2 = a0a1, h3 = a20a2 + a0a
2
1, and so on.
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3 The convolution family and (c)-Bell polynomials

Theorem 3.1 Let {Fn(x)}n be a convolution family associated with a (c)-sequence {ck}k≥0 (c0 = 1, ck > 0
for every k > 0) defined on I, N ⊂ I ⊂ R, with F0(x) 6= 0. Then

Bcn,k

(
c1
c0
F0(x),

c2
c1
F1(x), . . .

)
=

cn
ckcn−k

Fn−k(kx). (3.26)

Proof: Let Φ(x, t) be the generating function of {Fn(x)}n: Φ(x, z) =
∑
n≥0 Fn(x)zn/cn. Since {Fn(x)}n

is a convolution family associated with {cn}n, we have

Φ(x+ y, z) = Φ(x, z)Φ(y, z), Φ(kx, z) = (Φ(x, z))k (k ∈ N0).

In fact, using (1.10) yields

Φ(x, z)Φ(y, z) =
∑
n≥0

∑
k≥0

Fn(x)Fk(y)
zn+k

cnck

=
∑
n≥0

n∑
k=0

Fn−k(x)Fk(y)
zn

cn−kck
=
∑
n≥0

Fn(x+ y)
zn

cn
.

Similarly, we have Φ(kx, z) = (Φ(x, z))k for k ≥ 0. Thus,

1

ck
(zΦ(x, z))

k
=

1

ck
zkΦ(kx, z) =

1

ck

∑
n≥0

Fn(kx)
zn+k

cn

=
∑
n≥k

cn
ckcn−k

Fn−k(kx)
zn

cn
. (3.27)

On the other hand,

1

ck
(zΦ(x, z))

k
=

1

ck

∑
n≥0

Fn(x)
zn+1

cn

k

=
1

ck

∑
n≥1

cn
cn−1

Fn−1(x)
zn

cn

k

=
∑

n≥k≥0

Bcn,k

(
c1
c0
F0(x),

c2
c1
F1(x), . . . ,

cn−k+2

cn−k+1
Fn−k+1(x),

)
zn

cn
. (3.28)

Comparing the rightmost sides of (3.27) and (3.28), we immediately obtain (3.26).

If ck = k! and x = 1, we recover the result on the exponential Bell polynomials shown in Theorem 6 of
[1]:

Bn,k(F0(1), 2F1(1), 3F2(1), . . .) =

(
n

k

)
Fn−k(k).

Example 3.1 For binomial sequence {xn}n, (3.26) gives

Bcn,k

(
c1
c0
,
c2
c1
x,
c3
c2
x2, . . .

)
=

cn
ckcn−k

(kx)n−k,

which includes the well-known identity

Bn,k(1, 2x, 3x2, . . .) =

(
n

k

)
(kx)n−k

when ck = k!.
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Example 3.2 Let S(n, k) denote the Stirling number of the second kind, and denote

Bn(x) =

n∑
k=0

S(n, k)xk.

Since {Bn(x)} is a binomial sequence, from (3.26) we obtain the identity

Bcn,k

(
c1
c0
,
c2
c1
B1(x), . . .

)
=

cn
ckcn−k

Bn−k(kx) =
cn

ckcn−k

n−k∑
j=0

S(n− k, j)(kx)j ,

where B0(x) ≡ 1 is used. If ck = k!, we get an extension of Corollary 7 of [1]:

Bn,k(1, 2B1(x), 3B2(x), . . .) =

(
n

k

) n−k∑
j=0

S(n− k, j)(kx)j .

Similarly, if ck = 1 (k ≥ 0),
{
Fn(x) =

(
x
n

)}
and

{
Gn(x, t) = x

x+tn

(
x+tn
n

)}
(t ≥ 0) are two (c)-convolution

families because of

Fn(x+ y) =

n∑
k=0

Fk(x)Fn−k(y) Gn(x+ y) =

n∑
k=0

Gk(x)Gn−k(y).

Thus, from (3.26) we have

Bcn,k

(
1,

(
x

1

)
,

(
x

2

)
, . . .

)
=

(
kx

n− k

)
and

Bcn,k

(
1,

x

x+ t

(
x+ t

1

)
,

x

x+ 2t

(
x+ 2t

2

)
, . . .

)
=

x

x+ (n− k)t

(
x+ (n− k)t

n− k

)
.

Remark 3.1 The Gn(x, t) shown above are the Hagen-Rothe type polynomials that figure into many of
one author’s papers starting with two papers [7] and [8] in 1956 and 1957 in Amer. Math. Monthly dealing
with the generalized Vandermonde convoltions. Some writers have dubbed those polynomials as Gould
polynomials.
Remark 3.2 We may use suitable (c)-Riordan arrays to obtain the well-known Gould’s identity shown in
(11) of [7]. From (1.1) with x = 1, one may obtain

n∑
k=0

dn,k
gk
ck

= [tn]d(t)g(h(t)) (3.29)

because

[tn] d(t)g(h(t)) = [tn] d(t)
∑
k≥0

gk
(h(t))k

ck

=
∑
k≥0

gk
1

ck
[tn]d(t)(h(t))k.

Denote f(t) := g(h(t)). Then

gk =

[
tk

ck

]
g(t) = ck[tk]f(y)

∣∣
y=h(t)

,

where h(t) is the compositional inverse of h(t), i.e., y = h(t) iff t = h(y). Using Lagrange inverse formula
(see, for instance, Theorem 5.1 in [34]) and noting y = ty/h(y), we may calculate gk by
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gk =
ck
k

[yk−1]

{
f ′(y)

(
y

h(y)

)k}
(3.30)

Let (d(t), h(t)) = (1 + at)α+nβ , t(1 + at)−β), and let f(t) = tb(1 + at)γ , where α, β, γ, n ∈ N0, and b ∈ N0

satisfying b ≤ n. Then, (3.30) yields

gk = ck
γ + βb

γ + βk

(
γ + βk

k − b

)
an−b.

Since

dn,k = [tn](1 + at)α+nβ
(
t(1 + at)−β

)k
=

(
α+ (n− k)β

n− k

)
and

[tn]d(t)f(t) = [tn](1 + at)α+nβtb(1 + at)γ =

(
α+ γ + nβ

n− b

)
,

from (3.29) we have b-th order Gould’s identity

n∑
k=b

γ + βb

γ + βk

(
γ + βk

k − b

)(
α+ (n− k)β

n− k

)
=

(
α+ γ + nβ

n− b

)
, 0 ≤ b ≤ n, (3.31)

which includes Gould’s identity (11) in [7] as the case of b = 0. By using the concept of “natural range of
summation” shown in [28], we may write (3.31) as

n∑
k=0

γ + βb

γ + βk

(
γ + βk

k − b

)(
α+ (n− k)β

n− k

)
=

(
α+ γ + nβ

n− b

)
(3.32)

for all b ∈ N0. In fact, for 0 ≤ b ≤ n, the natural range of the summation on the left-hand side of (3.31) is
b ≤ k ≤ n; for b > n, (3.31) is trivial because its both sides are zero.
Remark 3.3 From (3.29), we can find another type identities. Let (d(t), h(t)) = (dn,k)n≥k≥0 be a (c)-
generalized Riordan array with respect to a (c)-sequence {ck}k≥0 with c0 = 1 and ck 6= 0 for all k > 0, where
d(t) ∈ F0 and h(t) ∈ F1, and let f(t) =

∑
n≥0 fnt

n/cn. Then, there holds identity

n∑
k=1

dn,k
fk
ck

=

n∑
j=1

[tj ]f(h(t))[tn−j ]d(t). (3.33)

Furthermore, denote by h∗(t) is the compositional inverse of h(t), then (3.33) can be written as

n∑
k=1

dn,k
fk
ck

=

n∑
j=1

1

j
[uj−1]f ′(u)

(
u

h∗(u)

)j
[tn−j ]d(t). (3.34)

Indeed, substituting gk = fk and g(h(t)) = f(h(t)) into (3.29), we can write it as

n∑
k=0

dn,k
fk
ck

= [tn]d(t)f(h(t))

=

n∑
j=1

[tj ]f(h(t))[tn−j ]d(t)

= f0dn,0 +

n∑
j=1

[tj ]f(h(t))[tn−j ]d(t),

which implies (3.33). Noting the compositional inverse of h(t), which exists due to h(t) ∈ F1, satisfies
u = t(u/h∗(u)), we may use Lagrange inverse formula to write
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[tj ]f(h(t)) =
1

j
[uj−1]f ′(u)

(
u

h∗(u)

)j
, j ≥ 1.

Thus (3.34) is followed from (3.33).
From the proof of (3.33), it is easy to see that the initial terms of both sides of (3.33) can be extended

to k = 0 and ` = 0, respectively, namely,

n∑
k=0

dn,k
fk
ck

=

n∑
j=0

[tj ]f(h(t))[tn−j ]d(t).

As an example, we consider (d(t), h(t)) = (1/(1− t), t/(1− t)). From (3.34) we obtain the identity

n∑
k=1

(
n

k

)[
tk
]
f(t) =

n∑
j=1

1

j
[uj−1]f ′(u) (1 + u)

j
,

which yields identity

n∑
k=1

1

k!

(
n

k

)
=

n∑
j=1

j−1∑
`=0

1

j`!

(
j

j − 1− `

)

when f(t) = et and the identity

2n − 1 =

n∑
j=1

j−1∑
`=0

`+ 1

j

(
j

j − 1− `

)
when f(t) = 1/(1− t). In the following example, we consider parameter 0 < q < 1 and denote

cn = n!q :=
(1− q)(1− q2) · · · (1− qn)

(1− q)n
. (3.35)

[21] defines

εa(t) =
∑
k≥0

ak

ck
tk

with a non-zero constant a, and evaluates

1

εa(t)
=
∑
k≥0

q(
k
2) (−at)k

ck
.

Hence, we have the q-analogue (c)-Riordan array(
1

εa(t)
,

t

1− t

)
=

(
n∑
`=k

(
`− 1

k − 1

)
an−`

cn−`

)
n≥k≥0

,

where we use the formula

[tn]f(t)g(t) =

n∑
`=0

[t`]f(t)[un−`]g(y)

to evaluate

dn,k = [tn]εa(t)

(
t

1− t

)k
.
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Therefore we obtain q−identities

n∑
k=1

1

k!

n∑
`=k

(
`− 1

k − 1

)
an−`

cn−`
=

n∑
j=1

an−j

cn−j

j−1∑
`=0

1

j`!

(
j

j − 1− `

)
and

n∑
k=1

n∑
`=k

(
`− 1

k − 1

)
an−`

cn−`
=

n∑
j=1

an−j

cn−j

j−1∑
`=0

`+ 1

j

(
j

j − 1− `

)
from (3.34) with f(t) = et and f(t) = 1/(1 − t), respectively, where ck are defined by (3.35) and note(
0
k

)
= δk,0.

4 (c)-Riordan arrays and (c)-Bell polynomials

First, we discuss the composition of formal (c)-power series associated with a sequence {ck}k≥0, where c0 = 1
and ck > 0 for every k ≥ 1. Similar to Faá di Bruno formula (see, for example, Theorem A in [6]), we have
the following result.

Theorem 4.1 Let f and g be two formal (c)-power series:

f :=
∑
k≥0

fk
tk

ck
, g :=

∑
m≥1

gm
tm

cm
, (4.36)

and let h be the formal (c)-power series of the composition of g and f :

h :=
∑
n≥0

hn
tn

cn
= f ◦ g = f [g]. (4.37)

Then the coefficients hn are given by the following expression:

h0 = f0, hn =
∑

n≥k≥1

fkB
c
n,k(g1, g2, . . . , gn−k+1). (4.38)

Proof: First, hn are linear combinations of the fk, namely,

hn =

n∑
k=1

An,kfk, (4.39)

and An,k only dependent on g` (` ≥ 1) associated with the sequence {ck}. Secondly, we determine An,k
by choosing for f(t) the special formal series f̃(t) = eat, where a is a parameter. Then, the expansion

coefficients of f̃(t) are f̃k = (∂kf̃/∂tk)
∣∣∣
t=0

= ak. Hence, from (4.39)

h̃ := f̃ ◦ g =
∑
n≥0

h̃n
tn

cn
= 1 +

∑
n≥1

{
tn

cn

n∑
k=1

An,kf̃k

}

= 1 +
∑

n≥k≥1

An,k
tn

cn
ak. (4.40)

On the other hand, from (1.13), we obtain

h̃ = f̃ ◦ g = exp(ag) = exp

a∑
m≥1

gm
tm

cm


= 1 +

∑
n≥k≥1

Bcn,k(g1, g2, . . .)
tn

cn
ak. (4.41)
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Comparing the rightmost terms of (4.40) and (4.41) yields An,k = Bcn,k, which implies (4.38).

From Theorem 4.1, we immediately have the following corollary.

Corollary 4.2 Let f be a formal (c)-power series in F1 and g = f̄ , the compositional inverse of f , and let
Bcn,k(f1, f2, . . .) and Bcn,k(g1, g2, . . .) be the (c)-Bell polynomials generated by (f(t))m/cm and (g(t))m/cm,
i.e., [

tn

cn

]
1

cm
(f(t))m = Bcn,k(f1, f2, . . .),

[
tn

cn

]
1

cm
(g(t))m = Bcn,k(g1, g2, . . .)

for all n ≥ k ≥ 0. Then

∑
n≥k≥m

Bcn,k(f1, f2, . . . , fn−k+1)Bck,m(g1, g2, . . . , gk−m+1)

=
∑

n≥k≥m

Bcn,k(g1, g2, . . . , gn−k+1)Bck,m(f1, f2, . . . , fk−m+1) = δn,m, (4.42)

where δn,m is the Knocker symbol, i.e., δn,m = 1 when n = m and zero otherwise.

Proof: It is obvious that

∑
n≥k≥m

Bcn,k(f1, f2, . . . , fn−k+1)Bck,m(g1, g2, . . . , gk−m+1) =

[
tn

cn

] [
1

cm
(f(y))m

∣∣∣∣ y = g(t)

]

=

[
tn

cn

](
tm

cm

)
= δn,m.

Example 4.1 As an example, we consider the ordinary generating functions of the Stirling numbers of the

first kind,

[
n
m

]
(signless), and the second kind,

{
n
m

}
:

[
tn

n!

]
1

m!

(
log

1

1− t

)m
=

[
n
m

]
,

[
tn

n!

]
1

m!

(
e−t − 1

)m
= (−1)n

{
n
m

}
.

Thus, Corollary 4.2 gives

∑
n≥k≥m

(−1)n−k
[
n
k

]{
k
m

}
= δn,m.

We now use Bell polynomials to characterize (c)-Riordan arrays. In [20], the Sheffer identity is used to
characterize Sheffer polynomials sn(x) for (d(t), h(t)) (see (1.15). Since there exists an isomorphism between
the Riordan group and Sheffer group (see [12]), the Sheffer identity can also be used to characterize Riordan
arrays. Here, the Riordan group is the collection of all proper Riordan arrays with operation (d1(t), h1(t)) ∗
(d2(t), h2(t)) = (d1(t)d2(h1(t)), h2(h1(t))) ≡ (d3(t), h3(t)), and the Sheffer group is the collection of all

Sheffer polynomials for proper Riordan arrays (d(t), h(t)) with operation s
(1)
n (x) ∗ s(2)n (x) = s

(3)
n (x), where

s
(i)
n (x) are associated with (di(t), hi(t)), i = 1, 2, 3, respectively. Recall the Sheffer identity is presented as

sn(x+ y) =

n∑
k=0

(
n

k

)
pk(y)sn−k(x), (4.43)

where sn(x) is the Sheffer for (d(t), h(t)), and pk(y) is associated to h(t). Hence, we can establish the
following result.
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Theorem 4.3 {sn(x)}n≥0 is a Sheffer sequence generated by (d(t), h(t)), h(t) =
∑
n≥1 hnt

n/n!, for some
d(t) ∈ F0 with d(t) =

∑
n≥0 αnt

n/n! if and only if

sn(x+ y) =

n∑
k=0

(
n

k

)
sn−k(x)

k∑
j=0

yjBk,j(h1, h2, hk−j+1), (4.44)

or equivalently,

sn(x+ y) =

n∑
k=0

(
n

k

) n−k∑
i=0

xi
n−k∑
`=i

(
n− k
`

)
αn−k−`B`,i(h1, h2, . . .)

k∑
j=0

yjBk,j(h1, h2, hk−j+1) (4.45)

for every x and y.

Proof: Noting that pk(y) is associated with h(t), we can write pk(y) using (1.17) with α0 = 1 and
αn = 0 (n ≥ 1) as follows:

pk(y) =

k∑
j=0

yjBk,j(h1, h2, hk−j+1).

Substituting the above expression into the Sheffer identity (4.43), we immediately have (4.44). (4.45) can
be obtained from (4.44) by substituting (1.17) with the transform k 7→ i and then n 7→ n− k.

After transferring x 7→ x+ y in (1.17), we substitute the resulting expression of sn(x+ y) into (4.45) and
obtain the following corollary.

Corollary 4.4 Let d(t) ∈ F0 and h(t) ∈ F1 with d(t) =
∑
n≥0 αnt

n/n! and h(t) =
∑
n≥1 hnt

n/n!.
(d(t), h(t)) is a proper Riordan array if and only if

n∑
k=0

(x+ y)k
n∑
`=k

cn
c`cn−`

αn−`B
c
`,k(h1, h2, . . .)

=

n∑
k=0

(
n

k

) n−k∑
i=0

xi
n−k∑
`=i

(
n− k
`

)
αn−k−`B

c
`,i(h1, h2, . . . , h`−i+1)

k∑
j=0

yjBk,j(h1, h2, . . . , hk−j+1)

for every x and y.

Since any Riordan array (d(t), h(t)) can be split as

(d(t), h(t)) = (d(t), t) ∗ (1, h(t)),

we may characterize the Riordan array by characterizing its Appell factor (d(t), t) and its associate factor
(1, h(t)). From [15] (see also the proof of Theorem 1.4), we have the following result.

Theorem 4.5 Let h(t) ∈ F1 with h(t) =
∑
n≥1 hnt

n/n!. (1, h(t)) is an associate Riordan array if and only
if Fn(x) = [tn]exp(xh(t)) is a convolution family, or equivalently,

n∑
k=0

(x+ y)kBn,k(h1, h2, hk−j+1) =

n∑
k=0

(
n

k

) n−k∑
`=0

x`Bn−k,`(h1, h2, hn−k−`+1)

k∑
j=0

yjBk,j(h1, h2, hk−j+1).

We now extend the above results to the (c)-Riordan arays. (c)-Sheffer sequences are defined by (1.16),
namely,

F (t, x) = d(t)g(xh(t)) =
∑
n≥0

sn(x)
tn

cn
.



20 H. W. Gould and T. X. He

Then, we present the (c)-Sheffer identity as follows. First, the formal power series f(t) ∈ F , f(t) =∑
k≥0

ak
ck
tk, defines a linear functional on the algebra of polynomials in the single variable x over the field C

by setting

〈f(t)|xn〉 = an.

Secondly, from (1.16), we immediately have

〈d(t)(h(t))k|sn(x)〉 = cnδn,k (4.46)

for all n, k ≥ 0, which implies the expansion formula:

g(t) =
∑
k≥0

〈g(t)|sk(x)〉
ck

d(t)(h(t))k (4.47)

for every g ∈ F . In fact, the expansion formula can be found as follows.

〈
∑
k≥0

〈g(t)|sk(x)〉
ck

d(t)(h(t))k
∣∣∣∣ sn(x)〉 =

∑
k≥0

〈g(t)|sk(x)〉
ck

〈d(t)(h(t))k|sn(x)〉

=
∑
k≥0

〈g(t)|sk(x)〉
ck

cnδn,k = 〈g(t)|sn(x)〉

for all sn(x) (n = 0, 1, 2, . . .).
Thirdly, from the expansion formula and an obvious identity 〈g(yt)|p(x)〉 = p(y) for any g ∈ F , we have

g(yt) =
∑
k≥0

〈g(t)|sk(x)〉
ck

d(t)(h(t))k =
∑
k≥0

sk(y)

ck
d(t)(h(t))k. (4.48)

We now establish the following (c)- Sheffer identity..

Theorem 4.6 {sn(x)}n≥0 is a (c)-Sheffer sequence generated by (d(t), h(t)) in (1.16) associated with the
given (c)-GPS g(t) from if and only if

g(yt)sn(x) =

n∑
k=0

cn
ckcn−k

pk(y)sn−k(x) (4.49)

for all y, where pk(x) is the (c)-Sheffer sequence generated by (1, h(t)) with respective to g(t).

Proof: We may use a similar argument in the proof of the classical Sheffer identity in [20]. Suppose
sn(x) and pn(x) are the (c)-Sheffer sequences for, respectively, (d(t), h(t) and (1, h(t)) with respect to g(t) =∑
n≥0 t

n/cn. By the expansion formula, we obtain

g(yt) =
∑
k≥0

〈g(yt)|pk(x)〉
ck

(h(t))k =
∑
k≥0

pk(y)

ck
(h(t))k.

Applying both sides of this equation to sn(x) and using

h(t)sn(x) =
cn
cn−1

sn−1(x),

yields

g(yt)sn(x) =
∑
k≥0

pk(y)

ck
(h(t))ksn(x) =

∑
k≥0

cn
cn−kck

pk(y)sn−k(x). (4.50)

Conversely, suppose sequence sn(x) satisfies (4.49). We define a linear operator Tsn(x) = pn(x), where
pn(x) is the Sheffer sequence associated with (1, h(t)). Thus,
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g(yt)Tsn(x) = g(yt)pn(x) =
∑
k≥0

cn
cn−kck

pk(y)sn−k(x)

= T
∑
k≥0

cn
cn−kck

pk(y)sn−k(x) = Tg(yt)sn(x),

which implies g(yt)T = Tg(yt). Therefore, T has the form g ∈ F completing the proof of the theorem.

If g(yt) = eyt, i.e., cn = n!, then Theorem 4.6 is reduced to the case of the classical Sheffer sequences.
From Theorems 4.3 and 4.6, we obtain the following corollary.

Corollary 4.7 {sn(x)}n≥0 is a (c)-Sheffer sequence generated by (d(t), h(t)), h(t) =
∑
n≥1 hnt

n/cn, for
some d(t) ∈ F0 with d(t) =

∑
n≥0 αnt

n/cn if and only if

g(yt)sn(x) =

n∑
k=0

(
n

k

)
sn−k(x)

k∑
j=0

yjBck,j(h1, h2, hk−j+1), (4.51)

or equivalently,

g(yt)sn(x) =

n∑
k=0

(
n

k

) n−k∑
i=0

xi
n−k∑
`=i

(
n− k
`

)
αn−k−`B

c
`,i(h1, h2, . . .)

k∑
j=0

yjBck,j(h1, h2, hk−j+1) (4.52)

for every x and y.
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