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Abstract

Here expounded is a kind of symbolic operator method by making
use of the defined Sheffer-type polynomial sequences and their
generalization, which can be used to construct many power series
transformation and expansion formulas. The convergence of the
expansions are also discussed.
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1 Introduction

The closed form representation of series has been studied extensively.
See, for examples, Comtet [1], Ch. Jordan [11], Egorechev [2], Roman-
Rota [15], Sofo [17], Wilf [18], Petkovsek-Wilf-Zeilberger’s book [13],
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“A=B,” and the author’s recent work with Hsu, Shiue, and Toney [4].
This paper is a sequel to the work [4] and the paper with Hsu and
Shiue [5], in which the main results are special cases of Theorem 2.1
shown below. The object of this paper is to make use of the following
defined generalized Sheffer-type polynomial sequences and the classical
operators A (difference), E (shift), and D (derivative) to construct a
method for the summation of power series expansions that appears to
have a certain wide scope of applications.

As an important tool using in the Calculus of Finite Differences and
in Combinatorial Analysis, the operators E, A, D are defined by the
following relations.

Ef(t)=ft+1), Af(t)=ft+1)—f@), Df(t)= %f(t)-

Powers of these operators are defined in the usual way. In particular
for any real numbers x, one may define E*f(t) = f(t + z). Also, the
number 1 may be used as an identity operator, viz. 1f(t) = f(¢). Then
it is easy to verify that these operators satisfy the formal relations (cf.

[11])

E=1+A=¢e? A=E-1=¢”—-1, D=log(l+A).

Note that E*f(0) = [Ekf(t)}tzo = f(k), so that (zE)*f(0) =
f(k)z*. This means that (zE)* with » as a parameter may be used

to generate a general term of the series Y~ f(k)z".

Definition 1.1 Let A(t), B(t), and g(t) be any formal power series
over the real number field R or complex number field C with A(0) = 1,

B(0) =1, g(0) = 0, and ¢'(0) # 0. Then the polynomials p,(x) (n =
0,1,2,--- ) defined by the generating function (GF)

At B(xg(t) = Y pal2)t" (1.1)

n>0
are called generalized Sheffer-type polynomials associated with (A(t), B(t),
g(t)). Accordingly, p,(D) with D = d/dt is called Sheffer-type differ-
ential operator of degree n associated with A(t), B(t), and g(t). In
particular, po(D) = I is the identity operator due to po(z) = 1.
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In Definition 1.1, if B(t) = €, then the defined {p,(x)} is a classical
Sheffer-type polynomial sequence associated with (A(t), g(t)) = (A(t),
exp(t), g(t)). As examples, classical Sheffer-type polynomials include
Bernoulli polynomials, Euler polynomials, and Laguerre polynomials
generalized by (A(t),g(t)) = (¢t/(e" — 1),t), (2/(e" + 1),t), and ((1 —
t)7P,t/(t — 1)) (p > 0), respectively.

We call the infinite matrix [dy, 1], -, With real entries or complex
entries a generalized Riordan matrix (The originally defined Riordan
matrices need ¢’(0) = 1) if its kth column satisfies

D dust™ = At)(g(1))"; (1.2)

n>0

that is,

dn . = [t"]A(1)(9())",

the nth term of the expansion of A(t)(g(t))*. The Riordan matrix is
denoted by (A(t), g(t)) or [d, x| described in (1.2). Then the generalized
Sheffer-type polynomial sequence associated with (A(t), B(t), g(t)) is the
result of the following matrix multiplication

1
bll'

If [dnx = [t"JA(t)(9(t))*] and [ca, = [t"]C(¢)(f(2))*] are two Riordan
matrices, and {p,(z)} and {¢,(z)} are two corresponding generalized
Sheffer-type polynomial sequences associated with (A(t), B(t), g(t)) and
(C(t), B(t), f(t)), respectively, then we can define a umbral composi-
tion (cf. its special case of B(t) = €' is given in [14] and [15]) between
{pn(z)} and {g,(x)}, denoted by {p,(x)}#{¢.(z)}. The resulting se-
quence is the generalized Sheffer-type polynomial sequence associated
with (A(¢)C(g(t)), B(t), f(g(t)). Clearly, the sequence {p,(z)}#{q.()}
is the result of the following matrix multiplication
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A power series B(t) = 1+ Y ;7 byt" is said to be regular if by, # 0 for
all £ > 1. Under the composition operator #, it can be proved that all
generalized Sheffer-type polynomial sequences associated with a regu-
lar B(t) form a group, called the generalized Sheffer group associated
with B(t). Its verification is analogous to the classical Sheffer group
associated with e’ established in [14] (see also in [6]).

In [6], the author established the isomorphism between the classic
Sheffer group and the Riordan group based on the following bijective

mapping: 0 : [d, x| — {pn(z)} or 0 : (A(t),g(t)) — {pn(2)}, ie.,
O([dn klnzk>0) := Zdnﬂj/ﬂ = [dn klnzk=0X, (1.3)

for fixed n, where X = (1,z,22/2!,...)T, or equivalently,

O((A(t), (1)) = [t A(t)e™ (1.4)

It is clear that (1,t¢), the identity Riordan array, maps to the identity
Sheffer-type polynomial sequence {p,(z) = 2"/(n!)},>0. From the defi-
nitions (1.2) we immediately know that

(@) = [("JA@D)e™ D if and only if dyx = [t"JA(1) (9(t))".  (1.5)

Therefore, the Riordan matrices from the sequences shown in the On-
Line Encyclopedia of Integer Sequences (OLEIS) also present the coefhi-
cients of the corresponding classic Sheffer-type polynomials. For exam-
ple, sequence A129652

1,1,1,3,2,1,13,9,3,1,73,52,18,4, 1, . ..

presents both Riordan array (e*/*~*) z) and the corresponding Sheffer-
type polynomial sequence:
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po(z) =1

p(z)=14+z

po(x) = 3+ 22 + 2%/2!

p3(x) = 13+ 92 + 322 /2! + 23/3! . ..

The row sums of Riordan array (e*/(=), x), i.e., the polynomial values

at x = 1, are A052844, while diagonal sums of the array are A129653
(cf. [16]). Other examples including A000262, A084358, A133289, etc.
can be also found in [16].

Suppose that ®(¢) is an analytic function of ¢ or a formal power
series in t, say

d(t) = icktk, cr = [tF] (1), (1.6)

where ¢, can be real or complex numbers. Then, formally we have a
sum of general form

O(E)f(0) = cf (k)" (17)

In certain cases, ®(a + () or ®(af) can be decomposed into some-
thing having a power series in 3 as a part. Accordingly the operator
O(zE) = ®(x + 2A) = &(xeP) can be expressed as some power series
involving operators A¥ or D*’s. Then it may be possible to compute
the right-hand side of (1.7) by means of operator-series in A¥ or D¥’s.
This idea could be readily applied to various elementary functions ®(¢).
Therefore, we can obtain various transformation formulas as well as
series expansion formulas for the series of the form (1.7).

It is well-known that the Eulerian fraction is a powerful tool to study
the Eulerian polynomial, Euler function and its generalization, Jordan
function (cf. [1]).

The classical Eulerian fraction can be expressed in the form

A (7)

(z # 1), (1.8)

am(x) =

where A,,(z) is the mth degree Eulerian polynomial of the form
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Am(x) = 41S(m, j)a? (1 — x)" (1.9)

=0
S(m, j) being Stirling numbers of the second kind, i.e., jlS(m,j) =
[A7t™],_,, which is also denoted by { ;n } Evidently a,,(z) can be
written in the form (cf. [4])

| J
Z]S””x. (1.10)

(1 —x)itt

In order to express some new formulas for certain general types of
power series, we need to introduce the following extension of Euler frac-
tion, denoted by «,(z, A(z), B(x), g(x)), using the generalized Sheffer-
type polynomials associated with analytic functions or power series A(t),
B(t), and ¢(t), which satisfy conditions in Definition 1.1.

(i, A(x), B —3% ( ) ng), (L)

Jj=0 (=j

where py(z) is the generalized Sheffer-type polynomial of degree ¢ defined
in Definition 1.1. In particular, if A(z) =1 and g(x) = z, then p,(z) =
B®W(0)x!/¢!, and the generalized Euler fraction is hence

op(x,1, B(x ZS n,j)B (1.12)

because

Z:J!(j>pe(w) = g:j! (f) B(Z)(())%f — BO)(g).

Obviously, a,,(x) defined by (1.8) can be presented as

am(z) = Ap (2,1, (1 —2)7 1 2).
From (1.11), two kinds of generalized Eulerian fractions in terms of
A(z) =1, g(z) =z, B(z) = (1 +2)* and B(z) = (1 —x)7*"!, respec-
tively, with real number a as a parameter, can be introduced respec-
tively, namely
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"L (a\ j'S(n, j)a?
A 1, (1 “x)= T 1.1
n(l’, 7( +l’) >$) prs <]> (14_1.)]7(1 ( 3)
for z #£ —1, and
a1y N\ (@t G 41S(n, )7
An('r? 17 (1 I) 71:) - g ( ] ) (1 _ x)a-i-j-f—l (]‘]‘4)

for x # 1. These two generalized Eulerian fractions were given in [5].
Another extension of the classical Eulerian fraction is presented in [10].

Two major transformation and expansion formulas and their appli-
cations will be displayed in next section, and the convergence of the
series in the formulas is presented in 3.

2 Series transformation-expansion formu-
las

Theorem 2.1 Let {f(k)} be a sequence of numbers (in R or C), and let
h(t) be infinitely differentiable. Assume A(t), B(t), and g(t) are analytic
functions in a disk centered at the origin or power series defined as in
Definition 1.1 and {p,(z)} is the generalized Sheffer-type polynomial
sequence associated with A(x), B(z), and g(z), we have formally

S Fnpale) = S A"F(0) (Z (ﬁ)mw) 1)

l=n
oo

Zh(n)pn(w)= %h(n)(O)an(fB,A(iv),B(:v%g(fv)), (2.2)

n=0

where S(n, j) is the Stirling numbers of the second kind, and o, (z, A(x),
B(z),9(z)) = >0 Z;ijj!(ﬁ)pg(m)S(n,j) is the generalized Eulerian
fraction defined as in (1.11).

In particular, if g(t) = t, then the transformation and expansion
formulas (2.1) becomes to
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n=0 =
_ z; An;:!(o) <Zz:; (ZL) A(n—f)(l)B(Z)(:p)ﬂ) : (2.3)

Proof. Applying the operator A(E)B(zg(E)) to f(t) at t =0, where F
is the shift operator, we obtain the left-hand side of (2.1).
On the other hand, we have

A(E)B(zg(E)) f(t)],—g = AL+ A)B(zg(1 + A)) f(t)],=

gmx) (1+AYF()],_ ZZ( ) ) A" £(0),

/=0 n=0

which implies the double sum on the right-hand side of (2.1).
Similarly, for the infinitely differentiable function h(t), we can present

A(E)B(zg(E))h(t)|,—o = Ale D)B(xg( PPh(t)] =g

= 3 @) (1) = Zm W (o)
_ z;(;pw) "©

By applying (2.1) to the internal sum of the rightmost side of the above
equation for f(t) = t* and noting S(k,j) = (A/t*|,_) /j!, we obtain
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This completes the proof of the theorem.
If g(t) = t, then we have formally p,(z) = >, A®=9(0)BO(0)z*/((n—
0)11) and

A(E)B(zE ) ()0
= A(1+A) x+3A) (1)) =g

" A=0(1) BO (s
- ( A Bﬁ”m)z) FOlico-

=0

which can be written as the double sum on the right-hand side of (2.3).
]

Remark 3.1 When f(¢) and h(t) are polynomials, the right-hand sides
of (2.1) and (2.2) are finite sums, which can be considered as the closed
forms of the corresponding left-hand side series. For this reason, we
call formulas (2.1) and (2.2) the series transformation and expansion
(or transformation-expansion) formulas. Thus, for the rth degree poly-
nomial ¢(t), from (2.1) and (2.2) we have two expansion formulas,

Z ¢(n)pn(z) = A"$(0) (Z (f;) W)) (24)

n=0 {=n
r

Z¢ Mpale) = 30 6" O)a (i, A(r), B(x) 9()), (25)

n=0

where the right-hand sides can be considered as the GF’s of {¢(n)p,(z)}.

Corollary 2.2 Let {a,(z, A(x), B(x),g(z))} be the generalized Eule-
rian fraction sequence defined by (1.11). Then the exponential generat-
ing function of the sequence is A(e')B(xg(e')). In particular, the expo-
nential generating function of sequence {a,(z,1, B(x),x)} is B(wze').

Proof. The exponential GF of {«a,(z, A(x), B(x), g(x))} can be written
as
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Z an(x, A(x), B(x), g(x))tn

n!

- 23 sy ()

n=0 j=0

- nf; <j:o 7 Nu”|u:0; (j.)m(@) i—n,

Applying formula (2.1) for f(j) = j” into the double sum in the above
parentheses yields

0o i
0o 00 . m
-y (3 W)) v

= Zpg Je' = A(e") B(zg(c")).

Here, the last step is due to Definition 1.1. [ ]
We now give two special cases of Theorem 2.1.

Corollary 2.3 Let {f(k)} be a sequence of numbers (in R or C), and
let B(t) and g(t) be infinitely differentiable on [0,00). Then we have
formally

S H) B0 = 3 A 0B (1) (2.6
i " O g™
Zg(n)B(”)(O)F = g nl(o)ozn(x, 1, B(x),x), (2.7)

where o, (x,1, B(z),x) is the generalized Fulerian fraction defined by
(1.12).
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Proof. By setting A(t) = 1 and ¢(t) =t into transformation-expansion
formulas (2.1) and (2.2), we obtain formally p,(x) = B (0)z*/¢!. Thus,
the modified formulas (2.1) and (2.2) are respectively (2.6) and (2.7). m

Example 2.1 Setting respectively B(t) = (1 —¢)"™"! (¢ # 1) and

B(t) = (1+1t)™ (t # —1) into (2.6) and (2.7) yield the transformation-
expansion formulas

> (m;— k)f (k=3 (mz k) ﬁﬁ/ £(0) (2.8)

3 (m;— /f)h(k)xk -y (2,1, (1 ;!x)‘m— ’x)D"“h(O)(Q.Q)
and
kz_% (Z)f(k)xk - ; (Z) MWMJ”(O) (2.10)
2 (ZL) (CEEDIESS (? %) o), (21)
k=0 — !

respectively, where ag(z,1, (1 —x)"™ ! 2) and ai(z, 1, (1 +2)™, z) are
defined in (1.14) and (1.13), respectively.
By substituting m = 0 in formulas (2.8) and (2.9) or applying trans-

form z — —z and staking m = —1 in formulas (2.10) and (2.11), we
obtain
Zf(k)x = Z mA f(0) (2.12)
k=0 k=0
> h(k)at =" o D*h(0), (2.13)
k=0 k=0

where () is defined by (1.8) and (1.9). (2.12) and (2.13) were shown
as in [4]. And (2.12) is an extension of the following well-known Euler
series transform that can be found by setting = —1 into (2.12):
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S -1 =3 U0 Ao,

By applying operator K™ and multiplying =™ on the both sides of
formula (2.8), we obtain its alternative form as follows:

k+m

> (B)awe =3 (") a2

k=m k=0

Example 2.2 Let A and 6 be any real numbers. The generalized
falling factorial (¢ + A|#),, is usually defined by

(t+ N0, =I5 (t+ X —340), (p=>1), (E+A0) = 1.

It is known that Howard’s degenerate weighted Stirling numbers (cf.
[8]) may be defined by the finite differences of (¢ + A|), at ¢ = 0:

1
2 [AE+A0),]

Then, using (2.14), (2.8), and (2.10) with f(t) = (t + A|6),, we get

k k\S(p, k, A|)xhtm
( )(k:+/\\0 T —Z( N ) [y [(2.15)
k=

S(p, k,\0) =

Mg

k=m
> (m+k m -+ k\ k'S (p, k, \|0)z*
Z( L )(k’+>\|9 :Z( ) 1 — )m+k+1 (2.16)
k=0 k=0
o] p
m\ k'S (p, k, )\\9

k+ \6) = : 2.1

> () rmat =3 () 554 @17

The particular case of (2.17) with x = 1, namely,

p

i (’:) (k+A0), =" @) 2 RELS (p, b, AJB),

k=0 k=0

was given in formula (35) of [10], and the particular case of (2.16) with
m = 0 was considered in [9]. It is also obvious that the classical Euler’s
summation formula for the arithmetic-geometric series (cf. for example,
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Lemma 2.7 in [3]) is implied by (2.16) with A = 6 = 0 and m = 0, or by
(217) with A=60=0,m= -1, 2z — —x.

Some other series transformation-expansion formulas can be con-
structed formally from the above formulas by using integration or dif-

ferentiation. For instance, taking the integral on the bother sides of
(2.12) we obtain

Zf(@xk:— )In(1 — z) + Z ( )A’“f(o), (2.18)

k=1 k=

which can also be considered as a special case of (2.6) for B(t) = —In(1—

t).
Using the substituting rule ¢t — D into (1.6) and applying the result-
ing operator to an infinitely differentiable function f with the similar

argument shown in Theorem 2.1, we have

A(D)B(xg(D)) f()l= = an : (2.19)

We now specify A, B and g in (2.19) to establish the following corol-
lary.

Corollary 2.4 If (A(t), B(t),g(t)) = (t/(e' —1),¢e',t), (2/(e'+1), €' 1),
(t/(In(t + 1)), €', In(t + 1)), then from (2.19) we have

(z + ) Z dn(2) DA S (y) (2.20)
7; (—%) ZE )D"£(0 (2.21)
(z +y) Z Un(2)AD f (1), (2.22)

where ¢(x) and Y (z) are Bernoulli polynomials of the first and second
kind, respectively, and E,(x) are Euler polynomials.

Proof. It (A(t), B(t),g(t)) = (t/(e'=1), €', 1), (2/(e"+1),¢', 1), (/(In(t+

1)), €', In(t + 1)), then the correspondlng Sheffer-type polynomials are
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Pn(2) = ¢n(x), En(z), and ¢n(z), respectively (¢f. [8, pp. 250, 309,
279]), and the corresponding operators on the left-hand side of (2.19)
for the different (A(t), B(t), g(t)) become respectively (De®? /(eP —1) =
DE"/A,

270 2T & A\"
= — —1 n _
eP+1 A+2 ;( ) ( 2 ) ’
and A(A+1)"/(In(A+1)) = AE*/D. Hence, the proof of the theorem
is complete. [ ]

The results in Corollary 2.4 were given in [7] by using different treat-
ment for each individual formula while our method described here can
be considered as a uniform approach, which can be used to find more
transformation and expansion formulas.

It is obvious that for z = 0, formulas (2.20)-(2.22) are specified as

o0 B(l)
DI =D~ - D"ATW) (2:23)
> (—%) A" £(0 ZenD”f (2.24)
= bA"Df(y), (2.25)

where B the first order generalized Bernoulli number,

= nl¢,(0) is
and e, = F,(0), and b,, = 1,,(0).

3 Convergence of the series transformation-
expansions

As may be conceived, various formulas displayed in the list in Section 2
may be employed to construct some summation formulas with estimable
remainders (c¢f. the proof of Theorem 3.3 below). In what follows con-
vergence problems related to the series expansions in Section 2 will be
investigated.
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We now establish convergence conditions for the series expansions in
(2.6) and (2.7). Suppose that {f(k)} and {h(k)} are bounded sequences
(say |f(k)| < M and |h(k)| < M for all k), and that g(z) is analytic for
|z| < p. Then it is follows that the left-hand sides of (2.6) and (2.7) as
well as the right-hand sides of (2.6) and (2.7) are absolutely convergent
series for |x| < p. Hence, we have the following convergence theorem.

Theorem 3.1 If {f(k)} and {g(k)} are bounded sequences, and that
B(z) is analytic for |z| < p for some positive real number p, then the
series expansions in (2.6) and (2.7) converge absolutely for all |z| < p.

The convergence on the general case where {f(k)} is not bounded
presents some complicated situation. The next theorem gives a discus-
sion for the series transformation-expansion formulas shown in (2.12),
(2.13), and (2.18), and general way may be developed through it, which
is left for the interested reader to consider.

Theorem 3.2 Let {f(k)} be a sequence of numbers (in R or C), and
denote 0 = Timy_.oo | f(K)|"/*. Then the series expansions in (2.12),
(2.13), and (2.18) are convergent for all nonzero x satisfying |x|0 < 1.

Proof. Substituting the expression of a(x) defined by (1.10) into (2.12)
and noting j1 307, S(k, )25 = (e? —1)7 = AJ (cf. [4]) yields (2.13).
More precisely,

S gtk = 3 ) prggo)
k=0 k=0
= S TS = D0
_y (ﬂf}sac J)Dk>9(0)
2=y P

= Zmﬁjg(o)'

J=0

Hence, we only need to show the convergence of expansions in (2.12)
and (2.18).
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In accordance with Cauchy’s root test, the convergence of the series
on the left-hand side of (2.12) and (2.18) is obvious because of the
condition |z|f# < 1. To prove the convergence of the series expansion on
the right-hand side of (2.12), we choose p > 6 such that 0|x| < p|z| < 1.

Thus for large k£ we have | f (k;)|% < p. Consequently,

N L 3 1
AR < (Z () |f(j)|> <@tp—p
=0
as k — oo. Therefore, for every x € (—1/6,0)

1
k

1 T k
lim |— AF (0
kggok(l_x> (0)
- x 1 x
= 1 AFFO)F < p|—— 1.
kggo'l_x! f(0)] _p‘l_x‘<plx!<

Hence, from the root test, the series expansion on the right-hand side
of (2.18) is convergent. Similarly, the expansion on the right-hand side
of (2.12) converges as well. This completes the proof of the theorem. m

To extend the convergence intervals of the series expansions in (2.12)
and (2.13), we need more precise estimation as follows.

Theorem 3.3 Let {f(k)} be a sequence of numbers (in R or C), and
let 6 = klim |f(E)[M*. Then for any given x with x # 0 we have the

convergent expressions (2.12) and (2.13) provided that |z|0 < 1.

Proof. As we mentioned in the proof of Theorem 3.2, it is sufficient
to show the convergence of (2.12). For this purpose, we now find a
remainder of the expansion of (2.12) as follows. Formally, we have
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(1 — )ttt l—x) 1—2zF
£=0
n—1 n oo
_ T ¢ T Crl A
n (1 x)“lA +(1—x> ZxEA
=0 £=0

Since E*A"f(0) = A"E‘f(0) = A"f(¢), applying operator (1 — xE)~?
and the rightmost operator shown above to f(t)|;—o, respectively, yields

(L=2B) " f()],_y = Y f(k)2*

n—1 xk o 00
- mAkf(O) T A > oalATf(0). (3.)
k=0 £=0

Since |z|@ < 1 (x # 0), the convergence of the series expansion on
the left-hand side of (2.12) or (3.1) is obtain. To prove the convergence
of the right-hand side of (3.1), i.e., the remainder form of (2.12), it is
sufficient to show that Y ;2 x“A™ f(¢) is absolutely convergent. Choose
p > 0 such that

0|z| < plz| < 1.

Thus, for large k we have |f(k)|'/* < p, i.e., |f(k)| < p*. Consequently
we have, for large ¢

INTOIR (Z (?)If(€+j)>l/£< ( (;‘)p)/

= p(1+p)"" —p
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as ¢ — oco. Thus

Tim 2" A" £(0)] " < pla] < 1,

f{—o0
so that the series on the right-hand side of (3.1) or (2.12) is also con-
vergent absolutely under the given conditions. [ ]

A sequence {a,} is called a null sequence if for any given positive
number €, there exists and integer N such that every n > N implies
lan| < €. [12] (¢f. Theorem 4 in Section 43) pointed out that a linear
combination of {a,}, denoted by {a], = > }_,cnrar}, is also a null
sequence if the coefficient set {c,;}o<k<n (n = 0,1,2,...) satisfies the
following two conditions:

(i) Every column contains a null sequence, i.e., for fixed k > 0, ¢,, . —
0 when n — oo.

(i) There exists a constant K such that the sum |a, 0| + |an1| + ... +
lan.n| < K for every n.

By using this claim of the null sequence, we can have the following
convergence result of the series expansions in (2.12) and (2.13).

Theorem 3.4 Suppose that {f(n)} is a given sequence of numbers (real
or complex) such that Y " f(n)x™ is convergent for every x € Q2 with
QN (—00,0) # ¢. Then the series expressions on the right-hand sides
of (2.12) and (2.13) converge for every x € QN (—o00,0).

Proof. We write the remainder of expression (3.1) as follows.

o0
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where z; = Y72 2 f(¢) (0 < j < n). Since 32 2" f(¢) converges,
x; is the term of a null sequence, applying the result on the linear
combination of a null sequence shown above, we find the coefficients of
x; in the linear combination of the rightmost sum,

satisfy the following two conditions: (1) If j is fixed, we have ¢, ; — 0
as n — oo because

= ()
S \g) ST
and 1/(1 —x) < 1 for every z € QN [—1,0); and

la ‘Iz—’x‘n_j ") < = nnj
(=) \y 1—x

and |x/(1 —z)| < 1 for every z € QN (—o0,—1). (2) For every n and
for every x € QN (—00,0) we have

= 1 = (n

> ol = g o () <1

= (1 —a)" = J

Therefore, Theorem 4 in Section 43 of [12] shows that R, is also the
term of a null sequence, so the series on the right-hand side of (2.12)
converges for every x € QN (—00,0). In addition, the convergence of
the right-hand series expansion of (2.13) is followed. u

We now discuss the convergence of the series expansions in (2.20)-
(2.22). Actually, we may sort the series transformation-expansion for-
mulas associated with (A(t), B(t),t) into two classes. The first class
includes only either the sum > 8 D*f or the sum Y v, E*f in the for-
mulas such as (2.20) and (2.22). The second class includes the sums
S B.D* f and/or > 4, E* f on both sides of the transformation-expansion
formulas like (2.21). We may establish the following convergence theo-
rem.

Theorem 3.5 For the first class series expansions associated with > By
D*f (or Y=y E*f) defined above, their absolute convergence are ensured
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1/k 1/k

if Ting oo | D¥f]
el <1).
The second class series expansions defined above absolutely converge

i T o |DRF[Y5 < 1, 18] < 1, and || < (1/(e = 1))E.

< 1 (or limjooo |E¥ |77 < 1) and |By] < 1 (or

Proof. The first half of the theorem is easy to be verified by using the
root test.

To prove the second half, we need the following statement: If f €
C*, then limy_ o ‘Dkf(y)|1/k < a, a positive real number, implies

Tim |A*f(y)| " < e — 1. (3.2)

k—o0

‘l/k

In fact, if we denote lim,,_.o \D”f(y)\l/" = @, then there exists a number
v such that § < v < a. Thus for large enough n we have |D”f(y)|1/n <7
or | D" f(y)] <~

Noting S(n,m) > 0 and |D™f(y)| < +™, we obtain

| |
25| = |3 St D )| < 30 S,k D ()
n>k n>k
< %S(n, )yt = (7 — 1)F < (e — 1)k,

Here the rightmost equality is from Jordan [11] (see p. 176).
Therefore, limy_, ’Dkf‘l/k < 1 implies that limy_ ‘Akf(y)|1/k <
e — 1. Those two inequalities and the conditions for the coefficients
{6k} and {7} confirm the absolute convergence of the second class
series expansions with the root test. [ ]

As a corollary of Theorem 3.5, we now establish the convergence
results of the series expansions in (2.20)-(2.22).

Corollary 3.6 For given f € C* and x,y € R, the absolute conver-
gence of the series expansion (2.20) is ensured by the condition

Tim [AD*f(y)] " < 1. (3.3)

Similarly, the absolute convergence of the series expansion (2.21)
and (2.22) are ensured by the conditions
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Tin [A*D f( " <1 (3.4)
and

T | D* £y )| <1, (3.5)
respectively.

Proof. From Theorem 3.5, it is sufficient to show that

Jim () F <1, (3.6)

T [By(o) " < 1, (3.7)
and

T fy ()] < 1, (3.8)

which will be proved below from the basic properties of ¢x(z), Ex(x),
and ¢ (z) shown as in Jordan [11].

Write the Bernoulli polynomials of the first kind, ¢x(z), as (¢f. Jor-
dan [11], P321)

where a; = BJ(-l) /7!, and Bj(l) are ordinary Bernoulli numbers. Note that
ap=1, a1 = —1/2, agpp1 =0 (m € N) and (¢f. [11] p. 245)

1

_W, (m=0,1,2,...).

|O‘2m|

Thus for &k > 2

k—j|

k
|x|k |5U|k ' |
Rl +;2 12( zw k=)
= |z’
2 s

=0

|ox(2)]

IN
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It follows that |¢y(z)|/* < exp(|z|/k) — 1 as k — oo, which implies
(3.6).

Secondly, note that FEuler polynomial Eji(z) can be written in the
form

60 = 1), (39)
where e; = E;(0), ez, = 0 (m = 1,2,...), and ey, satisfies the
inequality (cf. [11], p. 302)

2
|€2m_1| < W <1 (m =1,2,.. ) (310)

Thus we have the estimation

|'” |x|k L Jat

Ex( —i— + — < elol,

Consequently we get
Tim |Ep(2)]Y* < lim (k)" = 1.
Jm |B(o) < Jlim ()

Hence (3.7) is verified.
Finally, from [11], p. 268, we have an integral representation of
(), the Bernoulli polynomials of the second kind, namely

Ui(z) = /01 (xzt)dt. (3.11)

For ¢t € [0, 1] and for large k£ we have the estimation

<:c +t>‘ Mt tn] ket (k: + Hxl]h) — o (K1) |

k k! k! k!

This means that there is a constant M > 0 such that

r+t
M=
()]

max
0<t<1

Thus it follows that
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1/k
(“’ ”) ‘ dt) < Tim (M) =1,

k k—o0

1
Tim [ (2)]Y* < Tim. ( /
k—o0 k—o00 0

This is a verification of (3.8), and corollary is proved. [ |

Remark 3.1 The convergence conditions given in Theorem 3.2 can be

improved by restricting f and using similar techniques shown in [4].
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