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Abstract

We present characterizations of the orthogonal generalized Gegen-bauer-
Humbert polynomial sequences and the orthogonal Sheffer-type poly-
nomial sequences. Using a new polynomial sequence transformation
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sures and their supports of some orthogonal generalized Gegenbauer-
Humbert polynomial sequences.
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1 Introduction

A system of polynomials {pn(x), n ∈ N}, where pn(x) is a polynomial of exact
degree n and N = {0, 1, 2, . . .} or {0, 1, 2, . . . , N} for a finite nonnegative
integer N , is an orthogonal system of polynomials with respect to some real
positive measure µ on X, if {pn(x)} is a set linearly independent in L2(X,µ)
and satisfies the orthogonality relation
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〈pi, pj〉µ :=
∫
S
pi(x)pj(x)dµ(x) = d2

i δij , i, j ∈ N, (1)

where S is the support of the measure µ and di are nonzero constants. If
these constants di = 1, we say the system is orthonormal.

The measure µ usually has a density µ′(x) = w(x) or is a discrete measure
with weights w(i) at the points xi. The relation (1) then becomes∫

S
pi(x)pj(x)w(x)dx = d2

i δij , i, j ∈ N, (2)

in the former case and

M∑
n=0

pi(xn)pj(xn)wn = d2
i δij , i, j ∈ N, (3)

in the latter case where it is possible that M =∞.
In this paper, we shall present a characterization of the orthogonal gen-

eralized Gegenbauer-Humbert polynomial sequences and give a method to
find the density functions and their supports for a class of orthogonal gen-
eralized Gegenbauer-Humbert polynomial sequences. We shall also give a
characterization of the orthogonal Sheffer-type polynomial sequences. We
now start from a general result on orthogonal polynomial sequences.

It is well-known that all orthogonal polynomials {pn(x)} on the real line
satisfy a recurrence relation of order 2 (see, for examples, [1], [2], [3], [4])

−xpn(x) = bnpn+1(x) + γnpn(x) + cnpn−1(x), n ≥ 1, (4)

where bn, cn 6= 0 and cn/bn−1 > 0. Note that if for all n ∈ N, pn(0) = 1,
we have γn = −(bn + cn) and the polynomials pn(x) can be defined by the
recurrence relation

−xpn(x) = bnpn+1(x)− (bn + cn)pn(x) + cnpn−1(x), n ≥ 1 (5)

together with p−1(x) = 0 and p0(x) = 1. Favard proved a converse result
(see, for example, [4]).

Theorem 1.1 (Favard’s Theorem) Let An, Bn, and Cn be arbitrary sequences
of real numbers and let {pn(x)} be defined by the recurrence relation of order
2

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), n ≥ 0, (6)
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together with p0(x) = c 6= 0 and p−1(x) = 0. Then {pn(x)} is a sequence of
orthogonal polynomials if and only if An 6= 0, Cn 6= 0, and CnAnAn−1 > 0
for all n ≥ 1.

For more references of the orthogonal polynomial sequences, readers may
find from a recently published very nice survey, [5], by Chihara.

In this paper, we will discuss the characterization of the orthogonal gener-
alized Gegenbauer-Humbert polynomials {P λ,y,Cn (x)}n≥0, which are defined
by the expansion (see, for example, [6], Gould [7], and Shiue, Hsu and the
author [8])

Φ(t) ≡ (C − 2xt+ yt2)−λ =
∑
n≥0

P λ,y,Cn (x)tn, (7)

where λ > 0, y and C 6= 0 are real numbers. As special cases of (7), we
consider P λ,y,Cn (x) as follows (see [8])

P 1,1,1
n (x) = Un(x), Chebyshev polynomial of the second kind,
P 1/2,1,1
n (x) = ψn(x), Legendre polynomial,
P 1,−1,1
n (x) = Pn+1(x), P ell polynomial,

P 1,−1,1
n

(x
2

)
= Fn+1(x), F ibonacci polynomial,

P 1,1,1
n

(x
2

+ 1
)

= Bn(x), Morgan− V oyc polynomial ([9] by Koshy),

P 1,2,1
n

(x
2

)
= Φn+1(x), F ermat polynomial of the first kind,

P 1,2a,2
n (x) = Dn(x, a), Dickson polynomial of the second kind,
a 6= 0 (see, for example, [10] by Lidl, Mullen, and Turnwald),

where a is a real parameter, and Fn = Fn(1) is the Fibonacci number. In par-
ticular, if y = C = 1, the corresponding polynomials are called Gegenbauer
polynomials (see [6]). More results on the Gegenbauer-type polynomials can
be found in Hsu[11] and Shiue and the author [12], etc. It is interesting that
for each generalized Gegenbauer-Humbert polynomial sequence there exists
a non-generalized Gegenbauer-Humbert polynomial sequence, for instance,
corresponding to the Chebyshev polynomials of the second kind, Pell poly-
nomials, Fibonacci polynomials, Fermat polynomials of the first kind, and
the Dickson polynomials of the second kind, we have the Chebyshev poly-
nomials of the first kind, Pell-Lucas polynomials (see [13] by Horadam and
Mahon), Lucas polynomials, Fermat polynomials of the second kind (see [14]
by Horadam), and the Dickson polynomials of the first kind, respectively.

The class of the generalized Gegenbauer-Humbert polynomial sequences
satisfy (see [12])
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P λ,y,Cn (x) = 2x
λ+ n− 1

Cn
P λ,y,Cn−1 (x)− y2λ+ n− 2

Cn
P λ,y,Cn−2 (x) (8)

for all n ≥ 2 with initial conditions

P λ,y,C0 (x) = Φ(0) = C−λ,

P λ,y,C1 (x) = Φ′(0) = 2λxC−λ−1,

[12] also obtained the explicit expression of {P λ,y,Cn (x)} as follows.

Theorem 1.2 ([12]) Let x 6= ±
√
Cy. The generalized Gegenbauer-Humbert

polynomials {P 1,y,C
n (x)}n≥0 defined by expansion (7) can be expressed as

P 1,y,C
n (x) = C−n−2

(
x+

√
x2 − Cy

)n+1
−
(
x−

√
x2 − Cy

)n+1

2
√
x2 − Cy

. (9)

One may write (8) into the form

xP λ,y,Cn (x) =
C(n+ 1)

2(λn)
P λ,y,Cn+1 (x) +

y(2λ+ n− 1)
2(λ+ n)

P
(λ,y,C
n−1 (x). (10)

In [2], Dombrowski and Nevai presented properties of the measures as-
sociated with orthogonal polynomial sequences {Pn(x) = γnx

n + · · · }n≥0

(γ > 0) defined by the following recurrence relation of order 2:

xPn(x) = an+1Pn+1(x) + bnPn(x) + anPn−1(x), (11)

n = 0, 1, . . ., where P−1(x) = 0, P0(x) = γ0, a0 = 0, an = γn−1/γn and
bn =

∫∞
−∞ xP

2
n(x)dµ(x). Comparing (10) and (11), we immediately learn

that the polynomial sequences generated by the above recurrence relation
and having generating function shown in (7) must be {P 1,C,C

n (x)}n≥0, C 6= 0.
In this paper, we shall discuss the characterization of the orthogonal

Sheffer-type polynomial sequences, which are polynomial sequences possess-
ing a different type generating functions. Sheffer-type polynomial sequences
have applications to variable subjects including Lévy processes, financial
mathematics, wavelet analysis, mathematical physics, etc. We now present
the definition of Sheffer-type polynomial sequences.

Definition 1.3 Let A(t) and g(t) be any given formal power series over the
real number field R or complex number field C with A(0) = 1, g(0) = 0
and g′(0) 6= 0. Then the polynomials pn(x) (n = 0, 1, 2, · · · ) defined by the
generating function (GF )



characterization of some orthogonal polynomials 5

A(t)exg(t) =
∑
n≥0

pn(x)tn (12)

are called Sheffer-type polynomials with p0(x) = 1.

Sheffer-type polynomials include a lot of famous polynomials as the spe-
cial cases such as the Bernoulli polynomials, Euler polynomials, Laguerre
polynomials, etc. Here, we present a short list of the Sheffer-type polynomi-
als in terms of different choices of (A(t), g(t)).

For (t/(et − 1), t), pn(x) =
1
n!
Bn(x), Bernoulli polynomials,

For (2/(et + 1), t), pn(x) =
1
n!
En(x), Euler polynomials,

For (et, log(1 + t)), pn(x) = (PC)n(x), Poisson− Charlier polynomials,
For (e−αt(α 6= 0), log(1 + t)), pn(x) = Ĉ(α)

n (x), Charlier polynomials
For (1, log(1 + t)/(1− t)), pn(x) = (ML)n(x) Mittag − Leffler polynomials
For ((1− t)−1, log(1 + t)/(1− t)), pn(x) = (Pi)n(x), P idduck polynomials
For ((1− t)(−p), t/(t− 1))(p > 0), pn(x) = L(p−1)

n (x), Laguerre polynomials

For (eλt(λ 6= 0), 1− et), pn(x) = (Tos)(λ)
n (x), T oscano polynomials

For (1, et − 1), pn(x) = τn(x), T ouchard polynomials
For (1/(1 + t), t/(t− 1)), pn(x) = An(x), Angelescu polynomials
For ((1− t)/(1 + t)2, t/(t− 1)), pn(x) = (De)n(x) Denisyuk polynomials
For ((1− t)−p, et − 1)(p > 0), pn(x) = T (p)

n (x), Weighted− Touchard polynomials

The set of all Sheffer-type polynomial sequences {pn(x) = [tn]A(t)exg(t)}
with an operation, “umbral composition” (cf. [15] and [16]), forms a group
called the Sheffer group. Some properties and characterizations of Sheffer
group are shown in [17]. In addition, a higher dimensional extension of the
Sheffer-type polynomial sequences are discussed in [18].

In Sections 2 and 3, we shall give characterizations of the orthogonal
generalized Gegenbauer-Humbert polynomial sequences and the orthogo-
nal Sheffer-type polynomial sequences, respectively. In Section 4, we shall
present a method to find the densities of the measures µ(x) and their sup-
ports S shown in (1) for generalized Gegenbauer-Humbert polynomial se-
quences {P 1,y,C

n (x)} using a technique of representing a polynomial sequence
{pn(x)} generated by a linear recurrence relation of order two in terms of one
or two terms of a orthogonal generalized Gegenbauer-Humbert polynomial
sequence.
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2 A characterization of the orthogonal generalized
Gegenbauer-Humbert polynomials

First, we consider the characterization of the orthogonal generalized Gegenbauer-
Humbert polynomials defined by (8). From Favard’s Theorem, one may
obtain the following result.

Theorem 2.1 A generalized Gegenbauer-Humbert polynomial sequence de-
fined by (8) is an orthogonal polynomial sequence if and only if yC > 0.

Proof. Writing the recurrence relation (8) into the standard form in Theorem
1.1, we have

Cn = y
2λ+ n− 1
C(n+ 1)

and An = 2
λ+ n

C(n+ 1)
.

Thus from Theorem 1.1, {P λ,y,Cn (x)} is an orthogonal polynomial sequence
if and only if

CnAnAn−1 = 4y
(λ+ n)(λ+ n− 1)(2λ+ n− 1)

C3n(n+ 1)2
> 0

for all n ≥ 1. Noting λ > 0 and n ≥ 1, we immediately learn that the above
inequality is equivalently yC > 0, which completes the proof.

Example 1 Using Theorem 2.1, we may identify the Chebyshev polynomial
sequence of the second kind {P 1,1,1

n (x) = Un(x)} and the Legendre polyno-
mial sequence {P 1/2,1,1

n (x) = ψn(x)} are orthogonal, while Pell polynomial
sequence and Fibonacci polynomial sequence are not orthogonal. Morgan-
Voyc polynomial sequence {Bn(2(x−1)) = P 1,1,1

n (x)} (and {Bn(x)}) and the
sequence of the Fermat polynomials of the first kind, {Φn(2x) = P 1,2,1

n−1 (x)}
(and Φn(x)}), are orthogonal polynomial sequences. Dickson polynomials of
the second kind are orthogonal when a > 0 and non-orthogonal when a < 0.
We will evaluate the measures and their supports for Morgan-Voyc polyno-
mials, Fermat polynomials, and Dickson polynomials of the second kind in
Section 4.

We need the following lemma to find out the recurrence structure of an
orthogonal generalized Gegenbauer-Humbert polynomial sequence.

Lemma 2.2 If {pn(x)} is an orthogonal polynomial sequence, then there
exist sequences {An}n≥0, {Bn}n≥0, and {Cn}n≥1 so that

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), (13)
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where

An =
kn+1

kn
, Cn =

Anhn
An−1hn−1

=
kn+1kn−1hn
k2
nhn−1

, and

Bn = −An
hn

∫
S
xpn(x)2dµ(x) = − kn+1

knhn

∫
S
xpn(x)2dµ(x),

kn is the leading coefficient of pn(x), and

hn =
∫
S
pn(x)2dµ(x)

is a structural constant.

Proof. The proof can be found in [4] and [3]. However, for the sake of
convenience, we present a brief proof as follows.

We first determine An so that pn+1(x)− Anxpn(x) ∈ πn, a collection of
all polynomials of degree ≤ n. Hence,

pn+1(x)−Anxpn(x) =
n∑
j=0

cjpj(x).

Using the orthogonality of 〈pn+1(x), pj(x)〉µ = 0 and 〈pn(x), xpj(x)〉µ = 0 for
all j = 0, 1, . . . , n− 2, it is readily seen that cj = 0 for all j = 0, 1, . . . , n− 2.
Therefore, (13) follows and the expression of An is a consequence of (13).
To obtain the expression of Cn, we take inner product of (13) with pn−1(x)
and consider

∫
S
pn+1(x)pn−1(x)dµ(x) = 0 = An

∫
S
xpn(x)pn−1(x)dµ(x)− Cnhn−1,

in which the integral of the right-hand member can be written as

∫
S
pn(x)(kn−1x

n + lower powers)dµ(x) =
kn−1

kn
hn =

hn
An−1

.

Thus the relation

An
hn
An−1

− Cnhn−1 = 0

yields the expression of Cn. Taking the inner product with pn(x) on the
both sides of (13) yields
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0 = An

∫
S
xpn(x)pn(x)dµ(x) +Bnhn,

which implies the expression of Bn.

From Lemma 2.2, one may obtain

Theorem 2.3 If the generalized Gegenbauer-Humbert polynomial sequence
{P λ,y,Cn (x)} defined by (8) is an orthogonal polynomial sequence, then

y

C
=

nhn(λ+ n)
hn−1(λ+ n− 1)(2λ+ n− 1)

(14)

for all n ≥ 1, where hn =
∫
S(P λ,y,Cn (x))2dµ(x). In addition, every element

of the sequence {P λ,y,Cn (x)} satisfies∫
S
xP λ,y,Cn (x)2dµ(x) = 0. (15)

Proof. From the definition (8) of {P λ,y,Cn (x)} and the expression of Cn in
Lemma 2.2, we have

y
2λ+ n− 1
C(n+ 1)

= 2
hn(λ+ n)
C(n+ 1)

/
2
hn−1(λ+ n− 1)

Cn
,

which implies (14). Comparing (8) and the standard recurrence relation
(13), we know Bn = 0 for all n ≥ 0, which is equivalent to (15).

Remark 1 From (14) one immediately have

hn =
y(λ+ n− 1)(2λ+ n− 1)

nC(λ+ n)
hn−1,

which implies

hn =
( y
C

)n (λ+ n− 1)n(2λ+ n− 1)n

n!(λ+ n)n
h0,

where the falling factorial notation xr (sometimes also denoted (x)r) is de-
fined by xr = x(x − 1)r−1(r ≥ 1) with x0 = 1. Using the above equations
and equation (15), we may evaluate the measures and their supports.
Example 2 For the orthogonal sequence of the Chebyshev polynomials of
the second order {P 1,1,1

n (x) = Un(x)}, we have y/C = 1 that implies hn =
h1 = π/2 and
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∫ 1

−1
x
√

1− x2(Un(x))2dx = 0

for all n ≥ 0. The above equation is obviously true by observing that
U2n−1(x) are odd and U2n(x) are even.

For the sequence of the Legendre polynomials {P 1/2,1,1
n (x) = ψn(x)}, we

have

hn
hn−1

=
n− 1/2
n+ 1/2

,

which implies hn = 2/(2n+ 1), and∫ 1

−1
x(ψn(x))2dx = 0

for all n ≥ 0. The last formula holds obviously because ψ2n+1(x) are odd
and ψ2n(x) are even.
Example 3 We know both Un(x) and ψn(x) are special cases of Gegenbauer
polynomials {P λ,1,1n (x)} (λ > 0). From Theorem 2.1, we know {P λ,1,1n (x)}
(λ > 0) is orthogonal. Using Theorem 2.3, we obtain

hn
hn−1

=
(λ+ n− 1)(2λ+ n− 1)

n(λ+ n)
,

which implies

hn =
πΓ(2λ+ n)

22λ−1n!(λ+ n) (Γ(λ))2
,

where Γ(x) is the gamma function. In addition, we have∫ 1

−1
x(1− x2)λ−1/2

(
P λ,1,1n (x)

)2
dx = 0.

3 A characterization of the orthogonal Sheffer-type
polynomial sequences

Meixner determined all sets of monic orthogonal Sheffer-type polynomials in
his historic paper [19]. Here, a polynomial is said to be monic if the coefficient
of its highest order term is 1. We now use a modified Meixner’s approach to
give a characterization of all orthogonal Sheffer-type polynomials. Denote
D = d/dx and f = g−1, the composition inverse of g. Expansion (12)
suggests
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f(D)pm(x) = mpm−1(x) (16)

because of

f(D)A(t)exg(t) = A(t)exg(t)f(g(t)) = tA(t)exg(t)

=
∑
n≥0

pn(x)
tn+1

n!
=
∑
n≥0

npn−1(x)
tn

n!
,

where we have used p−1(x) = 0.

Theorem 3.1 Let A(t) and g(t) be defined as Definition 1.3. Then the
polynomial sequence {pn(x)} defined by (12) is orthogonal if and on if it
satisfies

pn+1(x) = (A0x+B0 + nλ)pn(x)− n(C1 + (n− 1)γ)pn−1(x), (17)

where A0 6= 0, B0, C1, λ, andγ are constant, and C1, γ > 0. Furthermore, g(t)
and A(t) satisfy

g′(t) =
A0

1− λt+ γt2
, and

A′(t)
A(t)

=
B0 − C1t

1− λt+ γt2
. (18)

Proof. All orthogonal polynomial sequences including orthogonal Sheffer-
type polynomial sequences, {pn(x)}, satisfy the recurrence relation (13)
shown in Lemma 2.2:

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x). (19)

We now apply f(D) defined by (16) on the both sides of the relation and
note that f(0) = 0 and f ′(0) 6= 0 implies f(D)x = f ′(D). Thus,

(n+ 1)pn(x) = f(D)pn+1(x) = f(D) [(Anx+Bn)pn(x)− Cnpn−1(x)]
= Anf

′(D)pn(x) + n(Anx+Bn)pn−1(x)− (n− 1)Cnpn−2(x),
(20)

where we need CnAnAn−1 > 0, which is a necessary and sufficient condition
of the orthogonality of {pn(x)} presented in (19) (See Lemma 2.2). On the
other hand, multiplying n to the both sides of relation (13) for pn(x) yields

npn(x) = n(An−1x+Bn−1)pn−1(x)− nCn−1pn−2(x). (21)
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Subtracting (21) from (20), we obtain

(1−Anf ′(D))pn(x) = n[(An −An−1)x+ (Bn −Bn−1)]pn−1(x)

−n(n− 1)
(
Cn
n
− Cn−1

n− 1

)
pn−2(x). (22)

Applying f(D) on the leftmost and rightmost sides of (22) yields

n(1−Anf ′(D))pn−1(x)
= n(An −An−1)f ′(D)pn−1(x)

+n(n− 1)[(An −An−1)x+ (Bn −Bn−1)]pn−2(x)

−n(n− 1)(n− 2)
(
Cn
n
− Cn−1

n− 1

)
pn−3(x).

By transferring n to n+ 1, the above equation implies

(1 + (An − 2An+1)f ′(D))pn(x) = n[(An+1 −An)x+ (Bn+1 −Bn)]pn−1(x)

−(n)(n− 1)
(
Cn+1

n+ 1
− Cn

n

)
pn−2(x).

(23)

From (22) and (23) we have identity

−(1−Anf ′(D))pn(x) + n[(An −An−1)x+ (Bn −Bn−1)]pn−1(x)

−n(n− 1)
(
Cn
n
− Cn−1

n− 1

)
pn−2(x)

= −(1 + (An − 2An+1)f ′(D))pn(x) + n[(An+1 −An)x+ (Bn+1 −Bn)]pn−1(x)

−(n)(n− 1)
(
Cn+1

n+ 1
− Cn

n

)
pn−2(x). (24)

Comparing the nth degree terms on the both sides of (24) yields

−(1−Anf ′(D))pn(x) + n(An −An−1)xpn−1(x)
= −(1 + (An − 2An+1)f ′(D))pn(x) + n(An+1 −An)xpn−1(x).

(25)

In (25) the constant terms on the both sides are equal, which implies
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−(1−Anf ′(D))pn(x) = −(1 + (An − 2An+1)f ′(D))pn(x),

or equivalently, An = An+1 for every n ≥ 0. Hence, (25) holds if and only if

An = A0, (26)

a nonzero constant for every n ≥ 0. Comparing the terms of degree n − 1
and n− 2 on the both sides of (24), we have the results

Bn+1 −Bn = λ

and

Cn+1

n+ 1
− Cn

n
= γ

for every n ≥ 0, where λ and γ are constants. Hence,

Bn = B0 + nλ and Cn = n(C1 + (n− 1)γ) (27)

for all n ≥ 1, where C1, γ > 0 because of the request CnAnAn−1 = CnA
2
0 > 0

for all n ≥ 1 (see Theorem 2.1). Substituting all of the established relation-
ship of the sequences {An}n≥0, {Bn}n≥0, and {Cn}n≥1 into (19) and (22),
we obtain, respectively,

pn+1(x) = (A0x+B0 + nλ)pn(x)− n(C1 + (n− 1)γ)pn−1(x), (28)

where A0 6= 0 and C1, γ > 0, and

(1−A0f
′(D))pn(x) = λf(D)pn(x)− γf2(D)pn(x). (29)

From (29), we further have

f ′(y) =
1
A0

(1− λf(y) + γf2(y)),

which implies

g′(t) =
A0

1− λt+ γt2

by using the inverse function theorem.
From (28), we have

pn+1(0) = (B0 + nλ)pn(0)− n(C1 + (n− 1)γ)pn−1(0). (30)
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Noting A(t) =
∑

n≥0 pn(0) t
n

n! , (30) implies

A′(t)
A(t)

=
B0 − C1t

1− λt+ γt2

because

A(t)(B0 − C1t) =
∑
n≥0

(B0pn(0)− nC1pn−1(0))
tn

n!

=
∑
n≥0

(pn+1(0)− nλpn(0) + n(n− 1)γpn−1(0))
tn

n!

= (1− λt+ γt2)
∑
n≥0

pn+1(0)
tn

n!

= A′(t)(1− λt+ γt2),

which completes the proof of the theorem.

Let the zeros of the denominator of g′(t) shown in (18) be α and β. Then
one may solve g(t) and A(t) from (18) as follows.

Corollary 3.2 Let A(t) and g(t) be defined as Definition 1.3. Then the
polynomial sequence {pn(x)} defined by (12) is orthogonal if and on if

g(t) =

{
A0
α−β ln

(
1−βt
1−αt

)
, if α 6= β,

A0t
1−αt , if α = β.

and

ln f(t) =


C1−αB0
α(α−β) ln(1− αt)− C1−βB0

β(α−β) ln(1− βt), if 0 6= α 6= β 6= 0,

−C1
α2 ln(1− αt)− C1−αB0

α
t

1−αt , if α = β 6= 0,
C1−αB0

α2 ln(1− αt) + C1
α t, if α 6= β = 0,

−C1
2 t

2 +B0t, if α = β = 0,

Example 4 As an example, we set A0 = −1, B0 = C1 = 1, and α = β = 1
in Corollary 3.2 and obtain

g(t) =
−t

1− t
and A(t) =

1
1− t

.
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Thus, from Theorem 3.1, the Laguerre polynomial sequence, {Ln(x)}, gen-
erated by (12) in Definition 1.3 with (A(t), g(t)) = (1/(1 − t),−t/(1 − t))
is an orthogonal polynomial sequence. Furthermore, from the expansion of
(1−t)2, we can read λ = 2 and γ = 1, which implies the following recurrence
relation for {Ln(x)}:

Ln+1(x) = (2n+ 1− x)Ln(x)− n2Ln−1(x)

with the initial conditions L−1(x) = 0 and L0(x) = 1. Thus, L1(x) = 1− x,
L2(x) = 2− 4x+x2, L3(x) = 6− 18x+ 9x2−x3, etc. Using Lemma 2.2, one
may check the assumption of B0 = C1 = 1 is satisfied for {Ln(x)}. Since

h0 =
∫
S
L2

0(x)dµ(x) =
∫ ∞

0
e−xdx = 1

and

h1 =
∫
S
L2

1(x)dµ(x) =
∫ ∞

0
(1− x)2e−xdx = 1,

we have

B0 = −A0

h0

∫
S
xL2

0(x)dµ(x) =
∫ ∞

0
e−xdx = 1

and

C1 =
A1h1

A0h0
=
h1

h0
= 1.

4 Evaluate the measures and their supports of or-
thogonal sequences {P 1,y,C

n (x)}
In this section, we will present a method to find the densities of measures
µ(x) and their supports S (see (1)) of orthogonal generalized Gegenbauer-
Humbert polynomial sequences, {P 1,y,C

n (x)} (Cy > 0), using a technique of
transferring a polynomial sequence defined by a recurrence relation of order
two to an orthogonal Gegenbauer-Humbert polynomial sequence. This trans-
fer technique can also give an orthogonal representation of non-orthogonal
polynomials satisfying recurrence relation of order 2 in terms of only one
or two terms of an orthogonal polynomial sequence. Thus, many useful ap-
proximation properties for orthogonal polynomials (for instance, Gaussian
quadratures) can be transfered to some non-orthogonal polynomials.

Many number and polynomial sequences can be defined, characterized,
evaluated, and classified by linear recurrence relations with certain orders.
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A polynomial sequence {an(x)} is called sequence of order 2 if it satisfies the
linear recurrence relation of order 2:

an(x) = p(x)an−1 + q(x)an−2(x), n ≥ 2, (31)

for some coefficient p(x) 6≡ 0 and q(x) 6≡ 0 and initial conditions a0(x)
and a1(x). To construct an explicit formula of its general term, one may
use a generating function, characteristic equation, or a matrix method (See
Comtet [6], Hsu [20], Strang [21], Wilf [22], etc.) [12] presented a new method
to construct an explicit formula of {an(x)} generated by (31). For the sake
of reader’s convenience, we cite this result as follows (see also Miller and
Takloo-Bighash [23] with different approaches).

Proposition 4.1 Let {an(x)} be a sequence of order 2 satisfying the linear
recurrence relation (31). Then

an(x) =

{ (
a1(x)−β(x)a0(x)

α(x)−β(x)

)
αn(x)−

(
a1(x)−α(x)a0(x)

α(x)−β(x)

)
βn(x), if α(x) 6= β(x);

na1(x)αn−1(x)− (n− 1)a0(x)αn(x), if α(x) = β(x),
(32)

where α(x) and β(x) are roots of t2 − p(x)t− q(x) = 0, namely,

α(x) =
1
2

(p(x) +
√
p2(x) + 4q(x)), β(x) =

1
2

(p(x)−
√
p2(x) + 4q(x)). (33)

We now give a transfer formula between different generalized Gegenbauer-
Humbert polynomial sequences. This technique can be used to transfer
any polynomials defined by recurrence relations of order 2 to a generalized
Gegenbauer-Humbert polynomials.

Theorem 4.2 If {an(x) = P 1,C′,y′
n (x)}, a generalized Gegenbauer-Humbert

polynomial sequence with parameters C ′ and y′, which is defined by (7) with
coefficient polynomials p(x) = 2x/C ′ and q(x) = −y′/C ′ and initial con-
ditions a0(x) = 1/C ′ and a1(x) = 2x/(C ′)2, then we have the following
transfer formula from {P 1,y,C

n (x)}n≥0 to {P 1,y′,C′
n (x)}n≥0:

P 1,y′,C′
n (x) =

Cn+2

C ′

(
±

√
y′

yCC ′

)n
P 1,y,C
n

(
±x
√
yC√
y′C ′

)
. (34)

In particular, every polynomials sequence {P 1,y′,C′
n (x)} defined by (7)

can be transfered to the Chebyshev polynomial sequence of the second kind
by using the formula
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P 1,y′,C′
n (x) =

1
C ′

(
±
√
y′

C ′

)n
Un

(
± x√

y′C ′

)
. (35)

Proof. We first modify the explicit formula of the polynomial sequences
defined by linear recurrence relation (32) of order 2. If α(x) 6= β(x), the first
formula in (32) can be written as

an(x) =
a1(x)((α(x))n − (β(x))n)− a0(x)α(x)β(x)((α(x))n−1 − (β(x))n−1)

α(x)− β(x)
.

Noting that −α(x)β(x) = α(x)(α(x) − p(x)) = β(x)(β(x) − p(x)), we may
further write the above expression of an(x) as

an(x)

=
1

α(x)− β(x)
[a1(x)((α(x))n − (β(x))n) + a0(x)α(x)(α(x)− p(x))

×(α(x))n−1 − a0(x)β(x)(β(x)− p(x))(β(x))n−1
]

=
a0(x)((α(x))n+1 − (β(x))n+1) + (a1(x)− a0(x)p(x))((α(x))n − (β(x))n)

α(x)− β(x)
.

(36)

Denote r(x) = x +
√
x2 − Cy and s(x) = x −

√
x2 − Cy. To find a

transfer formula between expressions (9) and (36), we set

α(x) :=
r(x)
k(x)

and β(x) :=
s(x)
k(x)

(37)

for a nonzero real or complex valued function k(x), which are two roots of
t2 − p(x)t − q(x) = 0. Thus, adding and multiplying two equations of (37)
side by side, we obtain

α(x) + β(x) = p(x) =
2x
k(x)

α(x)β(x) = −q(x) =
yC

(k(x))2
.

The above system implies

k(x) = ±

√
Cy

−q(x)
,
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and at

x =
p(x)k(x)

2
= ±p(x)

2

√
yC

−q(x)
,

r(x) and s(x) give expressions of α(x) and β(x) as

α(x) =
r
(
±p(x)

2

√
yC
−q(x)

)
±
√

yC
−q(x)

, and β(x) =
s
(
±p(x)

2

√
yC
−q(x)

)
±
√

yC
−q(x)

. (38)

It is clear that α(x) and β(x) satisfy α(x) + β(x) = p(x) and α(x)β(x) =
−q(x).

We first consider the case of k(x) =
√
−yC/q(x). Substituting the cor-

responding (38) with positive sign into (36), we have

an(x)

=
a0(x)(rn+1(x)− sn+1(x)) + k(x)(a1(x)− a0(x)p(x))(rn(x)− sn(x))

kn(x)(r(x)− s(x))

= a0(x)Cn+2

(√
−q(x)
yC

)n
P 1,y,C
n

(
k(x)p(x)

2

)

+(a1(x)− a0(x)p(x))Cn+1

(√
−q(x)
yC

)n−1

P 1,y,C
n−1

(
k(x)p(x)

2

)

= a0(x)Cn+2

(√
−q(x)
yC

)n
P 1,y,C
n

(
p(x)

2

√
yC

−q(x)

)

+(a1(x)− a0(x)p(x))Cn+1

(√
−q(X)
yC

)n−1

P 1,y,C
n−1

(
p(x)

2

√
yC

−q(x)

)
.

(39)

Similarly, for k(x) = −
√
−yC/q(x), we have

an(x) = a0(x)Cn+2

(
−

√
−q(x)
yC

)n
P 1,y,C
n

(
−p(x)

2

√
yC

−q(x)

)

+(a1(x)− a0(x)p(x))Cn+1

(
−

√
−q(x)
yC

)n−1

P 1,y,C
n−1

(
−p(x)

2

√
yC

−q(x)

)
.

(40)
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Therefore, an(x) defined by (31) can be presented as

an(x) = a0(x)Cn+2

(
±

√
−q(x)
yC

)n
P 1,y,C
n

(
±p(x)

2

√
yC

−q(x)

)

+(a1(x)− a0(x)p(x))Cn+1

(
±

√
−q(X)
yC

)n−1

P 1,y,C
n−1

(
±p(x)

2

√
yC

−q(x)

)
,

(41)

where {P 1,y,c
n } is the sequence of any generalized Gegenbauer-Humbert poly-

nomials with λ = 1. In particular, an(x) can be expressed in terms of
{P 1,1,1

n = Un}, the sequence of Chebyshev polynomials of the second kind:

an(x) = a0(x)
(
±
√
−q(x)

)n
Un

(
± p(x)

2
√
−q(x)

)

+(a1(x)− a0(x)p(x))
(
±
√
−q(x)

)n−1
Un−1

(
± p(x)

2
√
−q(x)

)
,

(42)

which is a special case of (41) for (y, C) = (1, 1).
If an(x) = P 1,y′C′

n (x) defined by (7) with coefficient polynomials p(x) =
2x/C ′ and q(x) = −y′/C ′ and initial conditions a0(x) = 1/C ′ and a1(x) =
2x/(C ′)2, then a1(x)− a0(x)p(x) = 0 and (41) and (42) are reduced to (34)
and (35), respectively.

From Theorem 4.2, we immediately have transfer formulas

Pn+1(x) = (±i)n Un (∓xi) ,

Fn+1(x) = (±i)n Un
(
∓xi

2

)
,

Bn(x) = (±1)nUn
(
±
(x

2
+ 1
))

,

Φn+1(x) =
(
±
√

2
)n
Un

(
± x

2
√

2

)
,

Dn(x, a) =
1
2
(
±
√
a
)n
Un

(
± x

2
√
a

)
.
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Remark 2 It is obvious that when both y and C are integers, the cor-
responding generalized Gegenbauer-Humbert polynomials have integer co-
efficients. Formulas (34) can be used to transfer between the generalized
Gegenbauer-Humbert polynomials with integer coefficients and the gener-
alized Gegenbauer-Humbert polynomials with non-integer coefficients. For
instance, the last transfer formula shown above presents the Dickson poly-
nomial of the second kind with real coefficients in terms of the Chebyshev
polynomials of the second kind.

If yC > 0, from Theorem 2.1 we know that {P 1,y,C
n (x)} is an orthogonal

polynomial sequence. Let w(x) and S = [a, b] be the density function and
its support interval of {P 1,y,C

n (x)}. We now use Theorem 4.2 to find the
density function and its support interval of {P 1,y,C

n (g(x))}, where g(x) is a
one-to-one and differentiable function.

Theorem 4.3 Let {P 1,y,C
n (x)} be a polynomial sequence defined by (7), and

let g(x) be a one-to-one and differential function. Then sequence {P 1,y,C
n (g(x))}

is an orthogonal polynomial sequence associated with the density function

w(x) = g′(x)
√

1− (g(x))2/(yC)

with support interval between g−1(−
√
yC) and g−1(

√
yC), where g−1(x) is

the composition inverse of g(x), i.e., (g−1 ◦ g)(x) = (g ◦ g−1)(x) = x. Fur-
thermore,

∫ g−1(
√
yC)

g−1(−
√
yC)

P 1,y,C
n (x)P 1,y,C

m (x)g′(x)

√
1− (g(x))2

yC
dx =

π
√
yC

2C2

( y
C

)n
δn,m,

(43)
where δn,m is the Kronecker symbol.

In particular, if g(x) = x, then {P 1,y,C
n (x)} is an orthogonal polynomial

sequence with respect to density function
√

1− x2/(yC) over support interval[
−
√
yC,
√
yC
]
, and {P 1,y,C

n (x)} satisfies (43) when g(x) = g−1(x) = x.

Proof. Let us consider inner product 〈P 1,y,C
n (x), P 1,y,C

m (x)〉√
1−x2/(yC)

over

[−
√
yC,
√
yC], in which the transfer formula (35) will be applied:
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∫ √yC
−
√
yC
P 1,y,C(x)P 1,y,C

m (x)

√
1− x2

yC
dx

=
∫ √yC
−
√
yC

1
C2

(
±
√
y

C

)n+m

Un

(
± x√

yC

)
Um

(
± x√

yC

)√
1− x2

yC
dx

=
1
C2

(
±
√
y

C

)n+m ∫ 1

−1
Un(x)Um(x)

√
1− x2

√
yCdx

=
√
yC

C2

( y
C

)n π
2
δn,m,

where the rightmost integral yields (π/2)δn,m due to the orthogonality of
{Un(x)} (see, for examples, [24] by Mason and Handscomb and [25] by
Rivlin).

Hence, using a transformation we obtain

∫ g−1(
√
yC)

g−1(−
√
yC)

P 1,y,C(x)P 1,y,C
m (x)g′(x)

√
1− (g(x))2

yC
dx

=
∫ √yC
−
√
yC
P 1,y,C(x)P 1,y,C

m (x)

√
1− x2

yC
dx

=
√
yC

C2

( y
C

)n π
2
δn,m.

Corollary 4.4 Let {P 1,C,C
n (x)}, C 6= 0, be a polynomial sequence defined by

(7) with λ = 1, and let g(x) be a one-to-one and differential function. Then
sequence {P 1,C,C

n (g(x))} is an orthogonal polynomial sequence satisfying re-
currence relation (10) associated with the density function

w(x) =
g′(x)
|C|

√
C2 − (g(x))2

with support interval between g−1(−|C|) and g−1(|C|), where g−1(x) is the
composition inverse of g(x), i.e., (g−1 ◦ g)(x) = (g ◦ g−1)(x) = x. Further-
more,

∫ g−1(|C|)

g−1(−|C|)
P 1,C,C
n (x)P 1,C,C

m (x)
g′(x)
|C|

√
C2 − (g(x))2dx =

π|C|
2C2

δn,m, (44)
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where δn,m is the Kronecker symbol.
In particular, if g(x) = x, then {P 1,C,C

n (x)} is an orthogonal polynomial
sequence with respect to density function

√
1− x2/C2 over support interval

[−|C|, |C|], and {P 1,C,C
n (x)} satisfies (44) when g(x) = g−1(x) = x.

Example 5 From Theorem 4.3, Morgan-Voyc polynomial sequence {Bn(x) =
P 1,1,1
n

(
x
2 + 1

)
} is orthogonal with respect to the density function w(x) =√

−4x− x2/4 with support [−4, 0]. The sequence of Fermat polynomials of
the first kind, {Φn(x) = P 1,2,1

n−1 (x/2)}, is orthogonal with respect to the den-
sity function w(x) =

√
8− x2/(4

√
2) with support [−2

√
2, 2
√

2]. Dickson
polynomials {Dn(x, a) = P 1,2a,2

n (x)} of the second kind are orthogonal when
a > 0 with respect to the density function w(x) =

√
4a− x2/(2

√
a) over the

support interval [−2
√
a, 2
√
a]. In addition, we have

∫ 0

−4
Bn(x)Bm(x)

√
−4x− x2

4
dx =

π

2
δn,m,∫ 2

√
2

−2
√

2
Φn(x)Φm(x)

√
8− x2

4
√

2
dx = π2n−(1/2)δn,m,∫ 2

√
a

−2
√
a
Dn(x, a)Dm(x, a)

√
4a− x2

2
√
a

dx =
π

4
an+1/2δn,m.
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