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Abstract

We present characterizations of the orthogonal generalized Gegen-bauer-
Humbert polynomial sequences and the orthogonal Sheffer-type poly-
nomial sequences. Using a new polynomial sequence transformation
technique presented in [12], we give a method to evaluate the mea-
sures and their supports of some orthogonal generalized Gegenbauer-
Humbert polynomial sequences.

AMS Subject Classification: 41A80, 65B10, 33C45, 33D45, 39A70,
42C05.

Key Words and Phrases: generalized Gegenbauer-Humbert poly-
nomial sequence, Sheffer-type polynomial sequence, Chebyshev polyno-
mial, Legendre polynomial, Morgan-Voyc polynomial, Fermat polyno-
mial, Dickson polynomial of the second kind, and Laguerre polynomial,
measures, supports.

1 Introduction

A system of polynomials {p,(z),n € N}, where p,(x) is a polynomial of exact
degree n and N = {0,1,2,...} or {0,1,2,...,N} for a finite nonnegative
integer N, is an orthogonal system of polynomials with respect to some real
positive measure p on X, if {p,(x)} is a set linearly independent in La(X, 1)
and satisfies the orthogonality relation
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(ir D) = /S pi(0)p; (@)dp(z) = A28, i,j €N, 1)

where S is the support of the measure p and d; are nonzero constants. If
these constants d; = 1, we say the system is orthonormal.

The measure p usually has a density 4/ (z) = w(z) or is a discrete measure
with weights w(i) at the points x;. The relation (1) then becomes

/pi(m)pj(x)w(x)dx =d?6;5, 4,j €N, (2)
S
in the former case and

M
> pilan)pj(@n)wn = d;6y, 0,5 €N, (3)
n=0
in the latter case where it is possible that M = occ.

In this paper, we shall present a characterization of the orthogonal gen-
eralized Gegenbauer-Humbert polynomial sequences and give a method to
find the density functions and their supports for a class of orthogonal gen-
eralized Gegenbauer-Humbert polynomial sequences. We shall also give a
characterization of the orthogonal Sheffer-type polynomial sequences. We
now start from a general result on orthogonal polynomial sequences.

It is well-known that all orthogonal polynomials {p,(z)} on the real line
satisfy a recurrence relation of order 2 (see, for examples, [1], [2], [3], [4])

—ZL‘pn(ZL‘) = bnpn+1(l') + 'ann(w) + Cnpnfl(m)a n>1, (4)

where by, ¢, # 0 and ¢,/b,—1 > 0. Note that if for all n € N, p,(0) = 1,
we have v, = —(b, + ¢,,) and the polynomials p,(x) can be defined by the
recurrence relation

—l‘pn(l‘) = bnpn+1 (:E) - (bn + Cn)pn(x) + Cnpnfl(l'% n>1 (5)

together with p_1(z) = 0 and po(z) = 1. Favard proved a converse result
(see, for example, [4]).

Theorem 1.1 (Favard’s Theorem) Let A,,, By, and C,, be arbitrary sequences

of real numbers and let {p,(x)} be defined by the recurrence relation of order
2

Pnt+1(x) = (Anx + Bp)pn(z) — Copn-1(x), n >0, (6)



characterization of some orthogonal polynomials 3

together with po(x) = ¢ # 0 and p_1(xz) = 0. Then {p,(x)} is a sequence of
orthogonal polynomials if and only if A, # 0, C,, # 0, and Cp,ApAp—1 >0
for allm > 1.

For more references of the orthogonal polynomial sequences, readers may
find from a recently published very nice survey, [5], by Chihara.

In this paper, we will discuss the characterlzatlon of the orthogonal gener-
alized Gegenbauer-Humbert polynomials {P; ¢ () }n>0, which are defined

by the expansion (see, for example, [6], Gould [7], and Shiue, Hsu and the
author [8])
O(t) = (C — 2zt +yt*) =) P (7)
n>0

where A > 0, y and C' # 0 are real numbers. As special cases of (7), we
consider Py¥“(z) as follows (see [8])

P (2) = U, (z), Chebyshev polynomial of the second kind,
P1/2,1,1(x) = (), Legendre polynomial,

PLL () = Pn+1(x) Pell polynomial,

n L (g) Foy1(x), Fibonacci polynomial,
pL1 (g 1) (x), Morgan — Voyc polynomial ([9] by Koshy),
Prlb’2 ! (g) = ®,11(z), Fermat polynomial of the first kind,
PL202(2) = D, (z,a), Dickson polynomial of the second kind,

a # 0 (see, for example, [10] by Lidl, Mullen, and Turnwald),

where a is a real parameter, and F,, = F,,(1) is the Fibonacci number. In par-
ticular, if y = C = 1, the corresponding polynomials are called Gegenbauer
polynomials (see [6]). More results on the Gegenbauer-type polynomials can
be found in Hsu[11] and Shiue and the author [12], etc. It is interesting that
for each generalized Gegenbauer-Humbert polynomial sequence there exists
a non-generalized Gegenbauer-Humbert polynomial sequence, for instance,
corresponding to the Chebyshev polynomials of the second kind, Pell poly-
nomials, Fibonacci polynomials, Fermat polynomials of the first kind, and
the Dickson polynomials of the second kind, we have the Chebyshev poly-
nomials of the first kind, Pell-Lucas polynomials (see [13] by Horadam and
Mahon), Lucas polynomials, Fermat polynomials of the second kind (see [14]
by Horadam), and the Dickson polynomials of the first kind, respectively.

The class of the generalized Gegenbauer-Humbert polynomial sequences
satisfy (see [12])
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Atn—1
. Cn n—l
for all n > 2 with initial conditions

PvC(z) =2

P (x) = ®(0
P (z) = @/(0) = 222C 1,

\_/
1
o Q
3

[12] also obtained the explicit expression of {P,¥C ()} as follows.

Theorem 1.2 ([12]) Let x # £1/Cy. The generalized Gegenbauer-Humbert
polynomials {Pﬁ’y’c(x)}nzo defined by expansion (7) can be expressed as

(x N \/m)n—H B (:): e Cy)nH

PIvC(a) = 02
2/x2 - Cy

9)

One may write (8) into the form

Cln+1) yo y2A+n—1) ;o0

xpﬁ\’%C(x): 2()\71) n+1 (x)—i_w n—1 (m)

(10)

In [2], Dombrowski and Nevai presented properties of the measures as-
sociated with orthogonal polynomial sequences {P,(z) = vpz" + -+ }n>0
(v > 0) defined by the following recurrence relation of order 2:

2P, (x) = ant1Pri1(x) + b Po(z) + anPr—1(x), (11)

n =0,1,..., where P_1(z) = 0, Po(z) = v, ap = 0, ap, = Yn—1/7n and
by = [ xP2(x)du(z). Comparing (10) and (11), we immediately learn
that the polynomial sequences generated by the above recurrence relation
and having generating function shown in (7) must be {Pﬁ’c’c(x) tn>0, C # 0.

In this paper, we shall discuss the characterization of the orthogonal
Sheffer-type polynomial sequences, which are polynomial sequences possess-
ing a different type generating functions. Sheffer-type polynomial sequences
have applications to variable subjects including Lévy processes, financial
mathematics, wavelet analysis, mathematical physics, etc. We now present
the definition of Sheffer-type polynomial sequences.

Definition 1.3 Let A(t) and g(t) be any given formal power series over the
real number field R or complex number field C with A(0) = 1, g(0) = 0
and ¢'(0) # 0. Then the polynomials p,(x) (n = 0,1,2,---) defined by the
generating function (GF')
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W= pp(z)t" (12)

n>0
are called Sheffer-type polynomials with po(z) = 1.
Sheffer-type polynomials include a lot of famous polynomials as the spe-
cial cases such as the Bernoulli polynomials, Euler polynomials, Laguerre

polynomials, etc. Here, we present a short list of the Sheffer-type polynomi-
als in terms of different choices of (A(t), g(t)).

1
For (t/(e' —1),t), pu(z) = —Bn(x), Bernoulli polynomials,

For (2/(e' +1),t), pu(z) = i' E,.(z), Euler polynomials,

For (e',log(1+1)), pu(z) = (PC)n(z), Poisson — Charlier polynomials,
For (e7®(a # 0),1log(1 + 1)), pu(x) = C\(x), Charlier polynomials

For (1,log(1+1t)/(1 —=1)), pn(x) = (ML)y(x) Mittag — Lef fler polynomials
For (1—t)7! log(l +1)/(1=1t)), pu(x) = ( ) (z), Pidduck polynomials
For (1—8)P) ¢/(t —1))(p > 0), pp(x) = LP~V(x), Laguerre polynomials
For (e>‘t()\ £0),1—¢"), pp(x) = (Tos)N(x), Toscano polynomials

For (1,¢' — 1), pn( ) = Tn(x), Touchard polynomials

For (1/(1+1),t/(t — 1)), pa(z) = Ap(z), Angelescu polynomials

For (1—t)/(1+t)%,t/(t — 1)), pn(z) = (De)n(x) Denisyuk polynomials

For (1—t)", e —1)(p > 0), pn(z) = TP (2), Weighted — Touchard polynomials

The set of all Sheffer-type polynomial sequences {p,(z) = [t"]A(t)e*9®)}
with an operation, “umbral composition” (cf. [15] and [16]), forms a group
called the Sheffer group. Some properties and characterizations of Sheffer
group are shown in [17]. In addition, a higher dimensional extension of the
Sheffer-type polynomial sequences are discussed in [18].

In Sections 2 and 3, we shall give characterizations of the orthogonal
generalized Gegenbauer-Humbert polynomial sequences and the orthogo-
nal Sheffer-type polynomial sequences, respectively. In Section 4, we shall
present a method to find the densities of the measures u(x) and their sup-
ports S shown in (1) for generalized Gegenbauer-Humbert polynomial se-
quences {Pr¥"“ ()} using a technique of representing a polynomial sequence
{pn(x)} generated by a linear recurrence relation of order two in terms of one
or two terms of a orthogonal generalized Gegenbauer-Humbert polynomial
sequence.
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2 A characterization of the orthogonal generalized
Gegenbauer-Humbert polynomials

First, we consider the characterization of the orthogonal generalized Gegenbauer-
Humbert polynomials defined by (8). From Favard’s Theorem, one may
obtain the following result.

Theorem 2.1 A generalized Gegenbauer-Humbert polynomial sequence de-
fined by (8) is an orthogonal polynomial sequence if and only if yC > 0.

Proof. Writing the recurrence relation (8) into the standard form in Theorem
1.1, we have

22 +n—-1 A4+n

—————and A, =2——.

Cnt+1 ™ Cln+1)

Thus from Theorem 1.1, {Pﬁ‘ ’y’c(m)} is an orthogonal polynomial sequence

if and only if

A+n)A+n—1)2\+n—1)
C3n(n+1)?

for all n > 1. Noting A > 0 and n > 1, we immediately learn that the above
inequality is equivalently yC' > 0, which completes the proof.

CrLA A1 = 4y >0

|
Example 1 Using Theorem 2.1, we may identify the Chebyshev polynomial
sequence of the second kind {Py""'(2) = U,(z)} and the Legendre polyno-
mial sequence {P,%/ 2’1’1(36) = ¢, (x)} are orthogonal, while Pell polynomial
sequence and Fibonacci polynomial sequence are not orthogonal. Morgan-
Voyc polynomial sequence {B,,(2(z—1)) = Py'" (2)} (and {B,(z)}) and the
sequence of the Fermat polynomials of the first kind, {®,,(2z) = Prf’ll (z)}
(and ®,,(x)}), are orthogonal polynomial sequences. Dickson polynomials of
the second kind are orthogonal when a > 0 and non-orthogonal when a < 0.
We will evaluate the measures and their supports for Morgan-Voyc polyno-
mials, Fermat polynomials, and Dickson polynomials of the second kind in
Section 4.
We need the following lemma to find out the recurrence structure of an
orthogonal generalized Gegenbauer-Humbert polynomial sequence.

Lemma 2.2 If {p,(x)} is an orthogonal polynomial sequence, then there
exist sequences {Ap}n>0, {Bn}n>0, and {Cp}n>1 so that

pn-i—l(x) = (Anl' + Bn)pn(x) - Cnpn—l(x)7 (13)
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where

kn-‘,—l Anhn kn+1kn—1hn
Ap = , Cn = = , and
kn An—lhn—l k%hn—l an
_ An 2 _ knJrl 2
B, = . xpp () du(z) = “Th xpp () du(x),
n JS nlin JS

ky, is the leading coefficient of py(x), and

hy, = /pn(x)Qd,u(x)
S
18 a structural constant.

Proof. The proof can be found in [4] and [3]. However, for the sake of
convenience, we present a brief proof as follows.

We first determine A,, so that p,4i1(x) — Apap,(x) € T, a collection of
all polynomials of degree < n. Hence,

n

Pr+1(z) — Apzpn(r) = Z ijj(x)~
j=0
Using the orthogonality of (p,41(x),pj(x)), = 0 and (p,(x), zpj(x)), = 0 for
all j =0,1,...,n—2, it is readily seen that ¢; = 0 for all j =0,1,...,n—2.
Therefore, (13) follows and the expression of A, is a consequence of (13).
To obtain the expression of C,,, we take inner product of (13) with p,_1(x)
and consider

[ prr(@pas(@)dnta) =0 = An [ apo@pa-i(@)dute) - Cuhcr,
S S

in which the integral of the right-hand member can be written as

/pn(x)(/cn_lx” + lower powers)du(z) =
S

Thus the relation

h
AnTnl - Cnhn_l - 0
n—
yields the expression of C),. Taking the inner product with p,(x) on the
both sides of (13) yields
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0=A, /S xpn(x)pn (z)dp(z) + Bphy,

which implies the expression of B,,.

From Lemma 2.2, one may obtain

Theorem 2.3 If the generalized Gegenbauer-Humbert polynomial sequence
{Pﬁ\’y’c(a})} defined by (8) is an orthogonal polynomial sequence, then

Y nhp (A +n) (14)
C  hptDA+n—1)2A+n—-1)
for all n > 1, where h, = fS(PTi"y’C(w))zdu(fL‘). In addition, every element

of the sequence {Pp"C (z)} satisfies

/SacPTi"y’C(:c)Zdu(x) = 0. (15)

Proof. From the definition (8) of {Prf‘ ’y’c(m)} and the expression of (), in
Lemma 2.2, we have

2 +n -1 _hy(A+n) 2hn_1()\+n—1)
YCn+1) ~ “Cln+1) Cn !

which implies (14). Comparing (8) and the standard recurrence relation
(13), we know By, = 0 for all n > 0, which is equivalent to (15).

Remark 1 From (14) one immediately have

b CyA+n—-1)2A+n—1)
" nC(A +n)

hn—h

which implies

Y\t O n— 152N 47— )2
= () WO+ n)e

where the falling factorial notation z” (sometimes also denoted (x),) is de-
fined by 2” = x(x — 1)>=L(r > 1) with 20 = 1. Using the above equations
and equation (15), we may evaluate the measures and their supports.
Example 2 For the orthogonal sequence of the Chebyshev polynomials of
the second order {Py!(z) = Uy, (z)}, we have y/C = 1 that implies h,, =
h1 = m/2 and

hOa
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/11 2vV/1 — 22(Uy(z))%dz = 0

for all n > 0. The above equation is obviously true by observing that
Usn—1(x) are odd and Us,(z) are even.

For the sequence of the Legendre polynomials {Pﬁ/m’l(x) = Yp(x)}, we
have

hn  n—1/2
hpno1 n+1/2°
which implies h, = 2/(2n + 1), and

1
/_1 (ton(x))2dz = 0

for all n > 0. The last formula holds obviously because t9,1(x) are odd
and 9y, (x) are even.

Example 3 We know both U, (z) and v, (z) are special cases of Gegenbauer
polynomials {P;"" ()} (A > 0). From Theorem 2.1, we know {Py"!(z)}
(A > 0) is orthogonal. Using Theorem 2.3, we obtain

hn A+n—-1)2Xx+n-1)

N1 n(A+n)

which implies
B m['(2X +n)

222=Inl(\ +n) (T(N))?
where I'(z) is the gamma function. In addition, we have

1 2
/ z(1 — 22 1/2 (P,i}’“(x)) dx = 0.

-1

n

3 A characterization of the orthogonal Sheffer-type
polynomial sequences

Meixner determined all sets of monic orthogonal Sheffer-type polynomials in
his historic paper [19]. Here, a polynomial is said to be monic if the coefficient
of its highest order term is 1. We now use a modified Meixner’s approach to
give a characterization of all orthogonal Sheffer-type polynomials. Denote
D = d/dz and f = g~!, the composition inverse of g. Expansion (12)
suggests
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f(D)pm () = mpm—1(x) (16)

because of

FDYAW@)E™ ™ = A1)e™® f(g(t)) = tA(t)es®
tn+1

= @) =Y ),

n>0 n>0

where we have used p_;(x) = 0.

Theorem 3.1 Let A(t) and g(t) be defined as Definition 1.3. Then the
polynomial sequence {p,(x)} defined by (12) is orthogonal if and on if it
satisfies

pr+1(z) = (Aox + Bo + nA)pp(z) — n(Cr + (n — 1)7)pn—1(z), (17)

where Ay # 0, By, C1, A\, and~y are constant, and Cy,~v > 0. Furthermore, g(t)
and A(t) satisfy

1= M At?

A(t)  By—Cit

Alt) 1= M +qt2 (18)

gt) and

Proof. All orthogonal polynomial sequences including orthogonal Sheffer-
type polynomial sequences, {pn(z)}, satisfy the recurrence relation (13)
shown in Lemma 2.2:

pn+1($) = (Anx + Bn)pn(x) - Cnpnfl(x)' (19)

We now apply f(D) defined by (16) on the both sides of the relation and
note that f(0) =0 and f/(0) # 0 implies f(D)x = f'(D). Thus,

(n+Dpn(z) = f(D)pnt1(x) = f(D) [(An + Bn)pn(z) — Crpp-1()]
= Anf/(D)pn(x) +n(Anx + Bp)pn-1(z) — (n — 1)Cppp—2(z),
(20)

where we need Cp, A, A,_1 > 0, which is a necessary and sufficient condition
of the orthogonality of {p,(z)} presented in (19) (See Lemma 2.2). On the
other hand, multiplying n to the both sides of relation (13) for p,(z) yields

npp(z) = n(Ap—12 + Bp—1)pp—1(x) — nCp_1pn—2(x). (21)
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Subtracting (21) from (20), we obtain

(1- Anf,(D))pn(x) = n[(An — A1)+ (Bp — Bn—l)]pn—l(x)
—n(n—1) <C” - C”—1> Pn_a(). (22)

n n—1

Applying f(D) on the leftmost and rightmost sides of (22) yields

n(1 — Ay f'(D))pn-1(z)
= n(An - Anfl)f,(D)pnfl(x)
—I—TL(TL — 1)[(An - Anfl)l‘ + (Bn - anl)]pnf2(x)

—n(n—1)(n—2) (C” _ G ) Pn_s(2).

n n—1

By transferring n to n + 1, the above equation implies

(4 (An — 2400) F(DNpule) = nl(Awer — An)z + (Buss — Ba)lpos (2)
4mm—m(0“1—ajpwxm.

n+1 n
(23)
From (22) and (23) we have identity
-(1- Anf/(D))pn(x) +n[(An — Ap—1)z + (B — Bn-1)|pn-1(2)
—n(n —1) (C;L — Sn__i> Pn—2(x)
= _(1 + (A’fl - 2An+1)f/(D))pn(x) + n[(An—l-l - An)x + (Bn+1 - Bn)]pn—l(w)
~n 1) (€2 - ) o) en
Comparing the nth degree terms on the both sides of (24) yields
—(1 = Anf'(D))pn(x) + n(An — Ap_1)zpn_1(x)
= —(1+ (Ap = 24511) f/(D)pn(2) + n(Ant1 — Ap)app—1(2).
(25)

In (25) the constant terms on the both sides are equal, which implies



12 T. X. He

(1= A f/(D)pn(z) = = (1 + (An = 24541) f'(D))pa(2),
or equivalently, A,, = A, for every n > 0. Hence, (25) holds if and only if

A, = Ay, (26)

a nonzero constant for every n > 0. Comparing the terms of degree n — 1
and n — 2 on the both sides of (24), we have the results

Bn+1 - Bn == )\
and

Cn—i—l _ % _

n+1 n i

for every n > 0, where A and ~ are constants. Hence,

B, = By +nX and C, =n(Cy + (n — 1)7) (27)

for all n > 1, where Cy,y > 0 because of the request Cp,AnA,—1 = CnAg >0
for all n > 1 (see Theorem 2.1). Substituting all of the established relation-
ship of the sequences {A;}n>0, {Bn}n>0, and {Cy},>1 into (19) and (22),
we obtain, respectively,

Pry1(2) = (Aoz + Bo + nA)pn(x) — n(Cr + (n = D)y)pna(z),  (28)
where Ag # 0 and Cq,~v > 0, and
(1= Aof'(D)pu(x) = A (D)pu(x) = vf*(D)pn(2). (29)
From (29), we further have

fy) = joa M)+ 12W)),

which implies

A

/
H= — 0
I =T

by using the inverse function theorem.
From (28), we have

Pr+1(0) = (Bo 4+ nA)pn(0) = n(Cr + (n = 1)7)pp-1(0). (30)
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Noting A(t) = 3,50 Pn(0)%, (30) implies

A/(t) B By — Cit
A(t) 1= Xt 4 t2

because

AW)(Bo — C1t) = 3 (Bopa(0) — nCrp 1 (0)
n>0 ’
= Y us(0) ~ Apa(0) + nln — 1ypar 0)
n>0 ’
= (1= Xt +t%) an—&-l(o)g
n>0 ’

= A@t)(1 =X+,
which completes the proof of the theorem.

|
Let the zeros of the denominator of ¢’(¢) shown in (18) be o and 3. Then
one may solve g(t) and A(t) from (18) as follows.

Corollary 3.2 Let A(t) and g(t) be defined as Definition 1.3. Then the
polynomial sequence {p,(x)} defined by (12) is orthogonal if and on if

g(t) =

{;ioﬁ W ({=%), if a# 8,

113%27 ’Lf o = ﬁ
and
CimeBoln(l —at) — PP In(1 - Br), if 0#a##0,
In f(f) = 4 -t m(1—at) - Q2B if a=p#0,
S5 In(l - at) + 3, if a#8=0,
_%tQ—}—Bot, Z’fa:/@:&

Example 4 As an example, we set 4g = —1, Bp=Cy =1, anda=0=1
in Corollary 3.2 and obtain
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Thus, from Theorem 3.1, the Laguerre polynomial sequence, {L,(z)}, gen-
erated by (12) in Definition 1.3 with (A(t),g(t)) = (1/(1 —t),—t/(1 —t))
is an orthogonal polynomial sequence. Furthermore, from the expansion of
(1—1t)2, we can read A = 2 and v = 1, which implies the following recurrence
relation for {L,(x)}:

Loi1(z) = (2n 41 —x)Ly(z) — n* L1 ()

with the initial conditions L_;(x) = 0 and Lo(z) = 1. Thus, Li(z) =1 — =z,
Lo(z) = 2 —4x + 22, L3(x) = 6 — 18z + 922 — 23, etc. Using Lemma 2.2, one
may check the assumption of By = C =1 is satisfied for {L,(x)}. Since

ho = /SL(Q)(x)du(x) = /Ooo e %dr =1

and
hy = / L3(z)dp(z) = / (1—2)% %dr =1,
S 0
we have
A (o)
By = -2 / wL2(z)du(z) = / e Ydx =
ho Js 0
and
Athy M
Ci = = - =1
YT Aoho o

4 Evaluate the measures and their supports of or-
thogonal sequences {P¥C(x)}

In this section, we will present a method to find the densities of measures
wu(x) and their supports S (see (1)) of orthogonal generalized Gegenbauer-
Humbert polynomial sequences, {Pa*"“(z)} (Cy > 0), using a technique of
transferring a polynomial sequence defined by a recurrence relation of order
two to an orthogonal Gegenbauer-Humbert polynomial sequence. This trans-
fer technique can also give an orthogonal representation of non-orthogonal
polynomials satisfying recurrence relation of order 2 in terms of only one
or two terms of an orthogonal polynomial sequence. Thus, many useful ap-
proximation properties for orthogonal polynomials (for instance, Gaussian
quadratures) can be transfered to some non-orthogonal polynomials.

Many number and polynomial sequences can be defined, characterized,
evaluated, and classified by linear recurrence relations with certain orders.
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A polynomial sequence {a,(x)} is called sequence of order 2 if it satisfies the
linear recurrence relation of order 2:

an(z) = p(x)an—1 + q(x)an—2(x), n>2, (31)

for some coefficient p(z) # 0 and ¢(x) # 0 and initial conditions ag(z)
and aj(z). To construct an explicit formula of its general term, one may
use a generating function, characteristic equation, or a matrix method (See
Comtet [6], Hsu [20], Strang [21], Wilf [22], etc.) [12] presented a new method
to construct an explicit formula of {a,(x)} generated by (31). For the sake
of reader’s convenience, we cite this result as follows (see also Miller and
Takloo-Bighash [23] with different approaches).

Proposition 4.1 Let {a,(z)} be a sequence of order 2 satisfying the linear
recurrence relation (31). Then

an@):{ (o) piante)) g (q) - ()ao) gu(a), if a(r) # fla)
nas ()" ()  (n — ao(@)™(z), o) = o)

—

where a(z) and B(z) are roots of t> — p(x)t — q(x) = 0, namely,

o(x) = 5 () +v/pP(@) T 4a(x)), f(a) = 1 (ple) — VoP(a) + dqlo)). (33)

We now give a transfer formula between different generalized Gegenbauer-
Humbert polynomial sequences. This technique can be used to transfer
any polynomials defined by recurrence relations of order 2 to a generalized
Gegenbauer-Humbert polynomials.

Theorem 4.2 If {a,(z) = pLey (x)}, a generalized Gegenbauer-Humbert
polynomial sequence with parameters C' and y', which is defined by (7) with
coefficient polynomials p(x) = 2x/C" and q(x) = —y'/C" and initial con-
ditions ag(xr) = 1/C" and ay(z) = 2x/(C")?, then we have the following
transfer formula from {PrYC (2)}nso to {PrY"Y (@) bnzo-

el Cn+2 y/ " X yC
PLYC () = + pLv.C [ 4 . 4

In particular, every polynomials sequence {Pﬁ’y/’cl(a:)} defined by (7)
can be transfered to the Chebyshev polynomial sequence of the second kind
by using the formula
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! ! 1 ! "
1y ,C _ Y £
Py () = o (i C’) U, (i y/0/> ) (35)

Proof. We first modify the explicit formula of the polynomial sequences
defined by linear recurrence relation (32) of order 2. If a(z) # (), the first
formula in (32) can be written as

a1 (z)((a(2))" = (B(x)") — ao(z)a(x) B(z) ()"~ — (B(x))" )
a(z) — B(x) '

Noting that —a(x)f(z) = a(z)(a(z) — p(z)) = B(z)(6(z) — p(z)), we may
further write the above expression of a,(z) as

an(z) =

(36)

Denote r(z) = x + /22 — Cy and s(z) = z — /22 — Cy. To find a
transfer formula between expressions (9) and (36), we set

r(z) s(x)
= d =
ofe) = 0 and Bl = 1
for a nonzero real or complex valued function k(x), which are two roots of

t> — p(z)t — g(x) = 0. Thus, adding and multiplying two equations of (37)
side by side, we obtain

(37)

2z
afa) +(a) = ple) = 75
_ (e = YC
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and at

r(z) and s(x) give expressions of a(z) and ((z) as

r (2252 _q?)),and (= <T ﬁ_q ) -

yC
+ —q() fq

a(zr) =

It is clear that a(z) and ((z) satisfy a(x) + B(z) = p(z) and a(z)B(x) =

—q().
We first consider the case of k(z) = \/—yC/q(z). Substituting the cor-

responding (38) with positive sign mto (36), we have

an(z)

ag(x)(r"*(z) — s"*(2)) + k(@) (a1 (x) — ao(2)p(x)) (" (z) — 5" (x))

- o [ =@\ Liyc (K@pE)
= i ([ 56) mive ()

n—1
+ar(@) — ao(@)pla))C" ! ( _jéf@) P (M)

= wmen ((JFa@ e (p@) [uC

n—1
+<a1<x>—ao<m>p<x>>0"”< _Z(f)> pLe (p(;) e )

Similarly, for k(z) = —y/—yC/q(z), we have

_ \ @) p@) | yC
an(@) = ag(x)C™H? (— yo) Pﬁyc( E —q<:c>>

n—1
+(a1(2) = ao(@)p(x))C" ! (_ _586)) Py (_p(zx) " )
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Therefore, a,(z) defined by (31) can be presented as

s (o) e ()
n—1
+(a1(x) = ao(2)p(x))C"" <i _Z(é()> ne ( \/—>

(41)

where {Pﬁ Y1 is the sequence of any generalized Gegenbauer-Humbert poly-
nomials with A = 1. In particular, a,(z) can be expressed in terms of
{Pﬁ’l’1 = Uy}, the sequence of Chebyshev polynomials of the second kind:

@) = a@) (+vVa@)" U, <i2p<>>

—q(x)

2¢/—q(x)
(42)

Han(e) = ao(@p(a)) (£v=a@) " Uncy <ip”) ,

which is a special case of (41) for (y,C) = (1,1).

If a,(x) = pve (z) defined by (7) with coefficient polynomials p(x) =
22:/C" and q(z) = —y'/C’ and initial conditions ag(z) = 1/C”" and a;i(z) =
22/(C")?, then ay(x) — ag(z)p(z) = 0 and (41) and (42) are reduced to (34)
and (35), respectively.

From Theorem 4.2, we immediately have transfer formulas

Popi(x) = (£0)" Un (Fai),
Fanle) = @00, (35,
Bu(z) = (+1)"U, (i (g + 1)) :
Opir(z) = (iﬁ)”Un (i;@)
Dy(z,a) = %(i\/&)"Un <i2f>
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Remark 2 It is obvious that when both y and C are integers, the cor-
responding generalized Gegenbauer-Humbert polynomials have integer co-
efficients. Formulas (34) can be used to transfer between the generalized
Gegenbauer-Humbert polynomials with integer coefficients and the gener-
alized Gegenbauer-Humbert polynomials with non-integer coefficients. For
instance, the last transfer formula shown above presents the Dickson poly-
nomial of the second kind with real coefficients in terms of the Chebyshev
polynomials of the second kind.

If yC > 0, from Theorem 2.1 we know that {Pr¥(z)} is an orthogonal
polynomial sequence. Let w(x) and S = [a,b] be the density function and
its support interval of {Pr¥“(z)}. We now use Theorem 4.2 to find the
density function and its support interval of {Py*" C( ())}, where g(z) is a
one-to-one and differentiable function.

Theorem 4.3 Let {Pﬁ’y’c(x)} be a polynomial sequence defined by (7), and
let g() be a one-to-one and differential function. Then sequence {Pr¥"® (g(z))}
is an orthogonal polynomial sequence associated with the density function

w(z) = ¢'(x)v/1 - (9(2))?/(yC)

with support interval between g 1( VyC) and g~ (\/yC), where g~ (z) is
the composition inverse of g(x), i.e., (g7 o g)(x) = (gog N (x) = x. Fur-
thermore,

9 (Vy0) 2 C n
[ mecwpisCegen1- Ul 0 = T (1),

g7 (V5O ye 207 \C

(43)

where 6y m s the Kronecker symbol.

In particular, if g(x) = z, then {Pﬁ’y’c(:ﬂ)} s an orthogonal polynomial
sequence with respect to density function \/1 — x2/(yC) over support interval
[—vyC,/yC|, and {Pﬁ’y’c(m)} satisfies (43) when g(x) = g~ (z) = .

Proof. Let us consider inner product (Pr¥(z), Py (z)) 20
[—vyC, /yC], in which the transfer formula (35) will be applied:

) over
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VyC 2
/ PYC(z) PvC (x)y |1 — Y dx
—ViC yo
VyC ntm 2
= / 12<i y) Un<ix>Um<ix> 1— = de
—vic C C vyl VyC yC

_ % <i\/g>n+m /1 Un(2)Unm(2)V/1 — 22\/yCdz

-1

= o (&) Joum

where the rightmost integral yields (7/2)6,,, due to the orthogonality of
{Un(z)} (see, for examples, [24] by Mason and Handscomb and [25] by
Rivlin).

Hence, using a transformation we obtain

g1 (VyC) 2
[0 pecwpiscmgen - L0 0
g 1(

~Vi0) yCo
VyC 2
- / PO () PLvC (2) [1 - da
VT ye
Vi n o
= = (g) 3o

Corollary 4.4 Let {Pﬁ’c’c(x)}, C # 0, be a polynomial sequence defined by
(7) with A =1, and let g(x) be a one-to-one and differential function. Then

1L.6,C . . L
sequence {Pp"""" (g(x))} is an orthogonal polynomial sequence satisfying re-
currence relation (10) associated with the density function

g'(x
w(z) = T8 /or (g
C]
with support interval between g~(—|C|) and g=*(|C|), where g~*(z) is the
composition inverse of g(x), i.e., (g7 o g)(x) = (9o g~ ') (x) = x. Further-
more,

g~ H(IC) |C\
PLOC (1) PLOC )2dz 4 S 44
[y PRSP )V = s (44)

—H=len
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where 6y m s the Kronecker symbol.

In particular, if g(x) = z, then {Prlb’c’c(a:)} is an orthogonal polynomial
sequence with respect to density function /1 — x2/C? over support interval
[—1C1,1C|], and {Pﬁ’c’c(x)} satisfies (44) when g(z) = g~ 1(z) = .

Example 5 From Theorem 4.3, Morgan-Voyc polynomial sequence { B, (z) =
Pyt (% + 1)} is orthogonal with respect to the density function w(x) =
vV —4x — x% /4 with support [—4,0]. The sequence of Fermat polynomials of
the first kind, {®,,(z) = P1 % 1(:L‘/Q)} is orthogonal with respect to the den-
sity function w(x) = v/8 — 22/(4y/2) with support [~2v/2,2v/2]. Dickson
polynomials {D,,(z,a) = Pa?**(z)} of the second kind are orthogonal when
a > 0 with respect to the density function w(z) = V4a — z2/(2+/a) over the
support interval [—2y/a, 2+/a]. In addition, we have

1/_ o2
/ B, ( dr - ——dx = Eénm,
4 2 7
/ B (1) (1) Vo = w21,
—2v/2 \f

Dy (x,a)Dp(z,a) ———=—dz =

/2‘/5 Vida — z° T on+1/2
m\4, —a dn,m
_2\/6 2\/& 4
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