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Abstract 
 
Here presented is constructive generalization of exponential Euler polynomial and exponential splines based 
on the interrelationship between the set of concepts of Eulerian polynomials, Eulerian numbers, and Eulerian 
fractions and the set of concepts related to spline functions. The applications of generalized exponential 
Euler polynomials in series transformations and expansions are also given.  
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1. Introduction 
 
Eulerian polynomial is defined by the following equation 
(cf. for examples, [1-3]): 

 
  1

0

= ,    | |
1

nn
n

E u
u

u


 
 


 < 1.u         (1.1) 

It is well-known that the Eulerian polynomial,  nE u , 
of degree  can be written in the form n
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where  are called the Eulerian numbers that can 
be calculated by using 

 ,E n k
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The Eulerian number  gives the number of 
permutations of   with  permutation 
ascents (cf. [4]), or equivalently, the number of per- 
mutation runs of length  (cf. [3]), where a set of 
ascending sequences in a permutation is called a run and 

 is a permutation ascent if the th term in the 
permutation less than the 
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 st term. A geometric 

interpretation of Eulerian number  ,E n k  were pre- 
sented in [5] and [6], where which was found equaling to 
the volume of th slice of a -dimensional unit cube,  k n

namely,   =1
0,1 : 1

n n

jj

that the Eulerian fraction is a powerful tool in the study 
of the Eulerian numbers, Eulerian polynomial, Euler 
function and its generalization, Jordan function ( cf. [7]). 
The classical Eulerian fraction,  m x , can be ex- 
pressed in the form 
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B
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 spline functions are probably the most applicable 
one-dimensional polynomial spline functions. The values 
of  spline functions can be defined as the volumes of 
slices of a -dimensional cube (cf. [8]). Hence, one can 
expect a tight connection between the Eulerian numbers 
and the  spline function values. This is is one of the 
motivations to study the interrelationship between Eule- 
rian polynomials and B-splines. Another motivation is 
from the construction of the exponential splines by using 
the exponential Euler polynomial discussed in [9], which 
will be described in this paper. 

n

B

x k x   

Polynomial spline functions can be considered as bro- 
ken polynomials with certain smoothness, which are 
used to overcome the stiffness of polynomials, for in- 
stance the Runge phenomenon. One way to construct the 
univariate polynomial B-splines is using divided dif- 
ferences to truncated powers, and the truncated powers 
can be generated by iterated integrations. An extension 
called the truncated Tchebycheff functions can be con- 
structed similarly using the iterated integrations with 
respect to positive, smooth weight functions, and the 
Tchebycheffian B-splines are linear combination of these 

k . It is wellknown  
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truncated Tchebycheff functions. Exponential splines be- 
long to a class of Tchebycheffian B-splines, which pre- 
serve many features of the polynomial B-splines such as 
smoothness, compact support, non-negativity, and local 
linear independence. One may find more details in 
[7,10,11] and [12] and some applications in [13] and [14]. 
In [15], Dyn and Ron considered periodic exponential 
B-splines defined by weight functions i  
with , i , and showed these 
B-splines possess a significant property of translation 
invariant and satisfy a generalized Hermite-Genocchi 
formula. Motivated by this work, Ron define the higher 
dimensional -directional exponential box splines in 
[16]. 
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Another approach to construct the exponential splines 
to the base  is using a linear combination of the 
translations of a polynomial B-spline with combination 
coefficients 

u

ju . The exponential splines to the base  
can be presented and evaluated by using exponential 
Euler polynomials, which connect to some famous 
generating functions (GF’s) in the combinatorics. The 
details can be found in Lecture 3 of [9-11], and Chapter 
2 of [17], and we shall briefly quote them in next section. 
This approach can be used to derive a strong inter- 
relationship between two different fields. For instance, in 
[18], the author presents the equivalence between 
exponential Euler polynomials, Euler-Frobenius polyno- 
mials, etc. and some frequently used concepts in com- 
binatorics such as Eulerian fractions, Eulerian poly- 
nomials, etc., respectively, which will be surveyed as 
follows. 

u

Let  be an integer, . The symbol n  
denotes the class of splines of order , i.e., functions 

n 0n  S
n

 s x
 s x

 satisfying the following conditions: (1) 
 and (2)  1 nC    πs x  n  in each interval 

,   1
, 1 

,j j 
= 0j , 2, ,  where  is the class of polynomials 

of degree not exceeding . 
πn

n
In the central part of Schoenberg’s lectures on 

“Cardinal Spline Interpolation” (CSI) (cf. [9]), the 
exponential Euler polynomial of degree  to the base 

 is defined as 
n

u
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is the exponential spline of degree  to the base , 
where 

n u

   := ;0,1, ,nQ x M x n  

denote the cardinal forward B-splines. Here, an ex- 
ponential spline nf S  means an element in  

satisfying the functional equation 

nS

  1 = .f x f x             (1.6) 

Obviously,   1nQ x Sn . Therefore, n Sn  , and it 
is easy to find n  satisfies (1.6). 

From [9],  ;n x u  satisfies    1; = ;n x u u x u 
0 < < 1x

 
and is a polynomial in the interval  with the 
form 

   11
; = 1 lower degree terms

!

n n
n x u u x

n
    

for . Hence, 0 < < 1x  ;nA x u  is a monic polynomial 
in 0 1x  . From [9], the generating function of 

  ;nA x u  is 
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Using (1.7) we may expand both sides of 
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and comparing the coefficients of power of  in the 
expansions on two sides, we obtain 
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0

1
=

!e

n

nt
n

u
a u

nu 


  ,

t
          (1.9) 

where    = 0;n na u A u . It is easy to see that 
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In particular, 
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Hence, we call  na u  the coefficient (polynomials) 
of the exponential Euler polynomial  ;nA x u

e
. 

In addition, multiplying (1.9) by zu   and com- 
paring the coefficients of the powers of , we have the 
relations 

u
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Jointing (1.11) and (1.12) yields 

  1; = 0; .n n A u uA u          (1.13) 

If       1; = 0;n n A u uA u   for all integer , then 
(1.8) implies  

> 0n

               1 1
1 11; = 1; = 0; = 0;n n n nA u nA u nuA u uA u 
 

    . 

Thus, we have 
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      1; = 0;n nA u uA u             (1.14) 

for all integer . > 0
In the following, we call 

       := 1 0; 1
n

n n nu a u u A u u   n   (1.15) 

the Euler-Frobenius polynomial. Since 
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 n u  defined by (1.15) can be written as 
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From (1.17), we know  has  zeros, all 
negative and simple, with 

 n u 1n 
  a zero if and only if 1   

is. A proof can be found, for example, in [17]. 
On the other hand, from (1.9) and (1.15) we have 
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Transferring  to , we change the above equa- 
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The left-hand side of the above equation can be ex- 
panded as 
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Comparing the right-hand sides of the last two equa- 
tions yields 
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(1.18) implies 

         1 = 1 1 .n nu nu u u u         (1.19) 

In the introduction, we give the following definition of 
the Eulerian polynomial of degree , which is similar to 
(1.18). 
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where the Eulerian polynomial,  can be written 
in the form of (1.2) with the Eulerian numbers calculated 
using (1.3). 

 nE u

In addition, Eulerian fraction, denoted by  n u , is 
defined by 
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Comparing (1.18) and (1.20), (1.17) and (1.7), and 
(1.15) and (1.3), [18] gives the following results. 

Proposition 1.1 [18] Let  and  n u  na u  be the 
polynomials defined by (1.15) and (1.9), respectively, 
and let Eulerian polynomials , Eulerian numbers nE u 
 ,E n k , and Eulerian fractions  be defined by 

(1.20), (1.2), and (1.21), respectively. Denote the car- 
dinal forward B-spline of order  by . Then we 
can set the relationship between the concepts as 
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As examples of the interrelationships shown in (1.22) - 
(1.24), we see 

1)      0 00 = 1,  =n u E u  1;   

2)      1 11 = 1,  =n u E u  ;u   

3)       2
2 22 = 1 ,   =n u u E u u    ;u  etc.  

and 

1)            21 1, = 0,1,0 ,   = 0,1,0 ;n E k Q k   

2) 

         3

1 1
2 2, = 0,1,1,0 ,  = 0, , ,0 ;

2 2
n E k Q k

   
 

 

3) 

         4

1 2 1
3 3, = 0,1,4,1,0 ,  = 0, , , ,0

6 3 6
n E k Q k

   
 

; 

etc.  
Using Proposition 1.1, [18] derives many properties of 

B-spline and Euler-Frobenius polynomials readily from 
the corresponding properties of Eulerian polynomials 
and Eulerian numbers, and vice versa. Applications in 
B-spline interpolation and evaluation of Riemann Zeta 
function values at odd integers are also given in [18]. 

Let . It is well-known that the Eulerian 
fraction defined by (1.21) can be written as 
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< 1,u        (1.20) ,        (1.25) 
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where  are the Stirling numbers of the second   ,S n j

j Skind, i.e.,  or equivalently, the  
=0

! , = j n

t
n j t  

number of partitions of  distinct elements in  
blocks. 

n j

The connection shown in Proposition 1.1 also provides 
some important applications, shown in Section 2, of 
B-splines and exponential B-splines to the enumerative 
combinatorics. In the section, a generalized Eulerian 
fraction and a generalized exponential spline to the base 

 are derived. Section 3 discusses the applications of 
the generalized exponential Euler polynomials in the 
series transformations and expansions. Furthermore, 
using the combinatorial technique, we may generate 
exponential splines in higher dimensional setting, which 
will be briefly described at the end of the section and will 
be discussed in a later paper on the multivariate spline 
functions. 

u

 
2. Generalized Exponential Splines 
 
In this section, we will introduce a generalized Eulerian 
fraction, from which a generalized exponential spline to 
the base  will be derived. We shall also discuss the 
corresponding generalized Euler-Frobenius polynomials 
and their applications. 

u

It is obvious that (1.25) is equivalently 

       1

=0

= , 1
n j

,j
n

j

u S n j u u       (2.1) 

where . Hence, we may extend the Eulerian 
fraction to a more general case, which will be denoted by 
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  un  and called generalized Eulerian fractions 
associated with an infinitely differentiable function 
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which is associated with an analytic function  g u . 
We now find the generating function of  

  n u g u   and   na u g u . 

Theorem 2.1 Let  g u  be an infinitely differentiable 

function, and let   n u g u  and   na u g u  be 
defined by (2.2) and (2.3), respectively. Then their 
exponential generating functions are 
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where   : =u u g u 1 .  
Proof. Substituting (2.2) into the right-hand side of 

(2.4) and using the generalized Euler series transform 
formula (cf. [19] and (3.1) in [20]), we can evaluate the 
exponential generating function of  n u g u   for- 
mally as 
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Similarly, by substituting (2.3) into the right-hand side 
of (2.5) and applying formula (2.4) to the resulting 
expression, we have 
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which yields (2.5) and completes the proof of the 
theorem. 

From   na u g u  we now construct polynomials  

  ;A x u g u  for 0 1x   using the following expan-  

sion. 
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Thus,   ;nA x u g u  can be evaluated from  
  na u g u  as follows. 
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We call   ;n A x u g u  the generalized exponential 
Euler polynomial of degree n  associated with g  to 
the base , and u   ja u g u  the coefficient of  

  ;nA x u ug . In addition, we call   1; 1nA x g


 the  

generalized Euler polynomials, and  ; 1nA x  , the 
regular Euler polynomials, are the special case of 

  ; 1 1nA x g   for    = 1 1g u u . 
A generalized exponential spline function to the base 
, denoted by u   ;n x u g u , is therefore defined using 

  ;nA x u g u 1 ( 0 x  ) as follows. 
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where the last step is due to the identities 
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Substituting the last equation to the first equation of 
(2.12) yields 
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(see (2.2) and (2.3). Therefore, if  

     1 1
1; 1 = 0; 1n nA u au auA u au

      , then  

= 0 . The sufficiency is obvious. This completes the 
proof of the theorem.  

Remark 3.1 Other generalized exponential splines are 
planed to be constructed. And the properties of the 
exponential splines need to be investigated. 
 
3. Applications in Series Transformations  

and Expansions 
 
All formulas presented in this section are formal iden- 

tities in which we always assume that  or = 1x  = 1x    
according as   1

1 x
  or   1

1 x
  appears in the 

formulas. 
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On the other hand, we can present 
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By applying (3.1) in [19] to the inner sum of the 
rightmost side of the above equation for   = kf t t  and 
noting    

=0
, = j k

t
S k j t j ! , we obtain 
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which implies (3.1) by writing  
         0
0 = 0 0k k

k
h g u h g u k

 !  formally, where for 
   and    we use (2.2) and (2.3), respectively. 

Copyright © 2011 SciRes.                                                                                OJDM 



T.-X. HE 41 
 
This completes the proof of the theorem.  

Remark 4.1 The series transformation formulas (3.1) 
have numerous applications by setting different infinitely 
differentiable functions for  g x . For instance, If 
    1

= 1g u u
 , then (3.1) becomes to 
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0 = 0 0;
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  , (3.2) 

where  and the relation (1.5) has been used. = 1u 
Evidently, when  is a polynomial, formulas (3.1) 

and (3.2) become closed form of summation formulas 
with a finite number of terms. Moreover, the Right-hand 
side of each formula may also be viewed as a  for 
the sequence of coefficeients contained in the power 
series on the left-hand side. For example, if 
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At the end of this section, we will show a way to 
extend our construction of exponential splines to the 
higher dimensional setting. First, we shall adopt the 
multi-index notational system. Denote 

  1 1
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Moreover, we write 1
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r
rt t t     with  

 being non-negative integers. Also, 
 means 

 1, , ,r r   
0̂  i


0   , and  = 1, ,i  r    means 

i i   for all . = 1,,i r
We now define a generalized higher dimensional ex-  

ponential polynomials   ;A x u g u  as follows. 

Definition 3.2 Let  i ig u  be any given formal power 
series over the complex number field  with   0 = 1ig .  

Then   ;A x u g u  defined by 
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are called the generalized higher dimensional expon- 
ential Euler polynomials of degree   associated with 
g  to the base , where . In particular, for û ˆ 0,1u r
   = 1 1g u u , (3.3) defines higher dimensional expon- 

ential Euler polynomials  ˆ ˆ;A x u  of degree   to the 
base  by û

 ˆˆ
=1 ˆ| |

0

1
ˆ ˆe = ; .

!e
r x ti
i t
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u t
A x u

u




 









        (3.4) 

Let  ˆ = 1, 1, , 1u    . Then the polynomial  
  ; 1, , 1ˆA x    defined by (3.4) is called the higher 

dimensional (regular) Euler polynomial of degree  . 
The more details will be given in a later paper. 
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