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Abstract
A relationship between a pair of Laurent series and Riordan

arrays is formulated. In addition, a type of generalized Sheffer
groups is defined using Riordan arrays with respect to power
series with non-zero coefficients. The isomorphism between a
generalized Sheffer group and the group of the Riordan arrays
associated with Laurent series is established. Furthermore, Ap-
pell, associated, Bell, and hitting-time subgroups of the groups
are defined and discussed. A relationship between the gener-
alized Sheffer groups with respect to different power series is
presented. The equivalence of the defined Riordan array pairs
and generalized Stirling number pairs is given. A type of inverse
relations of various series is constructed using pairs of Riordan
arrays. Finally, several applications involving various arrays,
polynomial sequences, special formulas and identities are also
presented as illustrative examples.
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1 Introduction

In the recent literature, special emphasis has been given to the concept
of Riordan arrays associated with power series, which are a general-
ization of the well-known Pascal triangle. Riordan arrays are infinite,
lower triangular matrices defined by the generating function of their
columns. They form a group, called the Riordan group (see Shapiro et
al. [18]). Some of the main results on the Riordan group and its appli-
cation to combinatorial sums and identities can be found in Sprugnoli
[20, 21], on subgroups of the Riordan group in Peart and Woan [12] and
Shapiro [15], on some characterizations of Riordan matrices in Rogers
[14], Merlini et al. [10], and He et al. [7], and on many interesting re-
lated results in Cheon et al. [2, 3], He et al. [6], Nkwanta [11], Shapiro
[16, 17], and so forth.

More formally, let us consider the set of formal power series (f.p.s.)
F = C[[z]]; the order of f(z) ∈ F , f(z) =

∑∞
k=0 fkz

k (fk ∈ C), is
the minimal number r ∈ N such that fr 6= 0; F r is the set of formal
power series of order r. It is known that F0 is the set of invertible
f.p.s. and F1 is the set of compositionally invertible f.p.s., that is, the
f.p.s. f(z) for which the compositional inverse f(z) exists such that
f(f(z)) = f(f(z)) = z. Let d(z) ∈ F0 and h(z) ∈ F1; the pair
(d(z), h(z)) defines the (proper) Riordan array D = (dn,k)n,k∈N having

dn,k = [zn]d(z)h(z)k (1)

or, in other words, having d(z)h(z)k as the generating function whose
coefficients make-up the entries of column k. Rogers [14] introduced
the concept of the A-sequence for Riordan arrays; Merlini et al. [10]
introduced the related concept of the Z-sequence and showed that these
two concepts, together with the element d0,0, completely characterize

The concept of a Riordan array can be extended in various ways, as shown in
Corsani et al [4] so that the term “proper” distinguishes the arrays belonging to
the Riordan group. In the present paper we will be interested only in this latter
kind of Riordan arrays, so we usually understand the qualification proper and use it
only to stress that some property holds for proper, but may not hold for non-proper
Riordan arrays.
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a proper Riordan array. In [7], Sprugnoli and the author consider the
characterization of Riordan arrays by means of the A- and Z-sequences.
[7] also shows how the A- and Z-sequences of the product of two Rior-
dan arrays are derived from those of the two factors; similar results are
obtained for the inverse. How the sequence characterization is applied
to construct easily a Riordan array is presented in the paper. Finally,
it gives the characterizations relative to some subgroups of the Riordan
group, in particular of the hitting-time subgroup.

It is immediate to show that the usual row-by-column product of
two Riordan arrays is also a Riordan array:

(d1(z), h1(z)) ∗ (d2(z), h2(z)) = (d1(z)d2(h1(z)), h2(h1(z))). (2)

The Riordan array I = (1, z) is everywhere 0 except that it contains
all 1’s on the main diagonal; it is easily seen that I acts as an identity
for this product, that is, (1, z) ∗ (d(z), h(z)) = (d(z), h(z)) ∗ (1, z) =
(d(z), h(z)). From these facts, we deduce a formula for the inverse
Riordan array:

(d(z), h(z))−1 =

(
1

d(h(z))
, h(z)

)
(3)

where h(z) is the compositional inverse of h(z). In this way, the set R
of proper Riordan arrays is a group.

If (fk)k∈N is any sequence and f(z) =
∑∞

k=0 fkz
k is its generating

function, then for every Riordan array D = (d(z), h(z)) we have:

n∑
k=0

dn,kfk = [zn]d(z)f(h(z))

which relates Riordan arrays to combinatorial sums and sum inversion.
Let Σ be the set of functions with a Laurent expansion of the form

f(z) =
∑
n≥−1

anz
−n, (4)

an ∈ C. The order of f(z) ∈ Σ is the maximum number r ∈ Z such
that fr 6= 0. Σr is the set of formal power series of order r. It is known
that f ∈ Σ0 implies 1/f(z−1) ∈ F0 the set of invertible f.p.s, and
f ∈ Σ−1 implies 1/f(z−1) ∈ F1, the set of compositionally invertible
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f.p.s. If f(z) ∈ Σ0 and g(z) ∈ Σ−1, we now define the Riordan arrays
associated with Laurent series as follows. Similar to (1), we have matrix
with entries

dn,k = [zn]
1

f(z−1)

(
1

g(z−1)

)k

, (5)

which is called the Riordan array associated with f(z) and g(z) and
denote it by (1/f(z−1), 1/g(z−1)). Hence, the generating function of
column k of the matrix is 1/(f(z−1)g(z−1)k). There exists a relation-
ship between the Riordan arrays associated with power series and the
Riordan arrays associated with Laurent series by using the transforma-
tion

T : f(z) 7→ d(z), d(z) = (Tf)(z) =
1

f(z−1)
. (6)

It is obvious T is well defined in the sense that if f is in respectively Σ0

and Σ−1, then d ∈ F0 and d ∈ F1 exists uniquely. Denote by R̄ the set
of all Riordan arrays associated with Laurent series, [f(z), g(z)], where
f ∈ Σ0 and g ∈ Σ−1. We now define [f(z), g(z)] by using the Riordan
arrays associated with power series as follows.

[f(z), g(z)] :=

(
1

f (z−1)
,

1

g (z−1)

)
≡ (d(z), h(z)), (7)

where f ∈ Σ0 and g ∈ Σ−1, which implies d(z) = 1/f(z−1) ∈ F0 and
h(z) = 1/g(z−1) ∈ F1, or equivalently, (d(z), h(z)) ∈ R.

Denote by E the set of all power series
∑

n≥0 cnz
n with all cn 6= 0.

In [5], we defined a generalized Sheffer-type polynomial sequences using
the expansion

d(z)A(xh(z)) =
∑
n≥0

pn(x)zn, (8)

where d(z) ∈ F0, h(z) ∈ F1, and A(z) =
∑

n≥0 anz
n ∈ E . We now

re-state the definition associated with Laurent series. Unless otherwise
specified, when dealing with A(z) we shall assume it is in E .

Definition 1.1 Let f ∈ Σ0 and g ∈ Σ−1. A generalized Sheffer-type
polynomial sequence associated with Laurent series generated by [f, g]
with respect to a power series A(z) =

∑
n≥0 anz

n is defined by

1

f(z−1)
A

(
x

g(z−1)

)
=
∑
n≥0

pn(x)zn, (9)
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or equivalently,

1

f(z)
A

(
x

g(z)

)
=
∑
n≥0

pn(x)z−n. (10)

Furthermore, if an = 1 (n = 0, 1, 2, . . .), i.e., A(z) = 1/(1 − z),
then the corresponding sequences pn(x) defined by (9) are called the
ordinary polynomial sequences. If an = 1/n! (n = 0, 1, 2, . . .), i.e.,
A(z) = ez, then expression (9) defines the classic Sheffer-type polyno-
mial sequences. If a0 = 1 and an = 1/n (n = 1, 2, . . .), i.e., A(z) =
1− ln(1−z), then the corresponding pn(x) are called the Dirichlet poly-
nomial sequences.

Denote by PA the set of all generalized Sheffer-type polynomial se-
quences {pn(x)} generated by (9) or an equivalent form (8).

By using the Riordan array defined above and the fundamental
theorem for Riordan arrays (see [15]), we have the expression of the
generalized Sheffer-type polynomial sequences defined by (9)

pn(x) =
n∑

k=0

akdn,kx
k =

n∑
k=0

pn,kx
k, (11)

where pn,k = andn,k and

dn,k = [zn]
1

f(z−1)

(
1

g(z−1)

)k

, (12)

which can be obtained from (9) with an observation of (11), the expres-

sion of pn(x). Hence, the matrix form of 1
f(z−1)

A
(

x
g(z−1)

)
is the result

of the following matrix multiplication:(
1

f(z−1)
,

1

f(z−1)

(
1

g(z−1)

)
,

1

f(z−1)

(
1

g(z−1)

)2

, . . .

)
(a0, a1x, a2x

2, . . .)T .

For the sake of symmetry, one may write the generalized Sheffer-
type polynomial sequences defined by (8) as {p̃n(x)}, which is defined
by

d(z)A(xh(z)) =
∑
n≥0

anp̃n(x)zn, (13)
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where

anp̃n(x) = pn(x) =
n∑

k=0

pn,kx
k =

n∑
k=0

akdn,kx
k.

If an 6= 0 for n ∈ N, then the coefficient matrix of polynomial sequence
{p̃n(x)} is(

pn,k

an

)
n≥k≥0

=

(
ak

an

dn,k

)
n≥k≥0

= D−1(dn,k)n≥k≥0D,

where D = diag(a0, a1, a2, . . .). The last matrix is called a (c)-Riordan
array, where c = (a0, a1, a2, . . .), which is also called a generalized Ri-
ordan array in [22]. We denote

σ(n, k) :=
ak

an

dn,k (14)

and call it the generalized Stirling number associated with (d(z), h(z))
and A(z). Hence, the generalized Stirling numbers are the entries of
a generalized Riordan array. The generalized Stirling numbers can be
considered as an extension of the weighted Stirling numbers. There
are two special kinds of weighted Stirling numbers defined by Carlitz
[4] (see also [1], [8], and [9]). The Stirling numbers of the first kind
and second kind are the special cases of (14) with dn,k generated by
(d(z), h(z)) = (1, log(1 + z)) and (d(z), h(z)) = (1, ez − 1), respectively
(see, for example, [13]).

Example 1.1 As an example of the generalized Sheffer-type polynomial
sequence, suppose f ∈ Σ0 and g ∈ Σ−1 and denote d(z) = 1/f(z−1)
and h(z) = 1/g(z−1). Thus d(z) ∈ F0 and h(z) ∈ F1. The ordinary
Sheffer-type polynomial sequence {pn(x)} is generated by

d(z)

1− xh(z)
=
∑
n≥0

pn(x)zn, (15)

or equivalently,

g(z)

f(z)(g(z)− x)
=
∑
n≥0

pn(x)z−n, (16)

where

pn(x) =
n∑

k=0

dn,kx
k =

n∑
k=0

[zn]d(z)(h(z))kxk.
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If d(z) = zh′(z)
h(z)

, or equivalently, f(z) = g(z)
zg′(z)

, then the corresponding

{Fn(x)} defined by

zh′(z)

h(z)(1− xh(z))
=
∑
n≥0

Fn(x)zn

is the Faber polynomial sequence (see [3]). By substituting h(z) =
1/g(z−1) and replacing z by z−1, we have

g′(z)

g(z)− x
=
∑
n≥0

Fn(x)

zn+1

(see [19]).

In next section, we will show the operation # defined below is closed
in R̄:

[f1(z), g1(z)]#[f2(z), g2(z)] = [f1(z)f2(g1(z)), g2(g1(z))], (17)

and (R̄,#) forms a group. In addition, for any {pn(x)} and {qn(x)} ∈
PA, we will show the operation #̃ defined by

{pn(x)}#̃{qn(x)} = {rn(x) =
n∑

k=0

rn,kx
k : rn,k =

n∑
`=k

pn,`g`,k/a`, n ≥ ` ≥ k}

(18)
is closed in PA, and (PA, #̃) forms a group. An isomorphism between
(R̄,#) and (PA, #̃) will also be proved. Furthermore, the corresponding
subgroups of (R̄,#) and (PA, #̃) that are isomorphic to the Appell,
Lagrange, Bell, and hitting-time subgroups of classic Riordan group
will be given in Section 3. Finally, we present the relationships between
the generalized Sheffer-type polynomial sequences from different groups
in {PA : A ∈ E}, and we will establish inverse relations for pairs of
generalized Sheffer-type polynomial sequences in the same group of PA.
In addition, an inverse relation of power series using pairs of Riordan
arrays and pairs of generalized Stirling numbers will be given.
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2 Riordan group associated with Laurent

series and the group of generalized Sheffer-

type polynomial sequences

First, we prove that R̄ is closed under the operation defined in (17).
Indeed,

[f1(z), g1(z)]#[f2(z), g2(z)]

=

(
1

f1 (z−1)
,

1

g1 (z−1)

)
∗
(

1

f2 (z−1)
,

1

g2 (z−1)

)
=

(
1

f1 (z−1)

1

f2 (g1 (z−1))
,

1

g2 (g1 (z−1))

)
= [f1(z)f2(g1(z)), g2(g1(z))]. (19)

It is easy to see that the operation # defined in (17) satisfies the asso-
ciative law. In addition, for any [f(z), g(z)] ∈ R̄, we have

[f(z), g(z)]#[1, z] = [f(z), g(z)], and [f(z), g(z)]−1 =

[
1

f(ḡ(z))
, ḡ(z)

]
,

(20)
where ḡ(z−1) is the compositional inverse of g(z−1) in terms of z−1, i.e.,

ḡ(g(z−1)) = g(ḡ(z−1)) = z−1.

The first equation of (20) can be proved from the definition of operation
#:

[f(z), g(z)]#[1, z] =

(
1

f (z−1)
,

1

g (z−1)

)
∗
(

1,
1

z−1

)
= [f(z), g(z)].

Similarly, by noting the inverse of 1/g(z−1) is 1/ḡ(z−1), we have

[f(z), g(z)]#

[
1

f(ḡ(z))
, ḡ(z)

]
=

(
1

f (z−1)
,

1

g (z−1)

)
∗
(
f
(
ḡ
(
z−1
))
,

1

ḡ (z−1)

)
=

(
1

f (z−1)
f
(
ḡ
(
g
(
z−1
)))

,
1

ḡ (g (z−1))

)
= [1, z].

Thus, the second equation of (20) is obtained. Surveying the above
results, we have
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Theorem 2.1 The set R̄ forms a group under the operation # defined
in (17).

We call R̄ the Riordan group associated with Laurent series. Since
the mapping defined in (6) from pair (f(z), g(z)), f ∈ Σ0 and g ∈ Σ−1,
to pair (d(z), h(z)), d ∈ F0 and h ∈ F1, is one-to-one and onto, we
immediately have the following result.

Proposition 2.2 There exists a one-to-one correspondence between
groups R̄ and Riordan group R.

In the sense shown in Proposition 2.2, we may say that the usual
Riordan groupR is essentially same as the group R̄ of extended Riordan
arrays. The only difference is whether it is associated to power series
or Laurent series.

Similarly to Theorem 2.1, we can prove the following result.

Theorem 2.3 For a power series A(z) =
∑

n≥0 anz
n, (PA, #̃) forms a

group called the generalized Sheffer group associated with A.

Proof. Suppose sequences {pn(x)}, {qn(x)} ∈ PA are generated by
[f1, g1] and [f2, g2], respectively. Then,

pn(x) =
n∑

k=0

ak[zn]
1

f1(z−1)

(
1

g1(z−1)

)k

xk =
n∑

k=0

akdn,kx
k

qn(x) =
n∑

k=0

ak[zn]
1

f2(z−1)

(
1

g2(z−1)

)k

xk =
n∑

k=0

akcn,kx
k.

From (18), the element of {rn(x)} = {pn(x)}#̃{qn(x)} is

rn(x) =
n∑

k=0

(
n∑

`=k

akdn,kcn,k

)
xk

=
n∑

k=0

ak[zn]
1

f1(z−1)f2(g1(z−1))

(
1

g2(g1(z−1))

)k

xk, (21)

i.e., {rn(x)} ∈ PA is a generalized Sheffer-type polynomial sequence
generated by [f1f2 ◦g1, g2 ◦g1]. Hence, PA is closed under the operation
#̃ defined by (18).
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Since(
{pn(x)}#̃{qn(x)}

)
#̃{rn(x)} =

{
n∑

k=0

(
n∑

u=k

n∑
`=u

`!u!pn,`q`,uru,k

)
xk

}
= {pn(x)}#̃

(
{qn(x)}#̃{rn(x)}

)
for every {pn(x) =

∑
k≥0 pn,kx

k}, {qn(x) =
∑

k≥0 qn,kx
k}, and {rn(x) =∑

k≥0 rn,kx
k} in PA, the operation #̃ satisfies the associative law. In

addition, we have the multiplication identity of PA as {anx
n} because

of

{pn(x)}#̃{anx
n} = {

∑
n≥0

(
n∑

`=k

pn,`a`δ`,k/a`

)
xk =

∑
n≥0

pn,kx
k = pn(x)}

for every {pn(x)} ∈ PA.
Finally, it can be easily checked that the inverse of {pn(x)} ∈ PA

is {pn(x)}−1 generated by f(ḡ(z−1))A(x/ḡ(z−1)), where ḡ(g(z−1)) =
g(ḡ(z−1)) = z−1.

We now establish a relationship between groups (R̄,#) and (PA, #̃).

Theorem 2.4 Let A(z) =
∑

n≥0 anz
n be a power series. Then Rior-

dan group (R̄,#) associated with Laurent series is isomorphic to the
generalized Sheffer group (PA, #̃) associated with A.

Proof. For the power series A(z) =
∑

n≥0 anz
n, we define a map

θA : R̄ 7→ PA

by

θA[f(z), g(z)] =

{
[zn]

1

f(z−1)
A

(
x

g(z−1)

)}
,

where f(z) ∈ Σ0 and g(z) ∈ Σ−1. It follows from (21) that θA is a
homomorphism. Since Ker θA = {[1, z]}, the map θA is one-to-one. In
addition, for every {pn(x)} ∈ PA, from the definition of the generalized
Sheffer-type polynomial sequence, there exists [f, g] ∈ R̄ such that
{pn(x)} is generated by [f, g]. Hence, θA is onto, which completes the
proof of the theorem.
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3 Subgroups of R̄ and PA

Particular subgroups of R are important and have been considered in
the literatures (see, for example, [15]):

• the set A of Appell arrays, that is the Riordan arrays D =
(d(z), h(z)) for which h(z) = z; it is an invariant subgroup and
is isomorphic to the group of f.p.s. of order 0, with the usual
product as group operation;

• the set L of Lagrange arrays, that is the Riordan arrays D =
(d(z), h(z)) for which d(z) = 1; it is also called the associated
subgroup; it is isomorphic with the group of f.p.s. of order 1, with
composition as group operation;

• the set B of Bell or renewal arrays, that is the Riordan arrays
D = (d(z), h(z)) for which h(z) = zd(z); it is the set originally
considered by Rogers in [14];

• the set H of hitting time arrays, that is, the Riordan arrays D =
(d(z), h(z)) for which d(z) = zh′(z)

h(z)
; it is the subgroup with the

usual Riordan product defined by Peart and Woan in [12].

We now extend the above subgroups to R̄ and PA as follows.
For f ∈ Σ0 and d ∈ F0, since

[f(z), z] =

(
1

f(z−1)
, z

)
and (d(z), z) =

[
1

d(z−1)
, z

]
,

by noting 1/f(z−1) ∈ F0 and 1/d(z−1) ∈ Σ0, we know {[f(z), z] :
f(z) ∈ Σ0} is one-to-one corresponds to the Appell subgroup of classical
Riordan group. Hence, Ā = {[f(z), z] : f(z) ∈ Σ0} is a subgroup,
called the Appell subgroup, of R̄, which is isomorphic to the group Σ0

of Laurent series. The corresponding Appell subgroup of PA is the set
of all polynomial sequences {pn(x)} defined by

1

f(z−1)
A(xz) =

∑
n≥0

pn(x)zn =
∑
n≥0

(
n∑

k=0

akx
k[zn]

zk

f(z−1)

)
zn,

or equivalently,
1

f(z)
A(xz−1) =

∑
n≥0

pn(x)z−n.
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Similarly, for g ∈ Σ1, the set of all Riordan arrays [1, g(z)], forms a
subgroup denoted by L̄ and called the associated subgroup of R̄ because

[1, g(z)] =

(
1,

1

g(z−1)

)
and (1, h(z)) =

[
1,

1

h(z−1)

]
.

The corresponding associated subgroup of PA is the set of all polynomial
sequences {pn(x)} defined by

A

(
x

g(z−1)

)
=
∑
n≥0

pn(x)zn =
∑
n≥0

(
n∑

k=0

akx
k[zn]

1

(g(z−1))k

)
zn,

or equivalently,

A

(
x

g(z)

)
=
∑
n≥0

pn(x)z−n.

Let f ∈ Σ0 and g ∈ Σ−1. Denote d(z) = 1/f(z−1) and h(z) =
1/g(z−1). Due to

1

g(z−1)
= h(z) = zd(z) =

1

z−1f(z−1)

for all element (d(z), h(z)) in the Bell group of the classical Rior-
dan group, it is reasonable to define the Bell subgroup of R̄ by B̄ =
{[f(z), zf(z)] : f(z) ∈ Σ0}. And the corresponding Bell subgroup of
PA is the set of all {pn(x)} defined by

1

f(z−1)
A

(
xz

f(z−1)

)
=
∑
n≥0

pn(x)zn =
∑
n≥0

(
n∑

k=0

akx
k[zn]

zk

(f(z−1))k+1

)
zn,

or equivalently,

1

f(z)
A

(
x

zf(z)

)
=
∑
n≥0

pn(x)z−n.

Similarly, we may define the hitting-time subgroup of R̄ as

H̄ =

{[
g(z)

zg′(z)
, g(z)

]
: g(z) ∈ Σ−1

}
12



and the hitting-time subgroup of PA by

z−1g′(z−1)

g(z−1)
A

(
x

g(z−1)

)
=
∑
n≥0

pn(x)zn =
∑
n≥0

(
n∑

k=0

akx
k[zn]

z−1g′(z−1)

(g(z−1))k+1

)
zn,

or equivalently,

zg′(z)

g(z)
A

(
x

g(z)

)
=
∑
n≥0

pn(x)z−n.

We survey the above results in the following theorem.

Theorem 3.1 Sets Ā = {[f(z), z] : f ∈ Σ0}, L̄ = {[1, g(z)] : g ∈
Σ−1}, B̄ = {[f(z), zf(z)] : f ∈ Σ0}, and H̄ = {[g(z)/(zg′(z)), g(z)] :
g ∈ Σ−1} are subgroups of R̄, which are called, respectively, the Appell,
associated, Bell, and hitting-time subgroups of R̄.

The sets of all polynomial sequences generated by all elements of Ā,
L̄, B̄, and H̄ with respect to A(z) ∈ E are subgroups of PA and called the
Appell, associated, Bell, and hitting-time subgroups of PA, respectively.

Example 3.1 In Appell subgroup, let f(z) = 1 − z−1 and −1 + z−1.
Then 1/f(z−1) = 1/(1− z) and 1/(z− 1), respectively. For those f(z),
[f(z), z] ∈ Ā and the corresponding Sheffer-type polynomial sequences
{pn(x)} and {qn(x)} are defined, where {pn(x)} satisfies

1

1− z
A (xz) =

∑
n≥0

pn(x) =
∑
n≥0

(
n∑

k=0

akx
k[zn]

zk

1− z

)
zn

=
∑
n≥0

(
n∑

k=0

akx
k

)
zn.

Thus, pn(x) =
∑n

k=0 akx
k. Similarly, qn(x) = −

∑n
k=0 akx

k.

Example 3.2 Consider f(z) = 1 and g(z) = z, 1 − z, and z − 1,
respectively. Thus, we have 1/g(z−1) = z, z/(z − 1), and z/(1 − z),
respectively. The corresponding generalized Sheffer-type polynomial
sequences are, respectively {pn(x)}, {qn(x)}, and {rn(x)}, where pn(x)
are defined by

A (xz) =
∑
n≥0

pn(x) =
∑
n≥0

anx
nzn,

13



i.e., pn(x) = anx
n, and, similarly, qn(x) =

∑n
k=0(−1)kak

(
n−1
n−k

)
xk and

rn(x) =
∑n

k=0 ak

(
n−1
n−k

)
xk.

Another example is [1, g(z)] ∈ L̄, where g(z) = 1/(ln(1 + z)− ln z).
Thus, 1/g(z−1) = ln(1 + z), and the corresponding generalized Sheffer-
type polynomial sequence {un(x)} is defined by

A (x ln(1 + z)) =
∑
n≥0

un(x)zn =
∑
n≥0

(
n∑

k=0

akx
k[zn] (ln(1 + z))k

)
zn.

In particular, if A(z) = ez, then an = 1/n! and un(x) = (x)n :=
x(x− 1)(x− 2) · · · (x− n+ 1), the lower factorial polynomials.

Example 3.3 In Bell subgroup, we consider f(z) = 1−z−1 and z−1−1.
Thus, [1 − z−1, z − 1] and [z−1 − 1, 1 − z] ∈ B̄, and the corresponding
generalized Sheffer-type polynomial sequence {pn(x)} for f(z) = 1−z−1

is

1

1− z
A

(
xz

1− z

)
=

∑
n≥0

pn(x)zn =
∑
n≥0

(
n∑

k=0

akx
k[zn]

zk

(1− z)k+1

)
zn

=
∑
n≥0

(
n∑

k=0

akx
k

(
n

n− k

))
zn.

Thus, pn(x) =
∑n

k=0 ak

(
n

n−k

)
xk. Similarly, the generalized Sheffer-type

polynomial sequence {qn(x)} for f(z) = z−1−1 is qn(x) =
∑n

k=0(−1)k+1

ak

(
n

n−k

)
xk. In particular, if A(z) = 1/(1 − z), then pn(x) = (1 + x)n

and qn(x) = −(1− x)n.

Example 3.4 In [g(z)/(zg′(z)), g(z)], g ∈ Σ−1, an element of the
hitting-time subgroup H̄, let g(z) = z/(z − 1) and z/(1 − z). Then,
1/g(z−1) = 1−z and z−1, and g′(z−1) = −z2/(1−z)2 and z2/(z−1)2,
respectively. The corresponding generalized Sheffer-type polynomial
sequence {pn(x)} and {qn(x)} for g(z) = z/(z − 1) and z/(1 − z), re-
spectively, can be defined by

− z

1− z
A (x(1− z)) =

∑
n≥0

pn(x)zn =
∑
n≥0

(
n∑

k=0

akx
k[zn](−z)(1− z)k−1

)
=

∑
n≥0

an(−x)n

14



and

z

z − 1
A (x(z − 1)) =

∑
n≥0

qn(x)zn =
∑
n≥0

(
n∑

k=0

akx
k[zn](z)(z − 1)k−1

)
=

∑
n≥0

anx
n.

Thus, pn(x) =
∑

n≥0 an(−x)n and qn(x) =
∑

n≥0 anx
n.

[3] showed that hitting-time subgroup of R is isomorphic to the
Faber group formed by the set of all Faber polynomial sequences. Here,
a Faber polynomial sequence {Fn(x)} can be defined in two manners:
in terms of Riordan arrays (zh′(z)/h(z), h(z)) associated with power
series or Riordan arrays [g(z)/(zg′(z)), g(z)] associated with Laurent
series. From the instruction, we have

zh′(z)

h(z)(1− xh(z))
=
∑
n≥0

Fn(x)zn

for some h ∈ F1, which implies that {Fn(x)} is an ordinary Sheffer-
type polynomial sequence generated by (zh′(z)/h(z), h(z)) ∈ H with
respect to A(z) = 1/(1− z). {Fn(x)} can also be defined by

1

f(z−1)
A

(
x

g(z−1)

)
≡ g′(z)

g(z)− x
=
∑
n≥0

Fn(x)

zn+1
,

where A(z) = 1/(1 − z), f(z) = g(z)/(zg′(z)), and g(z) ∈ Σ−1. For
example, let g(z) = z − ρ (ρ ∈ Z). Then the corresponding Faber
polynomial sequence Fn(x) = (ρ+ x)n because

g′(z)

g(z)− x
=

1

z − ρ− x
=

1

z

1

1− (ρ+ x)/z
=
∑
n≥0

(ρ+ x)n

zn+1
.

4 More Relationships between the Rior-

dan arrays and generalized Sheffer-type

polynomial sequences

For each A ∈ E , Theorem 2.4 shows that the generalized Sheffer group
(PA, #̃) associated with A is isomorphic to the Riordan group (R̄,#)
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associated with Laurent series. Hence, for A,B ∈ E , groups (PA, #̃)
and (PB, #̃) are isomorphic. We now establish a relationship between
a generalized Sheffer-type polynomial sequence {p̃n(x)} ∈ PA and the
corresponding generalized Sheffer-type polynomial sequence {q̃n(x)} ∈
PB, where p̃n(x) and q̃n(x) are defined by (13) with the same (d(z), h(z))
and different power series A and B, where A(z) =

∑
n≥0 anz

n and
B(z) =

∑
n≥0 bnz

n are in E . First, we have the following result.

Theorem 4.1 Let A(z), B(z) ∈ E, and let {p̃n(x)} ∈ PA. Suppose
{p̃A

n (x)} is generated by (d(z), h(z)) with respect to A(z) and {p̃B
n (x)}

is generated by the same (d(z), h(z)) with respect to B(z) by using
expansion (13). Then,

p̃A
n (x) =

n∑
k=0

akbn
anbk

xk
(
[xk]p̃B

n (x)
)
and p̃B

n (x) =
n∑

k=0

bkan

bnak

xk
(
[xk]p̃A

n (x)
)
.

(22)
In particular, if A(z) = 1/(1− z), then

p̃A
n (x) =

n∑
k=0

bn
bk
xk
(
[xk]p̃B

n (x)
)
and p̃B

n (x) =
n∑

k=0

bk
bn
xk
(
[xk]p̃A

n (x)
)
.

(23)

Proof. To prove (22), it is sufficient to note

p̃A
n (x) =

n∑
k=0

ak

an

xk[zn]d(z)(h(z))k and p̃B
n (x) =

n∑
k=0

bk
bn
xk[zn]d(z)(h(z))k.

(23) immediately follows when an = 1 for all n ≥ 0.

Example 4.1 It is well-known that Bernoulli polynomial sequence is
generated by

z

ez − 1
exz =

∑
n≥0

1

n!
Bn(x)zn.

Noting the well-know expansion

z

ez − 1
=
∑
`≥0

B`

`!
z`,
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where B` is the `th Bernoulli number, we obtain that the ordinary poly-
nomial sequence {pn(x)} defined by the same Riordan array (z/(ez −
1), z) but with respect to A(z) = 1/(1− z) can be presented as

z

ez − 1

1

1− xz
=

∑
n≥0

pn(x)zn =
∑
n≥0

(
n∑

k=0

xk[zn]
z

ez − 1
zk

)
zn

=
∑
n≥0

(
n∑

k=0

xk Bn−k

(n− k)!

)
zn.

Thus, from (23) we obtain the explicit formula of Bernoulli polynomials

Bn(x) =
n∑

k=0

n!

k!

Bn−k

(n− k)!
xk =

n∑
k=0

(
n

k

)
Bkx

n−k.

It is known that (p − 1)st order Laguerre polynomial sequence

{L(p−1)
n (x)} is generated by involution (1/(1 − z)p, z/(z − 1)) with re-

spect to B(z) = ez,

1

(1− z)p
exz/(z−1) =

∑
n≥0

L(p−1)
n (x)zn.

Consider the ordinary polynomial sequence {qn(x)} generated by

1

(1− z)p

1

1− xz/(z − 1)
=

∑
n≥0

qn(x)zn =
∑
n≥0

(
n∑

k=0

(−x)k[zn]
zk

(1− z)p+k

)
zn

=
∑
n≥0

n∑
k=0

(
n+ p− 1

n− k

)
(−x)k.

Thus, formula (22) yields

L(p−1)
n (x) =

n∑
k=0

1

k!

(
n+ p− 1

n− k

)
(−x)k,

where the case p = 1 was shown in [3].
Angelescu polynomial sequence {An(x)} is a Sheffer-type polyno-

mial sequence defined by

1

1 + z
exz/(z−1) =

∑
n≥0

An(x)zn.
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Consider the ordinary Sheffer-type polynomial sequence {rn(x)} gen-
eralized by the same Riordan array (1/(1 + z), z/(z − 1)) with respect
to A(z) = 1/(1− z):

1

1 + z

1

1− xz/(z − 1)
=
∑
n≥0

rn(x)zn

=
∑
n≥0

(
n∑

k=0

xk[zn]
1

1 + z

(
z

z − 1

)k
)

=
∑
n≥0

(
n∑

k=0

(−x)k[zn]

(∑
j≥0

(−z)j
∑
`≥0

(
`+ k − 1

`

)
zk+`

))

=
∑
n≥0

(
n∑

k=0

(−x)k[zn]

(∑
j≥0

j∑
`=0

(−1)j−`

(
`+ k − 1

`

)
zj+k

))

=
∑
n≥0

n∑
k=0

(
n−k∑
`=0

(−1)n−`

(
`+ k − 1

`

))
xk.

Thus, (22) gives an explicit formula of Angelescu polynomials

An(x) = (−1)n

n∑
k=0

1

k!

(
n−k∑
`=0

(−1)`

(
`+ k − 1

`

))
xk.

We now define the Riordan pairs and generalized Stirling number
pairs.

Definition 4.2 Let d(z) ∈ F0, h(z) ∈ F1, f(z) ∈ Σ0, and g(z) ∈
Σ−1. Then the Riordan pairs {dn,k, d̃n,k} generated by (d(z), h(z)) and
[f(z), g(z)] are defined by, respectively,

d(z)(h(z))k =
∑
n≥k

dn,kz
n, d(h̄(z))−1(h̄(z))k =

∑
n≥k

d̃n,kz
n, (24)

and

1

f(z−1)

(
1

g(z−1)

)k

=
∑
n≥k

dn,kz
n, f(ḡ(z−1))

(
1

ḡ(z−1)

)k

=
∑
n≥k

d̃n,kz
n,

(25)
where h̄(z) is the compositional inverse of h(z) in terms of z, i.e.,
h̄(h(z)) = h(h̄(z)) = z, and ḡ(z−1) is the compositional inverse of
g(z−1) in terms of z−1, i.e., ḡ(g(z−1)) = z−1 and g(ḡ(z−1)) = z−1.
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Following the definition of generalized Stirling numbers shown in
the instruction, we have their pairs defined below.

Definition 4.3 Let d(z) ∈ F0, h(z) ∈ F1, f(z) ∈ Σ0, and g(z) ∈
Σ−1. Then the generalized Stirling number pairs {σn,k, σ̃n,k} generated
by (d(z), h(z)) and [f(z), g(z)] with respect to A(z) ∈ E are defined by,
respectively,

d(z)(h(z))k =
∑
n≥k

an

ak

σn,kz
n, d(h̄(z))−1(h̄(z))k =

∑
n≥k

an

ak

σ̃n,kz
n, (26)

and

1

f(z−1)

(
1

g(z−1)

)k

=
∑
n≥k

an

ak

σn,kz
n, f(ḡ(z−1))

(
1

ḡ(z−1)

)k

=
∑
n≥k

an

ak

σ̃n,kz
n,

(27)
where h̄(z) is the compositional inverse of h(z) in terms of z, and ḡ(z−1)
is the compositional inverse of g(z−1) in terms of z−1.

Similar to [6], we may use the orthogonality of the Riordan pairs and
generalized Stirling number pairs to give several inverse relationships
of power series.

Theorem 4.4 Let {fn}n≥0 and {gn}n≥0 be two sequences. Then there
exist two inverse relationships between them which are generalized by
using the Riordan pairs and generalized Stirling number pairs shown in
Definitions 4.2 and 4.3. Namely, the existence of one formula below
implies the existence of another one.

anfn =
n∑

k=0

akdn,kgk ⇐⇒ angn =
n∑

k=0

akd̃n,kfk (28)

fn =
n∑

k=0

σn,kgk ⇐⇒ gn =
n∑

k=0

σ̃n,kfk. (29)

Proof. It is sufficient to show that Definitions 4.2 and 4.3 implies∑
n≥k≥`

dn,kd̃k,` =
∑

n≥k≥`

d̃n,kdk,` = δn,`

and ∑
n≥k≥`

σn,kσ̃k,` =
∑

n≥k≥`

σ̃n,kσk,` = δn,`,

where δn,` is the Kronecker symbol.
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From (14) and the orthogonality shown above, we can see the equiv-
alence between the pair of generalized Stirling numbers and the corre-
sponding pairs of Riordan arrays.

From (13) in the instruction, we know that the generalized Sheffer-
type polynomial sequences related to the generalized Stirling numbers
σ(n, k) and σ̃(n, k) are given respectively by the following expressions
with respect to A(Z) ∈ E .

1

an

pn(x) =
n∑

k=0

σ(n, k)xk (30)

and
1

an

p̄n(x) =
n∑

k=0

σ̄(n, k)xk, (31)

where pn(x) and p̄n(x) are generalized Sheffer-type polynomials associ-
ated with (d(z), h(z)) and (d(h̄(z))−1, h̄(z)), respectively, or [f(z), g(z)]
and [f(ḡ(z))−1, ḡ(z)], respectively. Here d ∈ F0, h ∈ F1, f ∈ Σ0, and
g ∈ Σ−1, h̄ is the compositional inverse of h in terms of z, and ḡ is
the compositional inverse of g in terms of z−1. We call {pn(x), p̄n(x)}
the pair of generalized Sheffer-type polynomial sequences generated by
(d(z), h(z)) or [f(z), g(z)] with respect to A(z).

Applying the reciprocal relations (28) to (30)-(31) we get

Corollary 4.5 There hold the relations

n∑
k=0

σ̄(n, k)
1

ak

pk(x) = xn (32)

and
n∑

k=0

σ(n, k)
1

ak

p̄k(x) = xn. (33)

or equivalently,

n∑
k=0

d̄n,kpk(x) = anx
n and

n∑
k=0

dn,kp̄k(x) = anx
n. (34)
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Example 4.2 Suppose f ∈ Σ0 and g ∈ Σ−1 and denote d(z) =
1/f(z−1) and h(z) = 1/g(z−1). Thus d(z) ∈ F0 and h(z) ∈ F1. Ex-
ample 1.1 gives the ordinary Sheffer-type polynomial sequence {pn(x)}
generated by (15) and (16). Thus,

pn(x) =
n∑

k=0

dn,kx
k =

n∑
k=0

[zn]d(z)(h(z))kxk,

and the corresponding Sheffer-type polynomial sequence pair {pn(x), p̄n(x)}
is given by the above expression and

p̄n(x) =
n∑

k=0

d̃n,kx
k =

n∑
k=0

[zn]d(h̄(z))−1(h̄(z))kxk.

If d(z) = zh′(z)
h(z)

, or equivalently, f(z) = g(z)
zg′(z)

, then the corresponding

{Fn(x), F̄n(x)} defined by

Fn(x) =
n∑

k=0

dn,kx
k =

n∑
k=0

[zn−1]h′(z)(h(z))k−1xk

F̄n(x) =
n∑

k=0

d̃n,kx
k =

n∑
k=0

[zn−1]h̄′(z)(h̄(z))k−1xk,

where h̄ is the compositional inverse of h in terms of z, and {Fn(x)}
is the Faber polynomial sequence. From Corollary 4.5, we obtain the
following identities

n∑
k=0

(
[zn−1]h̄′(z)(h̄(z))k−1

)
Fk(x) = xn

n∑
k=0

(
[zn−1]h′(z)(h(z))k−1

)
F̄k(x) = xn.

For instance, if h(z) = z/(1 − z), then {Fk(x)} is the zero order La-
guerre polynomial sequence {Ln(x)}. Thus the above identities can be
specified to

n∑
k=0

(−1)k

(
n

n− k

)
Ln(x) = xn.

Here, we use the fact of h̄(z) = h(z) and L̄n(x) = Ln(x).
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