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Abstract

Here expounded is a kind of symbolic operator method by making
use of the defined Sheffer-type polynomial sequences and their
generalization, which can be used to construct many power series
transformation and expansion formulas. The convergence of the
expansions are also discussed.
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1 Introduction

The closed form representation of series has been studied extensively.
See, for examples, Comtet [1], Ch. Jordan [11], Egorechev [2], Roman-
Rota [15], Sofo [17], Wilf [18], Petkovšek-Wilf-Zeilberger’s book [13],
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“A=B,” and the author’s recent work with Hsu, Shiue, and Toney [4].
This paper is a sequel to the work [4] and the paper with Hsu and
Shiue [5], in which the main results are special cases of Theorem 2.1
shown below. The object of this paper is to make use of the following
defined generalized Sheffer-type polynomial sequences and the classical
operators ∆ (difference), E (shift), and D (derivative) to construct a
method for the summation of power series expansions that appears to
have a certain wide scope of applications.

As an important tool using in the Calculus of Finite Differences and
in Combinatorial Analysis, the operators E, ∆, D are defined by the
following relations.

Ef(t) = f(t+ 1), ∆f(t) = f(t+ 1)− f(t), Df(t) =
d

dt
f(t).

Powers of these operators are defined in the usual way. In particular
for any real numbers x, one may define Exf(t) = f(t + x). Also, the
number 1 may be used as an identity operator, viz. 1f(t) ≡ f(t). Then
it is easy to verify that these operators satisfy the formal relations (cf.
[11])

E = 1 + ∆ = eD, ∆ = E − 1 = eD − 1, D = log(1 + ∆).

Note that Ekf(0) =
[
Ekf(t)

]
t=0

= f(k), so that (xE)kf(0) =

f(k)xk. This means that (xE)k with x as a parameter may be used
to generate a general term of the series

∑∞
k=0 f(k)xk.

Definition 1.1 Let A(t), B(t), and g(t) be any formal power series
over the real number field R or complex number field C with A(0) = 1,
B(0) = 1, g(0) = 0, and g′(0) 6= 0. Then the polynomials pn(x) (n =
0, 1, 2, · · · ) defined by the generating function (GF )

A(t)B(xg(t)) =
∑
n≥0

pn(x)tn (1.1)

are called generalized Sheffer-type polynomials associated with (A(t), B(t),
g(t)). Accordingly, pn(D) with D ≡ d/dt is called Sheffer-type differ-
ential operator of degree n associated with A(t), B(t), and g(t). In
particular, p0(D) ≡ I is the identity operator due to p0(x) = 1.
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In Definition 1.1, if B(t) = et, then the defined {pn(x)} is a classical
Sheffer-type polynomial sequence associated with (A(t), g(t)) ≡ (A(t),
exp(t), g(t)). As examples, classical Sheffer-type polynomials include
Bernoulli polynomials, Euler polynomials, and Laguerre polynomials
generalized by (A(t), g(t)) = (t/(et − 1), t), (2/(et + 1), t), and ((1 −
t)−p, t/(t− 1)) (p > 0), respectively.

We call the infinite matrix [dn,k]n,k≥0 with real entries or complex
entries a generalized Riordan matrix (The originally defined Riordan
matrices need g′(0) = 1) if its kth column satisfies

∑
n≥0

dn,kt
n = A(t)(g(t))k; (1.2)

that is,

dn,k = [tn]A(t)(g(t))k,

the nth term of the expansion of A(t)(g(t))k. The Riordan matrix is
denoted by (A(t), g(t)) or [dn,k] described in (1.2). Then the generalized
Sheffer-type polynomial sequence associated with (A(t), B(t), g(t)) is the
result of the following matrix multiplication

[dn,k]



1
b1x
b2x

2

...
bnx

n

...


.

If
[
dn,k = [tn]A(t)(g(t))k

]
and

[
cn,k = [tn]C(t)(f(t))k

]
are two Riordan

matrices, and {pn(x)} and {qn(x)} are two corresponding generalized
Sheffer-type polynomial sequences associated with (A(t), B(t), g(t)) and
(C(t), B(t), f(t)), respectively, then we can define a umbral composi-
tion (cf. its special case of B(t) = et is given in [14] and [15]) between
{pn(x)} and {qn(x)}, denoted by {pn(x)}#{qn(x)}. The resulting se-
quence is the generalized Sheffer-type polynomial sequence associated
with (A(t)C(g(t)), B(t), f(g(t)). Clearly, the sequence {pn(x)}#{qn(x)}
is the result of the following matrix multiplication
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[dn,k][cn,k]



1
b1x
b2x

2

...
bnx

n

...


.

A power series B(t) = 1 +
∑∞

k=1 bkt
k is said to be regular if bk 6= 0 for

all k ≥ 1. Under the composition operator #, it can be proved that all
generalized Sheffer-type polynomial sequences associated with a regu-
lar B(t) form a group, called the generalized Sheffer group associated
with B(t). Its verification is analogous to the classical Sheffer group
associated with et established in [14] (see also in [6]).

In [6], the author established the isomorphism between the classic
Sheffer group and the Riordan group based on the following bijective
mapping: θ : [dn,k] 7→ {pn(x)} or θ : (A(t), g(t)) 7→ {pn(x)}, i.e.,

θ([dn,k]n≥k≥0) :=
n∑
j=0

dn,jx
j/j! = [dn,k]n≥k≥0X, (1.3)

for fixed n, where X = (1, x, x2/2!, . . .)T , or equivalently,

θ((A(t), g(t)) := [tn]A(t)exg(t) (1.4)

It is clear that (1, t), the identity Riordan array, maps to the identity
Sheffer-type polynomial sequence {pn(x) ≡ xn/(n!)}n≥0. From the defi-
nitions (1.2) we immediately know that

pn(x) = [tn]A(t)exg(t) if and only if dn,k = [tn ]A(t) (g(t))k . (1.5)

Therefore, the Riordan matrices from the sequences shown in the On-
Line Encyclopedia of Integer Sequences (OLEIS) also present the coeffi-
cients of the corresponding classic Sheffer-type polynomials. For exam-
ple, sequence A129652

1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 73, 52, 18, 4, 1, . . .

presents both Riordan array (ex/(1−x), x) and the corresponding Sheffer-
type polynomial sequence:
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p0(x) = 1

p1(x) = 1 + x

p2(x) = 3 + 2x+ x2/2!

p3(x) = 13 + 9x+ 3x2/2! + x3/3! . . .

The row sums of Riordan array (ex/(1−x), x), i.e., the polynomial values
at x = 1, are A052844, while diagonal sums of the array are A129653
(cf. [16]). Other examples including A000262, A084358, A133289, etc.
can be also found in [16].

Suppose that Φ(t) is an analytic function of t or a formal power
series in t, say

Φ(t) =
∞∑
k=0

ckt
k, ck = [tk]Φ(t), (1.6)

where ck can be real or complex numbers. Then, formally we have a
sum of general form

Φ(xE)f(0) =
∞∑
k=0

ckf(k)xk. (1.7)

In certain cases, Φ(α + β) or Φ(αβ) can be decomposed into some-
thing having a power series in β as a part. Accordingly the operator
Φ(xE) = Φ(x + x∆) = Φ(xeD) can be expressed as some power series
involving operators ∆k or Dk’s. Then it may be possible to compute
the right-hand side of (1.7) by means of operator-series in ∆k or Dk’s.
This idea could be readily applied to various elementary functions Φ(t).
Therefore, we can obtain various transformation formulas as well as
series expansion formulas for the series of the form (1.7).

It is well-known that the Eulerian fraction is a powerful tool to study
the Eulerian polynomial, Euler function and its generalization, Jordan
function (cf. [1]).

The classical Eulerian fraction can be expressed in the form

αm(x) =
Am(x)

(1− x)m+1
(x 6= 1), (1.8)

where Am(x) is the mth degree Eulerian polynomial of the form
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Am(x) =
m∑
j=0

j!S(m, j)xj(1− x)m−j, (1.9)

S(m, j) being Stirling numbers of the second kind, i.e., j!S(m, j) =

[∆jtm]t=0 , which is also denoted by

{
m
j

}
. Evidently αm(x) can be

written in the form (cf. [4])

αm(x) =
m∑
j=0

j!S(m, j)xj

(1− x)j+1
. (1.10)

In order to express some new formulas for certain general types of
power series, we need to introduce the following extension of Euler frac-
tion, denoted by αn(x,A(x), B(x), g(x)), using the generalized Sheffer-
type polynomials associated with analytic functions or power series A(t),
B(t), and g(t), which satisfy conditions in Definition 1.1.

αn(x,A(x), B(x), g(x)) :=
n∑
j=0

∞∑
`=j

j!

(
`

j

)
p`(x)S(n, j), (1.11)

where p`(x) is the generalized Sheffer-type polynomial of degree ` defined
in Definition 1.1. In particular, if A(x) = 1 and g(x) = x, then p`(x) =
B(`)(0)x`/`!, and the generalized Euler fraction is hence

αn(x, 1, B(x), x) =
n∑
j=0

S(n, j)B(j)(x)xj (1.12)

because

∞∑
`=j

j!

(
`

j

)
p`(x) =

∞∑
`=j

j!

(
`

j

)
B(`)(0)

x`

`!
= B(j)(x)xj.

Obviously, αm(x) defined by (1.8) can be presented as

αm(x) = Am(x, 1, (1− x)−1, x).

From (1.11), two kinds of generalized Eulerian fractions in terms of
A(x) = 1, g(x) = x, B(x) = (1 + x)a and B(x) = (1 − x)−a−1, respec-
tively, with real number a as a parameter, can be introduced respec-
tively, namely
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An(x, 1, (1 + x)a, x) =
n∑
j=0

(
a

j

)
j!S(n, j)xj

(1 + x)j−a
(1.13)

for x 6= −1, and

An(x, 1, (1− x)−a−1, x) =
n∑
j=0

(
a+ j

j

)
j!S(n, j)xj

(1− x)a+j+1
(1.14)

for x 6= 1. These two generalized Eulerian fractions were given in [5].
Another extension of the classical Eulerian fraction is presented in [10].

Two major transformation and expansion formulas and their appli-
cations will be displayed in next section, and the convergence of the
series in the formulas is presented in 3.

2 Series transformation-expansion formu-

las

Theorem 2.1 Let {f(k)} be a sequence of numbers (in R or C), and let
h(t) be infinitely differentiable. Assume A(t), B(t), and g(t) are analytic
functions in a disk centered at the origin or power series defined as in
Definition 1.1 and {pn(x)} is the generalized Sheffer-type polynomial
sequence associated with A(x), B(x), and g(x), we have formally

∞∑
n=0

f(n)pn(x) =
∞∑
n=0

∆nf(0)

(
∞∑
`=n

(
`

n

)
p`(x)

)
(2.1)

∞∑
n=0

h(n)pn(x) =
∞∑
n=0

1

n!
h(n)(0)αn(x,A(x), B(x), g(x)), (2.2)

where S(n, j) is the Stirling numbers of the second kind, and αn(x,A(x),
B(x), g(x)) =

∑n
j=0

∑∞
`=j j!

(
`
j

)
p`(x)S(n, j) is the generalized Eulerian

fraction defined as in (1.11).

In particular, if g(t) = t, then the transformation and expansion
formulas (2.1) becomes to
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∞∑
n=0

f(n)

n!

n∑
`=0

(
n

`

)
A(n−`)(0)B(`)(0)x`

=
∞∑
n=0

∆nf(0)

n!

(
n∑
`=0

(
n

`

)
A(n−`)(1)B(`)(x)x`

)
. (2.3)

Proof. Applying the operator A(E)B(xg(E)) to f(t) at t = 0, where E
is the shift operator, we obtain the left-hand side of (2.1).

On the other hand, we have

A(E)B(xg(E))f(t)|t=0 = A(1 + ∆)B(xg(1 + ∆))f(t)|t=0

=
∞∑
`=0

p`(x) (1 + ∆)`f(t)
∣∣
t=0

=
∞∑
`=0

∑̀
n=0

(
`

n

)
p`(x)∆nf(0),

which implies the double sum on the right-hand side of (2.1).
Similarly, for the infinitely differentiable function h(t), we can present

A(E)B(xg(E))h(t)|t=0 = A(eD)B(xg(eD))h(t)
∣∣
t=0

=
∞∑
`=0

p`(x)e`D h(t)|t=0 =
∞∑
`=0

p`(x)
∞∑
n=0

`n

n!
h(n)(0)

=
∞∑
n=0

(
∞∑
`=0

p`(x)`n

)
h(n)(0)

n!

By applying (2.1) to the internal sum of the rightmost side of the above
equation for f(t) = tk and noting S(k, j) =

(
∆jtk

∣∣
t=0

)
/j!, we obtain

A(E)B(xg(E))h(t)|t=0

=
∞∑
n=0

(
∞∑
j=0

∞∑
`=j

(
`

j

)
p`(x)∆jtn

∣∣
t=0

)
h(n)(0)

n!

=
∞∑
n=0

(
n∑
j=0

∞∑
`=j

(
`

j

)
p`(x)j!S(n, j)

)
h(n)(0)

n!

=
∞∑
n=0

h(n)(0)

n!
αn(x,A(x), B(x), g(x)).
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This completes the proof of the theorem.

If g(t) = t, then we have formally pn(x) =
∑n

`=0A
(n−`)(0)B(`)(0)x`/((n−

`)!`!) and

A(E)B(xE)f(t)|t=0

= A(1 + ∆)B(x+ x∆)f(t)|t=0

=
∞∑
n=0

(
n∑
`=0

A(n−`)(1)

(n− `)!
B(`)(x)

`!
(x∆)`

)
f(t)|t=0 ,

which can be written as the double sum on the right-hand side of (2.3).

Remark 3.1 When f(t) and h(t) are polynomials, the right-hand sides
of (2.1) and (2.2) are finite sums, which can be considered as the closed
forms of the corresponding left-hand side series. For this reason, we
call formulas (2.1) and (2.2) the series transformation and expansion
(or transformation-expansion) formulas. Thus, for the rth degree poly-
nomial φ(t), from (2.1) and (2.2) we have two expansion formulas,

∞∑
n=0

φ(n)pn(x) =
r∑

n=0

∆nφ(0)

(
∞∑
`=n

(
`

n

)
p`(x)

)
(2.4)

∞∑
n=0

φ(n)pn(x) =
r∑

n=0

1

n!
φ(n)(0)αn(x,A(x), B(x), g(x)), (2.5)

where the right-hand sides can be considered as the GF’s of {φ(n)pn(x)}.

Corollary 2.2 Let {αn(x,A(x), B(x), g(x))} be the generalized Eule-
rian fraction sequence defined by (1.11). Then the exponential generat-
ing function of the sequence is A(et)B(xg(et)). In particular, the expo-
nential generating function of sequence {αn(x, 1, B(x), x)} is B(xet).

Proof. The exponential GF of {αn(x,A(x), B(x), g(x))} can be written
as
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∞∑
n=0

αn(x,A(x), B(x), g(x))
tn

n!

=
∞∑
n=0

n∑
j=0

S(n, j)
∞∑
`=j

(
`

j

)
p`(x)

tn

n!

=
∞∑
n=0

(
∞∑
j=0

1

j!
∆jun

∣∣
u=0

∞∑
`=j

(
`

j

)
p`(x)

)
tn

n!
.

Applying formula (2.1) for f(j) = jn into the double sum in the above
parentheses yields

∞∑
n=0

αn(x,A(x), B(x), g(x))
tn

n!

=
∞∑
n=0

(
∞∑
j=0

jnpj(x)

)
tn

n!

=
∞∑
j=0

pj(x)ejt = A(et)B(xg(et)).

Here, the last step is due to Definition 1.1.

We now give two special cases of Theorem 2.1.

Corollary 2.3 Let {f(k)} be a sequence of numbers (in R or C), and
let B(t) and g(t) be infinitely differentiable on [0,∞). Then we have
formally

∞∑
n=0

f(n)B(n)(0)
xn

n!
=
∞∑
n=0

∆nf(0)B(n)(x)
xn

n!
(2.6)

∞∑
n=0

g(n)B(n)(0)
xn

n!
=
∞∑
n=0

g(n)(0)

n!
αn(x, 1, B(x), x), (2.7)

where αn(x, 1, B(x), x) is the generalized Eulerian fraction defined by
(1.12).
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Proof. By setting A(t) = 1 and g(t) = t into transformation-expansion
formulas (2.1) and (2.2), we obtain formally p`(x) = B(`)(0)x`/`!. Thus,
the modified formulas (2.1) and (2.2) are respectively (2.6) and (2.7).

Example 2.1 Setting respectively B(t) = (1 − t)−m−1 (t 6= 1) and
B(t) = (1 + t)m (t 6= −1) into (2.6) and (2.7) yield the transformation-
expansion formulas

∞∑
k=0

(
m+ k

k

)
f(k)xk =

∞∑
k=0

(
m+ k

k

)
xk

(1− x)m+k+1
∆kf(0) (2.8)

∞∑
k=0

(
m+ k

k

)
h(k)xk =

∞∑
k=0

αk(x, 1, (1− x)−m−1, x)

k!
Dkh(0)(2.9)

and

∞∑
k=0

(
m

k

)
f(k)xk =

∞∑
k=0

(
m

k

)
xk

(1 + x)k−m
∆kf(0) (2.10)

∞∑
k=0

(
m

k

)
h(k)xk =

∞∑
k=0

αk(x, 1, (1 + x)m, x)

k!
Dkh(0), (2.11)

respectively, where αk(x, 1, (1− x)−m−1, x) and αk(x, 1, (1 + x)m, x) are
defined in (1.14) and (1.13), respectively.

By substituting m = 0 in formulas (2.8) and (2.9) or applying trans-
form x 7→ −x and staking m = −1 in formulas (2.10) and (2.11), we
obtain

∞∑
k=0

f(k)xk =
∞∑
k=0

xk

(1− x)k+1
∆kf(0) (2.12)

∞∑
k=0

h(k)xk =
∞∑
k=0

αk(x)

k!
Dkh(0), (2.13)

where αk(x) is defined by (1.8) and (1.9). (2.12) and (2.13) were shown
as in [4]. And (2.12) is an extension of the following well-known Euler
series transform that can be found by setting x = −1 into (2.12):
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∞∑
n=0

(−1)nf(n) =
∞∑
n=0

(−1)n

2n+1
∆nf(0).

By applying operator Em and multiplying xm on the both sides of
formula (2.8), we obtain its alternative form as follows:

∞∑
k=m

(
k

m

)
f(k)xk =

∞∑
k=0

(
m+ k

m

)
xk+m

(1− x)m+k+1
∆kf(m) (2.14)

Example 2.2 Let λ and θ be any real numbers. The generalized
falling factorial (t+ λ|θ)p is usually defined by

(t+ λ|θ)p = Πp−1
j=0(t+ λ− jθ), (p ≥ 1), (t+ λ|θ)0 = 1.

It is known that Howard’s degenerate weighted Stirling numbers (cf.
[8]) may be defined by the finite differences of (t+ λ|θ)p at t = 0:

S(p, k, λ|θ) :=
1

k!

[
∆k(t+ λ|θ)p

]
t=0

.

Then, using (2.14), (2.8), and (2.10) with f(t) = (t+ λ|θ)p, we get

∞∑
k=m

(
k

m

)
(k + λ|θ)pxk =

p∑
k=0

(
m+ k

k

)
k!S(p, k, λ|θ)xk+m

(1− x)m+k+1
,(2.15)

∞∑
k=0

(
m+ k

k

)
(k + λ|θ)pxk =

p∑
k=0

(
m+ k

k

)
k!S(p, k, λ|θ)xk

(1− x)m+k+1
,(2.16)

∞∑
k=0

(
m

k

)
(k + λ|θ)pxk =

p∑
k=0

(
m

k

)
k!S(p, k, λ|θ)xk

(1 + x)k−m
. (2.17)

The particular case of (2.17) with x = 1, namely,

m∑
k=0

(
m

k

)
(k + λ|θ)p =

p∑
k=0

(
m

k

)
2m−kk!S(p, k, λ|θ),

was given in formula (35) of [10], and the particular case of (2.16) with
m = 0 was considered in [9]. It is also obvious that the classical Euler’s
summation formula for the arithmetic-geometric series (cf. for example,
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Lemma 2.7 in [3]) is implied by (2.16) with λ = θ = 0 and m = 0, or by
(2.17) with λ = θ = 0, m = −1, x 7→ −x.

Some other series transformation-expansion formulas can be con-
structed formally from the above formulas by using integration or dif-
ferentiation. For instance, taking the integral on the bother sides of
(2.12) we obtain

∞∑
k=1

f(k)xk

k
= −f(0) ln(1− x) +

∞∑
k=1

1

k

(
x

1− x

)k
∆kf(0), (2.18)

which can also be considered as a special case of (2.6) for B(t) = − ln(1−
t).

Using the substituting rule t 7→ D into (1.6) and applying the result-
ing operator to an infinitely differentiable function f with the similar
argument shown in Theorem 2.1, we have

A(D)B(xg(D))f(t)|t=0 =
∞∑
n=0

pn(x)f (n)(0). (2.19)

We now specify A, B and g in (2.19) to establish the following corol-
lary.

Corollary 2.4 If (A(t), B(t), g(t)) = (t/(et−1), et, t), (2/(et+1), et, t),
(t/(ln(t+ 1)), et, ln(t+ 1)), then from (2.19) we have

Df(x+ y) =
∞∑
n=0

φn(x)Dn∆f(y) (2.20)

∞∑
n=0

(
−1

2

)n
∆nf(x) =

∞∑
n=0

En(x)Dnf(0) (2.21)

∆f(x+ y) =
∞∑
n=0

ψn(x)∆nDf(y), (2.22)

where φ(x) and ψ(x) are Bernoulli polynomials of the first and second
kind, respectively, and En(x) are Euler polynomials.

Proof. If (A(t), B(t), g(t)) = (t/(et−1), et, t), (2/(et+1), et, t), (t/(ln(t+
1)), et, ln(t + 1)), then the corresponding Sheffer-type polynomials are
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pn(x) = φn(x), En(x), and ψn(x), respectively (cf. [8, pp. 250, 309,
279]), and the corresponding operators on the left-hand side of (2.19)
for the different (A(t), B(t), g(t)) become respectively (DexD/(eD−1) =
DEx/∆,

2exD

eD + 1
=

2Ex

∆ + 2
=
∞∑
n=0

(−1)n
(

∆

2

)n
,

and ∆(∆ + 1)x/(ln(∆ + 1)) = ∆Ex/D. Hence, the proof of the theorem
is complete.

The results in Corollary 2.4 were given in [7] by using different treat-
ment for each individual formula while our method described here can
be considered as a uniform approach, which can be used to find more
transformation and expansion formulas.

It is obvious that for x = 0, formulas (2.20)-(2.22) are specified as

Df(y) =
∞∑
n=0

B
(1)
n

n!
Dn∆f(y) (2.23)

∞∑
n=0

(
−1

2

)n
∆nf(0) =

∞∑
n=0

enD
nf(0) (2.24)

∆f(y) =
∞∑
n=0

bn∆nDf(y), (2.25)

where B
(1)
n = n!φn(0) is the first order generalized Bernoulli number,

and en = En(0), and bn = ψn(0).

3 Convergence of the series transformation-

expansions

As may be conceived, various formulas displayed in the list in Section 2
may be employed to construct some summation formulas with estimable
remainders (cf. the proof of Theorem 3.3 below). In what follows con-
vergence problems related to the series expansions in Section 2 will be
investigated.
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We now establish convergence conditions for the series expansions in
(2.6) and (2.7). Suppose that {f(k)} and {h(k)} are bounded sequences
(say |f(k)| < M and |h(k)| < M for all k), and that g(z) is analytic for
|z| < ρ. Then it is follows that the left-hand sides of (2.6) and (2.7) as
well as the right-hand sides of (2.6) and (2.7) are absolutely convergent
series for |x| < ρ. Hence, we have the following convergence theorem.

Theorem 3.1 If {f(k)} and {g(k)} are bounded sequences, and that
B(z) is analytic for |z| < ρ for some positive real number ρ, then the
series expansions in (2.6) and (2.7) converge absolutely for all |x| < ρ.

The convergence on the general case where {f(k)} is not bounded
presents some complicated situation. The next theorem gives a discus-
sion for the series transformation-expansion formulas shown in (2.12),
(2.13), and (2.18), and general way may be developed through it, which
is left for the interested reader to consider.

Theorem 3.2 Let {f(k)} be a sequence of numbers (in R or C), and

denote θ := limk→∞ |f(k)|1/k. Then the series expansions in (2.12),
(2.13), and (2.18) are convergent for all nonzero x satisfying |x|θ < 1.

Proof. Substituting the expression of αk(x) defined by (1.10) into (2.12)

and noting j!
∑∞

k=j S(k, j)D
k

k!
= (eD − 1)j = ∆j (cf. [4]) yields (2.13).

More precisely,

∞∑
k=0

g(k)xk =
∞∑
k=0

αk(x)

k!
Dkg(0)

=
∞∑
k=0

k∑
j=0

j!

k!
S(k, j)

xj

(1− x)j+1
Dkg(0)

=
∞∑
j=0

xj

(1− x)j+1

(
j!
∞∑
k=j

S(k, j)
Dk

k!

)
g(0)

=
∞∑
j=0

xj

(1− x)j+1
∆jg(0).

Hence, we only need to show the convergence of expansions in (2.12)
and (2.18).
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In accordance with Cauchy’s root test, the convergence of the series
on the left-hand side of (2.12) and (2.18) is obvious because of the
condition |x|θ < 1. To prove the convergence of the series expansion on
the right-hand side of (2.12), we choose ρ > θ such that θ|x| < ρ|x| < 1.

Thus for large k we have |f(k)|
1
k < ρ. Consequently,

∣∣∆kf(0)
∣∣ 1k ≤

(
k∑
j=0

(
k

j

)
|f(j)|

) 1
k

< (2)
1
k ρ→ ρ

as k →∞. Therefore, for every x ∈ (−1/θ, 0)

lim
k→∞

∣∣∣∣∣1k
(

x

1− x

)k
∆kf(0)

∣∣∣∣∣
1
k

= lim
k→∞

∣∣∣∣ x

1− x

∣∣∣∣ ∣∣∆kf(0)
∣∣ 1k ≤ ρ

∣∣∣∣ x

1− x

∣∣∣∣ < ρ|x| < 1.

Hence, from the root test, the series expansion on the right-hand side
of (2.18) is convergent. Similarly, the expansion on the right-hand side
of (2.12) converges as well. This completes the proof of the theorem.

To extend the convergence intervals of the series expansions in (2.12)
and (2.13), we need more precise estimation as follows.

Theorem 3.3 Let {f(k)} be a sequence of numbers (in R or C), and
let θ = lim

k→∞
|f(k)|1/k. Then for any given x with x 6= 0 we have the

convergent expressions (2.12) and (2.13) provided that |x|θ < 1.

Proof. As we mentioned in the proof of Theorem 3.2, it is sufficient
to show the convergence of (2.12). For this purpose, we now find a
remainder of the expansion of (2.12) as follows. Formally, we have
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(1− xE)−1 = (1− x− x∆)−1

= (1− x)−1

(
1− x

1− x
∆

)−1

= (1− x)−1

{
n−1∑
`=0

(
x

1− x

)`
∆` +

(
x

1−x∆
)n

1−
(

x
1−x∆

)}

=
n−1∑
`=0

x`

(1− x)`+1
∆` +

(
x

1− x

)n
∆n

1− xE

=
n−1∑
`=0

x`

(1− x)`+1
∆` +

(
x

1− x

)n ∞∑
`=0

x`E`∆n.

Since E`∆nf(0) = ∆nE`f(0) = ∆nf(`), applying operator (1 − xE)−1

and the rightmost operator shown above to f(t)|t=0, respectively, yields

(1− xE)−1f(t)
∣∣
t=0

=
∞∑
k=0

f(k)xk

=
n−1∑
k=0

xk

(1− x)k+1
∆kf(0) +

xn

(1− x)n

∞∑
`=0

x`∆nf(`). (3.1)

Since |x|θ < 1 (x 6= 0), the convergence of the series expansion on
the left-hand side of (2.12) or (3.1) is obtain. To prove the convergence
of the right-hand side of (3.1), i.e., the remainder form of (2.12), it is
sufficient to show that

∑∞
`=0 x

`∆nf(`) is absolutely convergent. Choose
ρ > θ such that

θ|x| < ρ|x| < 1.

Thus, for large k we have |f(k)|1/k < ρ, i.e., |f(k)| < ρk. Consequently
we have, for large `

|∆nf(`)|1/` ≤

(
n∑
j=0

(
n

j

)
|f(`+ j)|

)1/`

≤

(
n∑
j=0

(
n

j

)
ρ`+j

)1/`

= ρ(1 + ρ)n/` → ρ
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as `→∞. Thus

lim
`→∞

∣∣x`∆nf(`)
∣∣1/` ≤ ρ|x| < 1,

so that the series on the right-hand side of (3.1) or (2.12) is also con-
vergent absolutely under the given conditions.

A sequence {an} is called a null sequence if for any given positive
number ε, there exists and integer N such that every n > N implies
|an| < ε. [12] (cf. Theorem 4 in Section 43) pointed out that a linear
combination of {an}, denoted by {a′n =

∑n
k=0 cn,kak}, is also a null

sequence if the coefficient set {cn,k}0≤k≤n (n = 0, 1, 2, . . .) satisfies the
following two conditions:

(i) Every column contains a null sequence, i.e., for fixed k ≥ 0, cn,k →
0 when n→∞.

(ii) There exists a constant K such that the sum |an,0|+ |an,1|+ . . .+
|an,n| < K for every n.

By using this claim of the null sequence, we can have the following
convergence result of the series expansions in (2.12) and (2.13).

Theorem 3.4 Suppose that {f(n)} is a given sequence of numbers (real
or complex) such that

∑∞
n=0 f(n)xn is convergent for every x ∈ Ω with

Ω ∩ (−∞, 0) 6= φ. Then the series expressions on the right-hand sides
of (2.12) and (2.13) converge for every x ∈ Ω ∩ (−∞, 0).

Proof. We write the remainder of expression (3.1) as follows.

Rn :=
xn

(1− x)n

∞∑
`=0

x`∆nf(`)

=
xn

(1− x)n

∞∑
`=0

n∑
j=0

(−1)n−jx`
(
n

j

)
f(j + `)

=
(−x)n

(1− x)n

n∑
j=0

(
n

j

) ∞∑
`=0

(−1)jx`
(
n

j

)
f(j + `)

=
(−x)n

(1− x)n

n∑
j=0

(−x)−j
(
n

j

) ∞∑
`=j

x`f(`) =
(−x)n

(1− x)n

n∑
j=0

(−x)−j
(
n

j

)
xj,
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where xj =
∑∞

`=j x
`f(`) (0 ≤ j ≤ n). Since

∑∞
`=0 x

`f(`) converges,
xj is the term of a null sequence, applying the result on the linear
combination of a null sequence shown above, we find the coefficients of
xj in the linear combination of the rightmost sum,

cn,j :=
(−x)n

(1− x)n
(−x)−j

(
n

j

)
satisfy the following two conditions: (1) If j is fixed, we have cn,j → 0
as n→∞ because

|cn,j| =
|x|n−j

(1− x)n

(
n

j

)
<

nj

(1− x)n

and 1/(1− x) < 1 for every x ∈ Ω ∩ [−1, 0); and

|an,j| =
|x|n−j

(1− x)n

(
n

j

)
<

(
|x|

1− x

)n
nj

and |x/(1 − x)| < 1 for every x ∈ Ω ∩ (−∞,−1). (2) For every n and
for every x ∈ Ω ∩ (−∞, 0) we have

n∑
j=0

|an,j| =
1

(1− x)n

n∑
j=0

(−x)n−j
(
n

j

)
= 1.

Therefore, Theorem 4 in Section 43 of [12] shows that Rn is also the
term of a null sequence, so the series on the right-hand side of (2.12)
converges for every x ∈ Ω ∩ (−∞, 0). In addition, the convergence of
the right-hand series expansion of (2.13) is followed.

We now discuss the convergence of the series expansions in (2.20)-
(2.22). Actually, we may sort the series transformation-expansion for-
mulas associated with (A(t), B(t), t) into two classes. The first class
includes only either the sum

∑
βkD

kf or the sum
∑
γkE

kf in the for-
mulas such as (2.20) and (2.22). The second class includes the sums∑
βkD

kf and/or
∑
γkE

kf on both sides of the transformation-expansion
formulas like (2.21). We may establish the following convergence theo-
rem.

Theorem 3.5 For the first class series expansions associated with
∑
βk

Dkf (or
∑
γkE

kf) defined above, their absolute convergence are ensured
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if limk→∞
∣∣Dkf

∣∣1/k < 1 (or limk→∞
∣∣Ekf

∣∣1/k < 1) and |βk| ≤ 1 (or
|γk| ≤ 1).

The second class series expansions defined above absolutely converge

if limk→∞
∣∣Dkf

∣∣1/k < 1, |βk| ≤ 1, and |γk| ≤ (1/(e− 1))k.

Proof. The first half of the theorem is easy to be verified by using the
root test.

To prove the second half, we need the following statement: If f ∈
C∞, then limk→∞

∣∣Dkf(y)
∣∣1/k < a, a positive real number, implies

lim
k→∞

∣∣∆kf(y)
∣∣1/k < ea − 1. (3.2)

In fact, if we denote limn→∞ |Dnf(y)|1/n = θ, then there exists a number

γ such that θ < γ < a. Thus for large enough n we have |Dnf(y)|1/n < γ
or |Dnf(y)| < γn.

Noting S(n,m) ≥ 0 and |Dnf(y)| < γn, we obtain

∣∣∆kf(y)
∣∣ =

∣∣∣∣∣∑
n≥k

k!

n!
S(n, k)Dnf(y)

∣∣∣∣∣ ≤∑
n≥k

k!

n!
S(n, k) |Dnf(y)|

≤
∑
n≥k

k!

n!
S(n, k)γn = (eγ − 1)k < (ea − 1)k.

Here the rightmost equality is from Jordan [11] (see p. 176).

Therefore, limk→∞
∣∣Dkf

∣∣1/k < 1 implies that limk→∞
∣∣∆kf(y)

∣∣1/k <
e − 1. Those two inequalities and the conditions for the coefficients
{βk} and {γk} confirm the absolute convergence of the second class
series expansions with the root test.

As a corollary of Theorem 3.5, we now establish the convergence
results of the series expansions in (2.20)-(2.22).

Corollary 3.6 For given f ∈ C∞ and x, y ∈ R, the absolute conver-
gence of the series expansion (2.20) is ensured by the condition

lim
k→∞

∣∣∆Dkf(y)
∣∣1/k < 1. (3.3)

Similarly, the absolute convergence of the series expansion (2.21)
and (2.22) are ensured by the conditions
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lim
k→∞

∣∣∆kDf(y)
∣∣1/k < 1 (3.4)

and

lim
k→∞

∣∣Dkf(y)
∣∣1/k < 1, (3.5)

respectively.

Proof. From Theorem 3.5, it is sufficient to show that

lim
k→∞
|φk(x)|1/k ≤ 1, (3.6)

lim
k→∞
|Ek(x)|1/k ≤ 1, (3.7)

and

lim
k→∞
|ψk(x)|1/k ≤ 1, (3.8)

which will be proved below from the basic properties of φk(x), Ek(x),
and ψk(x) shown as in Jordan [11].

Write the Bernoulli polynomials of the first kind, φk(x), as (cf. Jor-
dan [11], P321)

φk(x) =
k∑
j=0

xk−j

(k − j)!
αj,

where αj = B
(1)
j /j!, and B

(1)
j are ordinary Bernoulli numbers. Note that

α0 = 1, α1 = −1/2, α2m+1 = 0 (m ∈ N) and (cf. [11] p. 245)

|α2m| ≤
1

12(2π)2m−2
, (m = 0, 1, 2, . . .).

Thus for k ≥ 2

|φk(x)| ≤ |x|k

k!
+
|x|k−1

2(k − 1)!
+

k∑
j=2

(
1

12(2π)j−2

)
|xk−j|

(k − j)!

<

k∑
j=0

|x|j

j!
≤ e|x|.
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It follows that |φk(x)|1/k < exp(|x|/k) → 1 as k → ∞, which implies
(3.6).

Secondly, note that Euler polynomial Ek(x) can be written in the
form

Ek(x) =
k∑
j=0

ej
xk−j

(k − j)!
, (e0 = 1), (3.9)

where ej = Ej(0), e2m = 0 (m = 1, 2, . . .), and e2m−1 satisfies the
inequality (cf. [11], p. 302)

|e2m−1| <
2

3π2m−2
< 1 (m = 1, 2, . . .). (3.10)

Thus we have the estimation

|Ek(x)| ≤ |x|
k

k!
+

k∑
j=1

|ej|
|x|k−j

(k − j)!
≤ |x|

k

k!
+

k∑
j=1

|x|k−j

(k − j)!
< e|x|.

Consequently we get

lim
k→∞
|Ek(x)|1/k ≤ lim

k→∞

(
e|x|
)1/k

= 1.

Hence (3.7) is verified.
Finally, from [11], p. 268, we have an integral representation of

ψk(x), the Bernoulli polynomials of the second kind, namely

ψk(x) =

∫ 1

0

(
x+ t

k

)
dt. (3.11)

For t ∈ [0, 1] and for large k we have the estimation

∣∣∣∣(x+ t

k

)∣∣∣∣ =
|(x+ t)k|

k!
=
|(k − x− t− 1)k|

k!
= o

(
k + [|x|])k

k!

)
= o

(
k[|x|]) .

This means that there is a constant M > 0 such that

max
0≤t≤1

∣∣∣∣(x+ t

k

)∣∣∣∣ < Mk[|x|].

Thus it follows that
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lim
k→∞
|ψk(x)|1/k ≤ lim

k→∞

(∫ 1

0

∣∣∣∣(x+ t

k

)∣∣∣∣ dt)1/k

≤ lim
k→∞

(
Mk[|x|])1/k = 1.

This is a verification of (3.8), and corollary is proved.

Remark 3.1 The convergence conditions given in Theorem 3.2 can be
improved by restricting f and using similar techniques shown in [4].

Acknowledgments. The author would like to thank the editor and
the referee for their valuable suggestions and help.

References

References

[1] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.

[2] G. P. Egorychev, Integral Representation and the Computation of
Combinatorial Sums, Translation of Math. Monographs, Vol. 59,
AMS, 1984.

[3] H. W. Gould and J. Wetweerapong, Evaluation of some classes
of binomial identities and two new sets of polynomials, Indian J.
Math. 41(1999), No. 2, 159-190.

[4] T. X. He, L. C. Hsu, P. J.-S. Shiue, and D. C. Torney, A symbolic
operator approach to several summation formulas for power series,
J. Comp. Appl. Math. 177(2005), 17-33.

[5] T. X. He, L. C. Hsu, and P. J.-S. Shiue, A symbolic operator ap-
proach to several summation formulas for power series II, 2007.

[6] T. X. He, L. C. Hsu, and P. J.-S. Shiue, The Sheffer group and the
Riordan group, Discrete Appl. Math. 155( 2007), 1895-1909.

[7] T. X. He, L. C. Hsu, and P. J.-S. Shiue, Symbolization of gener-
ating functions, an application of Mullin-Rota’s theory of binomial
enumeration, Comp. & Math. with Applications 54 (2007), 664-678.



24 T. X. He

[8] F. T. Howard, Degenerate weighted Stirling numbers, Discrete
Math. 57(1985), No. 1, 45-58.

[9] L. C. Hsu and P. J.-S. Shiue, Cycle indicators and special functions,
Annals of Combinatorics 5(2001), 179-196.

[10] L. C. Hsu and P. J.-S. Shiue, On certain summation problems
and generalizations of Eulerian polynomials and numbers, Discrete
Mathematics 204(1999), 237-247.

[11] Ch. Jordan, Calculus of Finite Differences, Chelsea, New York,
1965.

[12] K. Knopp, Theory and Application of Infinite Series, Hafner Pub-
lishing Comp., New York, 1971.
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