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Abstract

We present here the definition of Padé spline functions, their expressions,
and the estimate of the remainders of padé spline expansions. Some algo-
rithms are also given.
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1 Introduction

Padé approximation is derived by expanding a function as a ratio of two power
series and both the numerator and denominator coefficients are thus determined
(cf. Baker [1-2], Baker and Graves-Morris [3], and Brent, Gustavson, and Yun
[4]). In this paper, we shall use two points Padé approximation to construct
Padé spline functions. The main idea initially came from the author’s talk at
the Joint U.S.- China Workshop on Approximation Theory that took place in
April, 1985, Hangzhou, China ([5]).

Let

4 : a = x0 < x1 < · · · < xn = b

be an arbitrary partition on the interval [a, b], and let f be a kth differentiable
function defined on [a, b] with function value and dervatives at each node xi

(i = 0, 1, · · · , n)

y
(m)
i = f (m)(xi), m = 0, 1, · · · , k − 1; i = 0, 1, · · · , n.

Denote by πk the collection of all polynomials of degree less than or equal to k.
We now give the definition of Padé spline functions.

∗The research of this author was partially supported by ASD Grant and sabbatical leave
of the Illinois Wesleyan University.
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Definition 1.1 We call R
(k)
r,` (4) the set of Padé spline function of order k with

nodes xi (i = 0, 1, . . . , n), if any function R(x) ∈ R
(k)
r,` satisfies the following

coditions for all x ∈ [xi−1, xi], i = 1, 2, . . . , n,

(i) R(x) = Pi(x)
Qi(x) , Pi(x) ∈ πr, Qi(x) ∈ π`,

(ii)
∑k−1

m=0 y
(m)
i−1

(x−xi−1)
m

m! − Pi(x)
Qi(x) = O

(
(x− xi−1)k

)
,

(iii)
∑k−1

m=0 y
(m)
i

(x−xi)
m

m! − Pi(x)
Qi(x) = O

(
(x− xi)k

)
,

(iv) r + ` = 2k − 1.

From Definition 1.1, we immediately know R
(k)
r,` (4) ∈ Ck. In addition, the

rational Hermite interpolation and rational contact interpolation can be easily
obtained by using the padé spline functions.

Although Definition 1.1 only gives the piecewise expression of Padé spline
functions, we might discuss its globe expression as follows.

Suppose Qi(xi) 6= 0. Denote

Gi(x) =
k−1∑
m=0

R(m)(xi)
(x− xi)m

m!
.

Thus

R(x)−Gi(x) =
Pi(x)−Gi(x)Qi(x)

Qi(x)

has multiple roots at xi of order k; i.e.,

Pi(x)−Gi(x)Qi(x) = (x− xi)kFi(x),

where deg Fi(x) ≤ max{r, k + `} − k = max{r − k, `}. Thus, the expressions of
R(x) on [xi−1, xi] and [xi, xi+1] are respectively

Pi(x)
Qi(x)

=
k−1∑
m=0

R(m)(xi)
(x− xi)m

m!
+ (x− xi)k Fi(x)

Qi(x)
(1.1)

and

Pi+1(x)
Qi+1(x)

=
k−1∑
m=0

R(m)(xi)
(x− xi)m

m!
+ (x− xi)k Fi+1(x)

Qi+1(x)
. (1.2)

Consequently,

Pi+1(x)
Qi+1(x)

− Pi(x)
Qi(x)

=
[

Fi+1(x)
Qi+1(x)

− Fi(x)
Qi(x)

]
(x− xi)k

=
Mi(x)

Qi(x)Qi+1(x)
(x− xi)k,
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where Mi(x) = Qi(x)Fi+1(x) − Fi(x)Qi+1(x) is in πr+`−k. Therefore, for x ∈
[xi, xi+1], we have

Pi+1(x)
Qi+1(x)

− P1(x)
Q1(x)

=
i∑

j=1

(
Pj+1(x)
Qj+1(x)

− Pj(x)
Qj(x)

)

=
i∑

j=1

Mj(x)
Qj(x)Qj+1(x)

(x− xj)k
+, (1.3)

where Mj(x) ∈ πr+`−k and

(x− xj)+ :=
{

x− xj if x ≥ xj

0 if x < xj .

From Eq. (1.3) we obtain the globe expression of Padé spline function R(x) as
follows.

R(x) =
P1(x)
Q1(x)

+
n−1∑
j=1

Mj(x)
Qj(x)Qj+1(x)

(x− xj)k
+, (1.4)

where Mj(x) ∈ πr+`−k is completely determined by P1(x), Qj(x) (j = 1, 2, . . . , n)
as well as the values and the first k derivatives of R(x) at xj (j = 1, 2, . . . , n).

We can also show that if any real-valued function R(x) defined on [a, b] can
be written as in Eq. (1.4) with Mj(x) ∈ πr+`−k, then R(x) ∈ R

(k)
r,` (4); i.e.,

R(x) is a Padé spline function defined as in Definition 1.1. Indeed, assume that
R(x) shown as in (1.4) is given, where Mj(x) ∈ πr+`−k, P1(x) ∈ πr, Qi(x) ∈ π`

(i = 1, 2, . . . , n), and the greatest common divisor (P1(x), Q1(x)) = 1, there
exist p(x) and q(x) such that

p(x)Q1(x) + P1(x)q(x) ≡ 1.

By multiplying φ1(x) = (x− x1)kM1(x) on the both sides of the last equation,
we obtain

p(x)φ(x)Q1(x) + P1(x)q(x)φ(x) = φ(x). (1.5)

Since we can write

p(x)φ(x) = P1(x)r1(x) + s1(x)

and

q(x)φ(x) = Q1(x)r2(x) + s2(x),

Eq. (1.5) can be changed to

[P1(x)r1(x) + s1(x)]Q1(x) + P1(x) [Q1(x)r2(x) + s2(x)] = φ(x). (1.6)
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If (x− x1) 6 |s2(x), we set Q2(x) = −s2(x) and

P2(x) = P1(x) [r1(x) + r2(x)] + s1(x).

If (x− x1)|s2(x), then (x− x1) 6 |Q1(x) because of (P1(x), Q1(x)) = 1. We thus
denote Q1(x) = −s2(x)−Q1(x) and

P2(x) = P1(x) [r1(x) + r2(x)− 1] + s1(x).

Therefore in either case, we can write Eq. (1.6) as

P2(x)Q1(x)− P1(x)Q2(x) = (x− x1)kM1(x),

where (x− x1) 6 |Q2(x).
Similarly, we cane decompose (x− xj)kMj(x) into

(x− xj)kMj(x) = Pj+1(x)Qj(x)− Pj(x)Qj+1(x), (1.7)

where Qj(xj) 6= 0, Qj+1(xj) 6= 0, and j = 1, 2, . . . , n−1. Since Mj(x) ∈ πr+`−k,
Pj(x) ∈ πr for all j = 1, 2, . . . , n− 1.

For x ∈ [xi, xi+1] (j = 0, 1, . . . , n− 1), from Eqs. (1.4) and (1.7), we have

R(x) =
P1(x)
Q1(x)

+
i∑

j=1

(
Pj+1(x)
Qj+1(x)

− Pj(x)
Qj(x)

)
=

Pi+1(x)
Qi+1(x)

.

In addition, since [
Mi(x)(x− xi)k

](m)
∣∣∣
x=xi

= 0

for i = 1, 2, . . . , n− 1 and m = 0, 1, . . . , k − 1, by using the Lemma shown as in
[6], we obtain [

(x− xi)kMi(x)
Qi(x)Qi+1(x)

](m)
∣∣∣∣∣
x=xi

= 0.

Consquently, [
Pi+1(x)
Qi+1(x)

](m)
∣∣∣∣∣
x=xi

=
[

Pi(x)
Qi(x)

](m)
∣∣∣∣∣
x=xi

.

It follows that R(x) ∈ R
(k)
r,` . Thus we have established the following result.

Theorem 1.2 Function R(x) defined on [a, b] and shown as in Eq. (1.4) is in
R

(k)
r,` (4) if and only if Mj(x) ∈ πr+`−k.
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2 Algorithm

In this section, we will give two algorithms for constructing Padé spline func-
tions. Our first algorithm is to construct the functions piece by piece by using
continued fractions. The second algorithm is based on the general expression of
Padé spline functions shown as in (1.4). To describe the algorithms clearly, we
only consider the Padé spline function set R

(k)
k−1,k, which is the most important

set in the Padé approximation. The first algorithms is also an improvement of
[7-8].

For x ∈ [xi, xi+1], i = 0, 1, . . . , n − 1, write R(x) = Pi(x)
Qi(x) as its continued

fraction form:

Pi(x)
Qi(x)

= ai,0 +
x− xi|
|ai,1

+ · · ·+ x− xi|
|ai,k−1

+
x− xi|
|ai+1,0

+
x− xi+1|
|ai+1,1

+ · · ·+ x− xi+1|
|ai+1,k−1

. (2.1)

Denote

Si,0(x)
Ti,0(x)

= ai,0 +
x− xi|
|ai,1

+ · · ·+ x− xi|
|ai,k−1

. (2.2)

It is easy to find that[
Si,0(x)
Ti,0(x)

](m)
∣∣∣∣∣
x=xi

=
[

Pi(x)
Qi(x)

](m)
∣∣∣∣∣
x=xi

= y
(m)
i

for m = 0, 1, . . . , k − 1, which implies by the Lemma in [6]

S
(m)
i,0 (xi) = [f(x)Ti,0(x)](m)

∣∣∣
x=xi

, (2.3)

where m = 0, 1, . . . , k − 1. From Eq. (2.3) we can find the coefficients of
Si,0(x) and Ti,0(x). Then, by using the following relations, (2.4) and (2.5), we
can determine the coefficient set {ai,0, ai,1, . . . , ai,k−1} of the continued fraction
(2.1).

Si,0 = Πk−1
j=0ai,j

1 +
k−2∑
j=0

x− xi

ai,jai,j+1
+

∑
0≤j<`≤k−3

(x− xi)2

ai,jai,j+1ai,`+1ai,`+2

+
∑

0≤j<`<m≤k−4

(x− xi)3

ai,jai,j+1ai,`+1ai,`+2ai,m+2ai,m+3
+ · · ·

 , (2.4)

Ti,0(x) = Πk−1
j=1ai,j

1 +
k−2∑
j=1

x− xi

ai,jai,j+1
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+
∑

1≤j<`≤k−3

(x− xi)2

ai,jai,j+1ai,`+1ai,`+2
+ · · ·

 . (2.5)

Denote

Si+1,0(x)
Ti+1,0(x)

= ai+1,0 +
x− xi+1|
|ai+1,1

+ · · ·+ x− xi+1|
|ai+1,k−1

(2.6)

and

Si,−1(x)
Ti,−1(x)

= ai,0 +
x− xi|
|ai,1

+ · · ·+ x− xi|
|ai,k−2

. (2.7)

Then,

Pi(x)
Qi(x)

=
Si,0Si+1,0 + (x− xi)Si,−1Ti+1,0

Ti,0Si+1,0 + (x− xi)Ti,−1Ti+1,0
.

Similar to Eq. (2.3), from [6] we have

[Si,0Si+1,0 + (x− xi)Si,−1Ti+1,0]
(m)
∣∣∣
x=xi+1

= {f(x) [Ti,0Si+1,0 + (x− xi)Ti,−1Ti+1,0]}(m)
∣∣∣
x=xi+1

. (2.8)

In Eq. (2.8), since Si,−1 and Ti,−1 have been determined from (2.3), we thus
find Si+1,0(x) and Ti+1,0(x). We can also establish the relations between the
functions Si+1,0(x) and Ti+1,0(x) and the coefficient set {ai+1,j : j = 0, 1, . . . , k−
1}, which is as the same as Eqs. (2.4) and (2.5) except an index change of i →
i+1. From the relations we finally determine the set {ai+1,j : j = 0, 1, . . . , k−1}.
Example 2.1. As an example, we now consider the case of k = 2. Obviously,
we have

Si,0(x) = ai,0ai,1 + x− xi, Ti,0(x) = ai,1,

Si+1,0(x) = ai+1,0ai+1,1 + x− xi+1, Ti+1,0 = ai+1,1,

Si,−1(x) = ai,0, Ti,−1(x) = 1.

Thus, (2.3) is reduced to

[ai,0ai,1 + x− xi]
(m)
∣∣∣
x=xi

= ai,1y
(m)
i , m = 0, 1.

Assume that y′i 6= 0, we solve ai,0 = yi and ai,1 = 1/y′i.
From Eq. (2.8) we have
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[(
yi

y′i
+ x− xi

)
(ai+1,0ai+1,1 + x− xi+1) + yiai+1,1(x− xi)

](m)
∣∣∣∣∣
x=xi+1

=
{

f(x)
[

1
y′i

(ai+1,0ai+1,1 + x− xi+1) + ai+1,1(x− xi)
]}(m)

∣∣∣∣∣
x=xi+1

for m = 0, 1. From the last equation it can be found that

ai+1,0 =
y′i(xi+1 − xi)(yi+1 − yi)

y′i(xi+1 − xi)− (yi+1 − yi)
,

ai+1,1 =
[yi+1 − yi − y′i(xi+1 − xi)]

2

y′i
[
y′iy

′
i+1(xi+1 − xi)2 − (yi+1 − yi)2

] .
Substituting the obtained coefficient set {ai,0, ai,1, ai+1,0, ai+1,1} into the ex-
pression of the Padé spline function R(x) ∈ R

(2)
2,1

R(x) = ai,0 +
x− xi|
|ai,1

+
x− xi|
|ai+1,0

+
x− xi+1|
|ai+1,1

yields

R(x) = [(x− xi)(x− xi+1) + ai,0ai,1(x− xi+1) + ai+1,0ai+1,1(x− xi)
+ai,0ai+1,1(x− xi) + ai,0ai,1ai+1,0ai+1,1] / [ai,1(x− xi+1)
+ai+1,1(x− xi) + ai,1ai+1,0ai+1,1]

for i = 0, 1, . . . , n− 1.
We now discuss the second algorithm. Denote a

(i)
m = y

(m)
i /m! and `i = x−xi

(i = 0, 1, . . . , n), and write

Pi(x) = α
(i)
0 + α

(i)
1 `i + · · ·+ α

(i)
k−1`

k−1
i

= ᾱ
(i)
0 + ᾱ

(i)
1 `i+1 + · · ·+ ᾱ

(i)
k−1`

k−1
i+1 (2.9)

Qi(x) = β
(i)
0 + β

(i)
1 `i + · · ·+ β

(i)
k `k

i

= β̄
(i)
0 + β̄

(i)
1 `i+1 + · · ·+ β̄

(i)
k `k

i+1 (2.10)

From conditions (ii) and (iii) in Definition 1.1, we have

k−1∑
m=0

y
(m)
i

(x− xi)m

m!
− Pi(x)

Qi(x)
= (x− xi)k

∞∑
j=0

cj(x− xi)j

k−1∑
m=0

y
(m)
i+1

(x− xi+1)m

m!
− Pi(x)

Qi(x)
= (x− xi+1)k

∞∑
j=0

dj(x− xi+1)j
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Substituting expressions (2.9) and (2.10) into the last two equtions yields

k−1∑
m=0

k∑
j=0

a(i)
m β

(i)
j `m+j

i −
k−1∑
j=0

α
(i)
j `j

i =
2k−1∑
j=k

r
(i)
j `j

i (2.11)

k−1∑
m=0

k∑
j=0

a(i+1)
m β̄

(i)
j `m+j

i+1 −
k−1∑
j=0

ᾱ
(i)
j `j

i+1 =
2k−1∑
j=k

r̄
(i)
j `j

i+1. (2.12)

Therefore we obtain

α
(i)
j =

j∑
µ=0

a
(i)
j−µβ(i)

µ (2.13)

and

ᾱ
(i)
j =

j∑
µ=0

a
(i+1)
j−µ β̄(i)

µ (2.14)

for j = 0, 1, . . . , k − 1.
Denote hi = xi+1 − xi. From Eq. (2.9) we have

ᾱ
(i)
j =

∂jPi(x)
j!∂xj

∣∣∣∣
x=xi+1

=
1
j!

(
j!α(i)

j +
(j + 1)!

1!
α

(i)
j+1`i

∣∣∣
x=xi+1

+
(j + 2)!

2!
α

(i)
j+2`

2
i

∣∣∣
x=xi+1

+ · · ·+ (k − 1)!
(k − j − 1)!

α
(i)
k−1`

k−j−1
i

∣∣∣
x=xi+1

)
=

k−j−1∑
ν=0

(
j + ν

ν

)
α

(i)
j+νhν

i (2.15)

for j = 0, 1, . . . , k − 1. Similarly, from Eq. (2.10) we obtain

β̄
(i)
j =

k−j∑
ν=0

(
j + ν

ν

)
β

(i)
j+νhν

i (2.16)

for j = 0, 1, . . . , k. Substituting (2.15), (2.16), and (2.13) into (2.14) yields

k−j−1∑
µ=0

(
j + µ

µ

) j+µ∑
ν=0

α
(i)
j+µ−νβ(i)

ν hµ
i =

j∑
µ=0

a
(i+1)
j−µ

k−ν∑
ν=0

(
µ + ν

ν

)
β

(i)
µ+νhν

i , (2.17)

where j = 0, 1 . . . , k − 1. We separate the left-hand side of Eq. (2.17) into two
parts and write them as
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j∑
ν=0

β(i)
ν

[
k−j−1∑

µ=0

(
j + µ

µ

)
a
(i)
j+µ−νhµ

i

]
+

k−j−1∑
ν=1

q
(i)
ν+j

[
k−j−1∑
µ=ν

(
j + µ

µ

)
a
(i)
µ−νhµ

i

]

=
j∑

ν=0

β(i)
ν

[
k−j−1∑

µ=0

(
j + µ

µ

)
a
(i)
j+µ−νhµ

i

]

+
k−1∑

ν=j+1

q(i)
ν

k−j−1∑
µ=ν−j

(
j + µ

µ

)
a
(i)
j+µ−νhµ

i

 . (2.18)

Similarly, we can change the right-hand side of Eq. (2.17) to

j∑
ν=0

β(i)
ν

[
ν∑

µ=0

(
ν

ν − µ

)
a
(i+1)
j−µ hν−µ

i

]
+

k∑
ν=j+1

q(i)
ν

[
j∑

µ=0

(
ν

ν − µ

)
a
(i+1)
j−µ hν−µ

i

]
.

(2.19)
Substituting expressions (2.18) and (2.19) into (2.17) yields the following equa-
tions for j = 0, 1, . . . , k − 1:

j∑
ν=0

β(i)
ν

[
k−j−1∑

µ=0

(
j + µ

µ

)
a
(i)
j+µ−νhµ

i −
ν∑

µ=0

(
ν

ν − µ

)
a
(i+1)
j−µ hν−µ

i

]

+
k−1∑

ν=j+1

q(i)
ν

k−j−1∑
µ=ν−j

(
j + µ

µ

)
a
(i)
j+µ−νhµ

i −
j∑

µ=0

(
ν

ν − µ

)
a
(i+1)
j−µ hν−µ

i


−β

(i)
k

[
j∑

µ=0

(
k

k − µ

)
a
(i+1)
j−µ hk−µ

i

]
= 0. (2.20)

Eqs. (2.20) is a homogeneous system of k + 1 unknowns, β
(i)
0 , β

(i)
1 , . . ., β

(i)
k ,

consisting of k equations. Hence, it has nontrivial solution. To simplyfy the
expression of (2.20), we denote

b
(i)
j,ν :=



∑k−j−1
µ=0

(
j+µ

µ

)
a
(i)
j+µ−νhµ

i

−
∑ν

µ=0

(
ν

ν−µ

)
a
(i+1)
j−µ hν−µ

i if 0 ≤ ν ≤ j,∑k−j−1
µ=ν−j

(
j+µ

µ

)
a
(i)
j+µ−νhµ

i

−
∑j

µ=0

(
ν

ν−µ

)
a
(i+1)
j−µ hν−µ

i if j + 1 ≤ ν ≤ k − 1,

−
∑j

µ=0

(
k

k−µ

)
a
(i+1)
j−µ hk−µ

i if ν = k

(2.21)

and rewrite (2.20) as

k∑
ν=0

b
(i)
j,νβ(i)

ν = 0, j = 0, 1, . . . , k − 1. (2.22)
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After finding

Qi(x) =
k∑

j=0

β
(i)
j (x− xi)j

=

∣∣∣∣∣∣∣∣∣∣
1 x− xi (x− xi)2 · · · (x− xi)k

b
(i)
0,0 b

(i)
0,1 b

(i)
0,2 · · · b

(i)
0,k

...
...

...
...

b
(i)
k−1,0 b

(i)
k−1,1 b

(i)
k−1,2 · · · b

(i)
k−1,k

∣∣∣∣∣∣∣∣∣∣
, (2.23)

by (2.13) we have

Pi(x) =
k−1∑
ν=0

β(i)
ν

k−1∑
j=ν

a
(i)
j−ν(x− xi)j

+ β
(i)
k · 0 =

∣∣∣∣∣∣∣∣∣∣

∑k−1
j=0 a

(i)
j ti(x)j

∑k−1
j=1 a

(i)
j−1ti(x)j · · ·

∑k−1
j=k−1 a

(i)
j−k+1ti(x)j 0

b
(i)
0,0 b

(i)
0,1 · · · b

(i)
0,k−1 b

(i)
0,k

...
...

...
...

...
b
(i)
k−1,0 b

(i)
k−1,1 · · · b

(i)
k−1,k−1 b

(i)
k−1,k

∣∣∣∣∣∣∣∣∣∣
,

where ti(x) = x− xi. We now calculate r
(i)
j and r̄

(i)
j in Eqs. (2.11) and (2.12).

First, from (2.11) we obtain

r(i)
µ =

k∑
j=0

a
(i)
µ−jβ

(i)
j , (2.24)

where µ = k, k + 1, . . . , 2k − 1, and a
(i)
ν = 0 for all ν ≥ k. Comparing the last

equation with (2.23) yields

r(i)
µ =

∣∣∣∣∣∣∣∣∣∣
a
(i)
µ a

(i)
µ−1 a

(i)
µ−2 · · · a

(i)
µ−k

b
(i)
0,0 b

(i)
0,1 b

(i)
0,2 · · · b

(i)
0,k

...
...

...
...

b
(i)
k−1,0 b

(i)
k−1,1 b

(i)
k−1,2 · · · b

(i)
k−1,k

∣∣∣∣∣∣∣∣∣∣
. (2.25)

Secondly, from (2.12) we have

r̄(i)
µ =

k∑
j=0

a
(i+1)
µ−j β̄

(i)
j , (2.26)

where µ = k, k + 1, . . . , 2k − 1, and a
(i)
ν = 0 for all ν ≥ k. Substituting (2.16)

into (2.26) yields

10



r̄(i)
µ =

k∑
j=0

[
k−j∑
ν=0

(
j + ν

ν

)
β

(i)
j+νhν

i

]
a
(i+1)
µ−j

=
k∑

ν=0

 ν∑
j=0

(
ν

ν − j

)
a
(i+1)
µ−j hν−j

i

β(i)
ν . (2.27)

Denoting c
(i+1)
µ,ν =

∑ν
j=0

(
ν

ν−j

)
a
(i+1)
µ−j hν−j

i in (2.27) and using (2.23), we obtain

r̄(i)
µ =

k∑
ν=0

c(i+1)
µ,ν β(i)

µ =

∣∣∣∣∣∣∣∣∣∣
c
(i+1)
µ,0 c

(i+1)
µ,1 c

(i+1)
µ,2 · · · c

(i+1)
µ,k

b
(i)
0,0 b

(i)
0,1 b

(i)
0,2 · · · b

(i)
0,k

...
...

...
...

b
(i)
k−1,0 b

(i)
k−1,1 b

(i)
k−1,2 · · · b

(i)
k−1,k

∣∣∣∣∣∣∣∣∣∣
. (2.28)

Therefore, Eqs. (2.11) and (2.11) are evantually obtained as

k−1∑
m=0

y
(m)
i

(x− xi)m

m!
− Pi

Qi
=

2k−1∑
j=k

r
(i)
j

Qi
(x− xi)j ,

k−1∑
m=0

y
(m)
i+1

(x− xi+1)m

m!
− Pi

Qi
=

2k−1∑
j=k

r̄
(i)
j

Qi
(x− xi+1)j ,

from which we have the Padé spline function defined on [a, b] with the form

R(x) =
P0

Q0
+

n−2∑
i=0

2k−1∑
µ=k

(
r̄
(i)
µ

Qi
− r

(i)
µ

Qi+1

) (x− xi+1)
µ
+, (2.29)

where r
(i+1)
µ , r̄

(i)
µ , and Qi are given by Eqs. (2.25), (2.28), and (2.23), respec-

tively.
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