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Abstract

As an extension of Lucas sequences, we consider the set of all linear recurring
sequences satisfying linear recurrence relations of order 2. The generating func-
tions and expressions of the Lucas sequences are presented. A new approach to
construct the nonlinear identities of Lucas sequences are established. The rela-
tionships between the Lucas sequences and other linear recurring sequences in
the same set is given, which can be used to transfer the properties and identities
of Lucas sequences to those of the linear recurring sequences in the same set.
Finally, we discuss the relationship between Lucas sequences and the sequences
of Gegenbauer-Humbert polynomials.
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1 Introduction

Many number and polynomial sequences can be defined, characterized, evaluated,
and classified by linear recurrence relations with certain orders. A number sequence
{an} is called sequence of order 2 if it satisfies the linear recurrence relation of order
2
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an = p1an−1 + p2an−2, n ≥ 2, (1)

for some constants pj (j = 1, 2, . . . , r), p2 6= 0, with initial vector (a0, a1). Linear
recurrence relations with constant coefficients are important in subjects including
combinatorics, pseudo-random number generation, circuit design, and cryptography,
and they have been studied extensively. To construct an explicit formula of the
general term of a number sequence of order r, one may use generating functions,
characteristic equations, or matrix method (See Comtet [4], Hsu [8], Niven, Zuck-
erman, and Montgomery [11], Strang [12], Wilf [13], etc.) Recently, Shiue and the
author give a reduction order method in [6]. Let A2 be the set of all linear recurring
sequences defined by the homogeneous linear recurrence relation (1) with coefficient
set E2 = {p1, p2}. To study the structure of A2 with respect to E2, we consider the
Lucas sequence in A2, which is a particular sequence in A2 with initials a0 = 0 and
a1 = 1. A conjugate sequence of the Lucas sequence is the sequence in A2 with respect
to E2 and the initials a0 = 2 and a1 = p. We will call both the Lucas sequences. Lucas
sequences are widely applied in number theory and cryptography (see, for instance,
the recent paper [?] and [?]).

In next section, we will give the generating function and the expression of the
Lucas sequences and find out the relationships between the Lucas sequences and the
sequences in the set A2 with the same E2. Some examples will also be shown in this
section. In Section 3, by using the symbolic method shown in [9], we derive a type
of identities of Lucas sequences in A2 including a type of nonlinear expressions. The
relationship between the Lucas sequences and other linear recurring sequences in the
same set is used to transfer the identities of Lucas sequences to those of the linear
recurring sequences in the same set. Finally, we present a relationship between Lucas
sequences and the sequences of Gegenbauer-Humbert polynomials at some values.

2 Lucas sequences

Among all the homogeneous linear recurring sequences satisfying 2th order homoge-
neous linear recurrence relation (1) with a nonzero p1 and arbitrary initials {a0, a1},
in the above we have shown the Lucas sequence with respect to E2 = {p1, p2} is
defined as the sequence satisfying (1) with initials a0 = 0 and a1 = 1 or the initial
vector (a0, a1) = (0, 1). For instance, Fibonacci number sequence {Fn}n≥0 is the
Lucas sequence with respect to {1, 1}, Pell number sequence {Pn}n≥0 is the Lucas se-
quence with respect to {2, 1}, and Jacobathal number sequence {Jn}n≥0 is the Lucas
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sequence with respect to {1, 2}. For this reason, we may consider an Lucas sequences
with respect to E2 as an extension of Fibonacci number sequence and denoted it by
{F̃n}n≥0, namely, F̃n satisfies (1) with the initials F̃0 = 0 and F̃1 = 1. The conjugate

Lucas sequence is denoted by {F̂n}n≥0 that satisfies (1) with the initials F̂0 = 2 and

F̂1 = p1.
In the following, we will present the structure of the linear recurring sequences de-

fined by (1) using their characteristic polynomial. Then, we may find the relationship
of those sequences with their corresponding Lucas sequences.

Proposition 2.1 Let {an} ∈ A2, i.e., let {an} be the linear recurring sequence de-
fined by (1). Then its generating function P2(t) can be written as

Pr(t) =
a0 + (a1 − p1a0)t

1− p1t− p2t2
. (2)

Hence, the generating function for the Lucas sequence with respect to {p1, p2} is

P̃r(t) =
t

1− p1t− p2t2
(3)

and the generating function of the conjugate Lucas sequence with respect to {p1, p2}
and initial vector (2, p1) is

P̂r(t) =
2− p1t

1− p1t− p2t2
. (4)

Proof. (2) is easily to be checked by multiplying 1− p1t− p2t2 on its both sides and
noting

(1− p1t− p2t2)
∑
n≥0

ant
n =

∑
n≥0

ant
n −

∑
n≥1

p1an−1t
n −

∑
n≥2

an−2t
n

= a0 + a1t− p1a0t+
∑
n≥2

(an − p1an−1 − p2an−2)tn = a0 + (a1 − p1a0)t.

By substituting a0 = 0 and a1 = 1 into (2), we obtain (3).

We now give the explicit expression of F̃n in terms of the roots of the characteristic
polynomial of recurrence relation shown in (1) as well as the relationships between
the Lucas sequence and the recurring sequences in the set A2 with the same E2.
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Proposition 2.2 Let A2 be the set of all linear recurring sequences defined by the
homogeneous linear recurrence relation (1) with coefficient set E2 = {p1, p2}, and let
{F̃n} {F̂n} be the Lucas sequence of A2 and its conjugate, respectively. Suppose α
and β are two roots of the characteristic polynomial of A2, which do not need to be
distinct. Then

F̃n =

{ αn−βn

α−β , if α 6= β;

nαn−1, if α = β,
(5)

and

F̂n = αn + βn. (6)

In addition, every {an} ∈ A2 can be written as

an = a1F̃n − αβa0F̃n−1, n ≥ 0 (7)

and an reduces to a1F̃n − α2a0F̃n−1 when α = β, where F̃−1 := −1/p2 (p2 6= 0). For
n ≥ 0, there also hold

an = (8)

Conversely, there holds a expression of F̃n in terms of {an} as

F̃n = c1an+1 + c2an−1, (9)

where

c1 =
a1 − a0p1

p1(a21 − a0a1p1 − a20p2)
, c2 = − a1p2

p1(a21 − a0a1p1 − a20p2)
, (10)

provided that p1 6= 0, and a21 − a0a1p1 − a20p2 6= 0.

Proof. Recall that [6] presented the following result in its Proposition 2.1:

an =

{ (
a1−βa0
α−β

)
αn −

(
a1−αa0
α−β

)
βn, if α 6= β;

na1α
n−1 − (n− 1)a0α

n, if α = β,
(11)

for every {an} ⊂ A2. By substituting a0 = 0 and a1 = 1 into (11), one may obtain
(5).
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Denote by L : Z × Z 7→ Z the operator L(an−1, an−2) := p1an−1 + p2an−2 = an.
It is obvious that L is linear, and the sequence {an} is uniquely determined by L
from a given initial vector (a0, a1). By defing F̃−1 = −1/p2, the Lucas sequence
{F̃n}n≥0 can be extended to {F̃n}n≥−1, which also satisfies (1) but is initialed by
(F̃−1, F̃0) = (−1/p2, 0). Therefore, it is easy to check that sequence {an}n≥0 shown in
(7) satisfies recurrence relation (1) with initial vector (a0, a1). Hence, {an}n≥0 ⊂ A2.

Define a−1 = (a1 − p1a0)/p2, then (a−1, a0) is the initial vector that generates
{an−1}n≥0 by L. Similarly, the vector (a1, p1a1 + p2a0) generates sequence {an+1}n≥
by using L. Note the initial vectors of F̃n is (0, 1). Thus (9) holds if and only if the
initial vectors on the two sides are equal:

(0, 1) = c1(a1, p1a1 + p2a0) + c2

(
a1 − p1a0

p2
, a0

)
, (12)

which yields the solutions (10) for c1 and c2 and completes the proof of the corollary.

Proposition 2.2 presents the interrelationship between a linear recurring sequence
with respect to E2 = {p1, p2) and its Lucas sequence, which can be used to establish
the identities of one sequence from the identities of other sequences in the same set.

Example 2.1 Let us consider A2, the set of all linear recurring sequences defined
by the homogeneous linear recurrence relation (1) with coefficient set E2 = {p1, p2}.
If E2 = {1, 1}, then the corresponding characteristic polynomial has roots α = (1 +√

5)/2 and β = (1 −
√

5)/2, and (9) gives the expression of the ISR of A2, which is
Fibonacci sequence {Fn}:

Fn =
1√
5

{(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n}
.

The sequence in A2 with the initial vector (2, 1) is Lucas sequence {Ln}. From (7)
and (9) and noting αβ = −1, we have the well-known formulas (see, for example,
[10]):

Ln = Fn + 2Fn−1 = Fn+1 + Fn−1, Fn =
1

5
Ln+1 +

1

5
Ln−1. (13)

By using the above formulas, one may transfer identities of Fibonacci number se-
quence to those of Lucas number sequence and vice verse. For instance, the above
relationship can be used to prove that the following two identities are equivalent:
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Fn+1Fn+2 − Fn−1Fn = F2n+1

L2
n+1 + L2

n = L2n + L2n+2.

It is clear that both of the identities are equivalent to the Carlitz identity, Fn+1Ln+2−
Fn+2Ln = F2n+1, shown in [3].

Example 2.2 Let us consider A2, the set of all linear recurring sequences defined by
the homogeneous linear recurrence relation (1) with coefficient set E2 = {p1 = p, p2 =
1}. Then (11) tell us that {an} ∈ A2 satisfies

an =
2a1 − (p−

√
4 + p2)a0

2
√

4 + p2
αn − 2a1 − (p+

√
4 + p2)a0

2
√

4 + p2

(
− 1

α

)n
, (14)

where α is defined by

α =
p+

√
4 + p2

2
and β = − 1

α
=
p−

√
4 + p2

2
. (15)

Similarly, let E2 = {1, q}. Then

an =

{
2a1−(1−

√
1+4q)a0

2
√
1+4q

αn1 −
2a1−(1+

√
1+4q)a0

2
√
1+4q

αn2 , if q 6= −1
4
;

1
2n

(2na1 − (n− 1)a0), if q = −1
4
,

where α = 1
2
(1 +

√
1 + 4q) and β = 1

2
(1 −

√
1 + 4q) are solutions of equation

x2 − x − q = 0. The fLucas sequencet special case (14) was studied by Falbo in
[5]. If p = 1, the sequence is clearly the Fibonacci sequence. If p = 2 (q = 1), the
corresponding sequence is the sequence of numerators (when two initial conditions are
1 and 3) or denominators (when two initial conditions are 1 and 2) of the convergent
of a continued fraction to

√
2: {1

1
, 3

2
, 7

5
, 17

12
, 41
29
. . .}, called the closest rational approx-

imation sequence to
√

2. The second special case is for the case of q = 2 (p = 1),
the resulting {an} is the Jacobsthal type sequences (See Bergum, Bennett, Horadam,
and Moore [2]).

From Proposition 2.2, for E2 = {p, 1}, the Lucas sequence of A2 with respect to
E2 is

F̃n =
1√

4 + p4

{(
p+

√
4 + p2

2

)n

−

(
p−

√
4 + p2

2

)n}
.
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In particular, the Lucas sequence for E2 = {2, 1} is the well-known Pell number
sequence {Pn} = {0, 1, 2, 5, 12, 29, . . .} with the expression

Pn =
1

2
√

2

{
(1 +

√
2)n − (1−

√
2)n
}
.

The Pell-Lucas number sequence, denoted by {qn}n≥0, is the sequence in A2 with
respect to E2 = {2, 1} and initial vector (q0, q1) = (2, 1), which has the fLucas
sequencet few elements as {2, 1, 4, 9, 22, . . .}. From (9) and (10), we obtain

Pn =
3

14
qn+1 +

1

14
qn−1, n ≥ 1. (16)

Similarly, for E2 = {1, q}, the Lucas sequence of A2 with respect to E2 is

F̃n =
1√

1 + 4q

{(
1 +
√

1 + 4q

2

)n
−
(

1−
√

1 + 4q

2

)n}
.

In particular, the ISR for E2 = {1, 2} is the well-known Jacobsthal number sequence
{Jn} = {0, 1, 1, 3, 5, 11, 21, . . .} with the expression

Jn =
1

3
(2n − (−1)n) .

The Jacobsthal-Lucas number {jn} in A2 with respect to E2 = {1, 2} satisfying j0 = 2
and j1 = 1 has the fLucas sequencet few elements as {2, 1, 5, 7, 17, 31, . . .}. From (7),
one may have

jn = Jn + 4Jn−1 = 2n + (−1)n.

In addition, the above formula can transform all identities of Jacobsthal-Lucas number
sequence to those of Jacobsthal number sequence. For example, we have

J2
n + 4Jn−1Jn = J2n,

JmJn−1 − JnJm−1 = (−1)n2n−1Jm−n,

JmJn + 2JmJn−1 + 2JnJm−1 = Jm+n

from
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jnJn = J2n,

Jmjn − Jnjm = (−1)n2n+1Jm−n,

Jmjn − Jnjm = 2Jm+n,

respectively. Similarly, we can show that the following two identities are equivalent:

jn = Jn+1 + 2Jn−1, Jn+1 = Jn + 2Jn−1.

Furthermore, using (9) and (10), one may has

Jn =
1

9
jn+1 +

2

9
jn−1, n ≥ 1, (17)

which can be used to transform all identities of Jacobsthal number sequence to those
of Jacobsthal-Lucas number sequence.

Remark 2.1 Proposition 2.2 can be extended to the linear nonhomogeneous recur-
rence relations of order 2 with the form: an = pan−1 + qan−2 + ` for p+ q 6= 1. It can
be seen that the above recurrence relation is equivalent to the homogeneous form (1)
bn = pbn−1 + qbn−2, where bn = an − k and k = `

1−p−q .

Example 2.3 An obvious example of Remark 2.1 is the Mersenne number Mn =
2n − 1 (n ≥ 0), which satisfies the linear recurrence relation of order 2: Mn =
3Mn−1 − 2Mn−2 ( with M0 = 0 and M1 = 1) and the non-homogeneous recurrence
relation of order 1: Mn = 2Mn−1 + 1 (with M0 = 0). It is easy to check that sequence
Mn = (kn− 1)/(k− 1) satisfies both the homogeneous recurrence relation of order 2,
Mn = (k + 1)Mn−1 − kMn−2, and the non-homogeneous recurrence relation of order
1, Mn = kMn−1 + 1, where M0 = 0 and M1 = 1. Here, Mn is the Lucas sequence
with respect to E2 = {3,−2}. Another example is Pell number sequence that satisfies
both homogeneous recurrence relation Pn = 2Pn−1 + Pn−2 and the non-homogeneous
relation P̄n = 2P̄n−1 + P̄n−2 + 1, where Pn = P̄n + 1/2.

Remark 2.2 In [11], Niven, Zuckerman, and Montgomery studied some properties of
{Gn}n≥0 and {Hn}n≥0 defined respectively by the linear recurrence relations of order
2:

Gn = pGn−1 + qGn−2 and Hn = pHn−1 + qHn−2

with initial conditions G0 = 0 and G1 = 1 and H0 = 2 and H1 = p, respectively.
Clearly, Gn = F̃n, the Lucas sequence of A2 with respect to E2 = {p1 = p, p2 = q}.
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Using Proposition 2.2, we may rebuild the relationship between the sequences {Gn}
and {Hn}:

Hn = pGn + 2qGn−1,

Gn =
q

p2 + 4q
Hn−1 +

1

p2 + 4q
Hn+1.

3 A type of Identities of Lucas sequence in A2

Let A2 be the set of all linear recurring sequences defined by the homogeneous linear
recurrence relation (1) with coefficient set E2 = {p1 = p, p2 = q}, and let F̃ be the
Lucas sequence of A2. Inspired by [9], we give a nonlinear combinatorial expression
involving F̃ and a numerous identities based on the expression. Using the interre-
lationship between the Lucas sequence and a linear recurring sequence in A2, one
may obtain many identities involving sequences in A2. More precisely, let us consider
the following extension of the results in [9] for the Fibonacci numbers to the general
number sequences in A2. Suppose {an}n∈N be a nonzero sequence defined by the
recurrence relation

an = p1an−1 + p2an−2, n ≥ 2, p1, p2 6= 0, (18)

with the initial conditions a0 = 0 and any nonzero a1. Here, a1 must be nonzero,
otherwise an ≡ 0. Hence, we may normalize a1 to be a1 = 1 by define a new sequence
gn = an/a1 satisfying the same recurrence relation (18). Thus, under the assumption,
our sequence {an} is the Lucas sequence {F̃n} of A2 with respect to E2 = {p1, p2}. We
now give a nonlinear combinatorial expression involving F̃n. Our result will extend
to the case of a0 6= 0 and a1 = p1a0 later. In addition, sequence {F̃n}n∈N can be
extended to the the case of {F̃r}r∈Z by using the same recurrence relation for r ≥ 1
and F̃r+1 = p1F̃r + p2F̃r−1 while r ≤ −3.

Lemma 3.1 For any m ∈ N and r ∈ Z there holds

F̃m+r = F̃mF̃r+1 + p2F̃m−1F̃r. (19)

Proof. For an arbitrarily r ∈ Z, we have

F̃r+1 = F̃1F̃r+1 + p2F̃0F̃r
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because F̃0 = 0 and F̃1 = 1. Assume (19) is true for n ∈ N, n ≥ 1, and an arbitrary
r ∈ Z, namely,

F̃r+n = F̃nF̃r+1 + p2F̃n−1F̃r, r ∈ Z.

Then,

F̃r+n+1 = F̃nF̃r+2 + p2F̃n−1F̃r+1.

On the hand,

F̃n+1F̃r+1 + p2F̃nF̃r = (p1F̃n + p2F̃n−1)F̃r+1 + p2F̃nF̃r

= F̃nF̃r+2 + p2F̃n−1F̃r+1,

which implies

F̃r+n+1 = F̃n+1F̃r+1 + p2F̃nF̃r

and completes the proof with the mathematical indiction.

A direct proof of (19) can also be given. Actually, every F̃mF̃r+1 + p2F̃m−1F̃r can
be reduced to F̃1F̃r+m + p2F̃0F̃r = F̃r+m by using the recurrence relation (18).

Theorem 3.2 For any given m,n ∈ N0 and r ∈ Z there holds

F̃r+mn =
n∑
j=0

(
n

j

)
(F̃m)j(p2F̃m−1)

n−jF̃r+j. (20)

Proof. Let F (t) = F̃r+mt. Then from Lemma 3.1

∆F (t) = F (t+ 1)− F (t) = F̃r+mt+m − F̃r+mt
= F̃mF̃r+mt+1 + (p2F̃m−1 − 1)F̃r+mt.

Thus, there holds symbolically

(∆− (p2F̃m−1 − 1)I)F̃r+mt = F̃mF̃r+mt+1.
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Using the operator ∆− (p2F̃m−1 − 1)I defined above j times, we find

(∆− (p2F̃m−1 − 1)I)jF̃r+mt = (F̃m)jF̃r+mt+j, j ∈ N.

Furthermore, noting the symbolic relation E = I + ∆ and the last symbolical expres-
sion, one may find

F (n) = F̃r+mn = EnF̃r+mt

∣∣∣
t=0

= (I + ∆)nF̃r+mt

∣∣∣
t=0

= (p2F̃m−1I + (∆− (p2F̃m−1 − 1)I)nF̃r+mt

∣∣∣
t=0

=
n∑
j=0

(
n

j

)
(p2F̃m−1)

n−j(∆− (p2F̃m−1 − 1)I)jF̃r+mt

∣∣∣∣∣
t=0

=
n∑
j=0

(
n

j

)
(p2F̃m−1)

n−j(F̃m)jF̃r+j

completing the proof of the theorem.

Remark 3.1 The nonlinear expression for the case of {an} with a0 = 0 and a1 6= 0
can be extended to the case a0 6= 0 and a1 = p1a0. We may normalize a0 = 1 and
define a−1 = 0 from the recurrence relation a1 = p1a0 + p2a−1. Hence, the sequence
{F̂n = an−1} satisfies recurrence relation (18) for n ≥ 1 with the initials F̂0 = 0 and
F̂1 = 1. Hence, from (20) we have the nonlinear expression for F̂n as

F̂r+mn =
n∑
j=0

(
n

j

)
F̂ k
m−1(qF̂m−2)

n−jF̂r+k

for m ≥ 1 and r ≥ 0.
Similar to the last section and Remark 3.1, we may use the extension technique

to define F̃n for negative integer index n. For example, substituting n = 1 into (18)
yields F̃1 = p1F̃0 + p2F̃−1, which defines F̃−1 = 1/q. With r = −mn − 1, r = −mn,
and r = −mn + 1 in (20), a class of identities for F̃n with negative indices can be
obtained as follows.

Corollary 3.3 For m ≥ 1 and n ≥ 0 there hold the identities
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n∑
j=0

pn−j+1
2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn−1 = 1,

n∑
j=0

pn−j2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn = 0,

n∑
j=0

pn−j2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn+1 = 1. (21)

Similarly, substituting m = 2, 3, and 4 into (20) and noting F̃2 = p, F̃3 = p2 + q,
and F̃4 = p(p2 + 2q), we have

Corollary 3.4 For n ≥ 0, there hold identities

n∑
j=0

pj1p
n−j
2

(
n

j

)
F̃r+j = F̃r+2n,

n∑
j=0

(p21 + p2)
j(p1p2)

n−j
(
n

j

)
F̃r+j = F̃r+3n,

n∑
j=0

pj1p
n−j
2 (p21 + 2p2)

j(p21 + p2)
n−j
(
n

j

)
F̃r+j = F̃r+4n. (22)

With an application of Proposition 2.2, one may transfer the nonlinear expres-
sion (20) and its consequent identities shown in corollaries 3.3 and 3.4 to any linear
recurring sequence defined by (1). For instance, from Corollary 3.4, we immediately
have

Corollary 3.5 Let us consider A2, the set of all linear recurring sequences defined by
the homogeneous linear recurrence relation (1) with coefficient set E2 = {p, q}. Then,
for any {an} ∈ A2, there hold
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n∑
j=0

pj1p
n−j
2

(
n

j

)
(car+j−1 + dar+j−2) = car+2n−1 + dar+2n−2,

n∑
j=0

(p21 + p2)
j(p1p2)

n−j
(
n

j

)
(car+j−1 + dar+j−2) = car+3n−1 + dar+3n−2,

n∑
j=0

pj1p
n−j
2 (p21 + 2p2)

j(p21 + p2)
n−j
(
n

j

)
×(car+j−1 + dar+j−2) = car+4n−1 + dar+4n−2,

for n ≥ 0, where c and d are given by

c =
a1 − a0p1

p1(F̃1 − a0a1p1 − F̃0p2)
, d = − a1p2

p1(F̃1 − a0a1p1 − F̃0p2)
,

provided that p1 6= 0, and F̃1 − a0a1p1 − F̃0p2 6= 0.

The nonlinear expression (20) can be used to obtain a congruence relations in-
volving products of the Lucas sequences as modules.

Corollary 3.6 For r ∈ Z, m ≥ 1, and n ≥ 0, there holds a congruence relation of
the form

F̃mn+r ≡ (p2F̃m−1)
nF̃r + (F̃m)nF̃n+r (mod F̃m−1F̃m). (23)

In particular, for r = 0 and gcd (F̃m, F̃n) = 1,

F̃mn ≡ 0 (mod F̃mF̃n). (24)

In general, if F̃m1, F̃m2 , . . ., F̃ms be relatively prime to each other with each mk ≥ 1
(k = 1, 2, . . . , s), then there holds

F̃m1m2···ms ≡ 0 (mod F̃m1F̃m2 · · · F̃ms). (25)

Proof. (23) comes from (20) straightforward. By setting r = 0, we have

F̃mn ≡ (F̃m)nF̃n (mod F̃m−1F̃m) ≡ 0 (mod F̃m).
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Similarly,

F̃mn ≡ 0 (mod F̃n).

Thus, if gcd(F̃m, F̃n) = 1, i.e., F̃m and F̃n are relatively prime, then we obtain (24),
which implies (25).

Example 3.1 For E2 = {1, 1}, {1, 2}, and{2, 1}, formula (20) in Theorem 3.2 leads
the following three non-linear identities for Fibonacci, Pell, and Jacobsthal number
sequences, respectively:

Fmn+r =
n∑
j=0

(
n

j

)
F j
mF

n−j
m−1Fr+j,

Pmn+r =
n∑
j=0

(
n

j

)
P j
mP

n−j
m−1Pr+j,

Jmn+r =
n∑
j=0

(
n

j

)
J jm(2Jm−1)

n−jJr+j,

where the fLucas sequencet one is given in the main theorem of [9].

Example 3.2 As what we have presented, one may extend Fibonacci, Pell, and
Jacobsthal numbers to negative indices as {Fn}n∈Z = {. . . , 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .},
{Pn}n∈Z = {. . . , 5,−2, 1, 0, 1, 2, 5, 12, 29, . . .}, and {Jn}n∈Z = {. . . , 3/8,−1/4.1/2, 0, 1,
1, 3, 5, 11, . . .} by using the corresponding linear recurrence relation with respect to
E2 = {1, 1, }, {2, 1}, and {1, 2}, respectively. Thus, from the fLucas sequencet formula
of (21) in Corollary 3.3, there hold

n∑
j=0

(
n

j

)
F j
mF

n−j
m−1Fj−mn−1 = 1,

n∑
j=0

(
n

j

)
P j
mP

n−j
m−1Pj−mn−1 = 1,

n∑
j=0

2n−j+1

(
n

j

)
J jmJ

n−j
m−1Jj−mn−1 = 1.
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The identities generated by using the other formulas in (21) and the formulas in
Corollaries 3.4-3.6 can be written similarly, which are omitted here.

Example 3.3 By using the transformation formulas (13), (16), and (17), we may
transform the nonlinear expressions shown in Examples 3.1 and 3.2 to those of the
sequences in their sets with the same E2 and initial vectors (a0, a1) = (2, 1), respec-
tively. For instance, from Example 3.1, there hold

Lmn+r+1 + Lmn+r−1

=
1

5n

n∑
j=0

(
n

j

)
(Lm+1 + Lm−1)

j(Lm + Lm−2)
n−j(Lr+j+1 + Lr+j−1),

qmn+r+1 + qmn+r−1

=
1

14n

n∑
j=0

(
n

j

)
(3qm+1 + qm−1)

j(3qm + qm−2)
n−j(3qr+j+1 + qr+j−1),

jmn+r+1 + jmn+r−1

=

(
2

9

)n n∑
j=0

(
n

j

)
1

2j
(jm+1 + 2jm−1)

j(jm + 2jm−2)
n−j(jr+j+1 + 2jr+j−1).

Similarly, from Example 3.2, we have

1

5n+1

n∑
j=0

(
n

j

)
(Lm+1 + Lm−1)

j(Lm + Lm−2)
n−j

×(Lj−mn + Lj−mn−2) = 1

1

14n+1

n∑
j=0

(
n

j

)
(3qm+1 + qm−1)

j(3qm + qm−2)
n−j

×(3qj−mn + qj−mn−2) = 1

1

9n+1

n∑
j=0

2n−j+1

(
n

j

)
(jm+1 + 2jm−1)

j(jm + 2jm−2)
n−j

×(jj−mn + 2jj−mn−2) = 1
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At the end of this section, we will mentioned a relationship, established in [7]
(inspired by Aharonov, Beardon, and Driver[1]) by Shiue, Weng and the author, be-
tween the recurring numbers defined by (1) and the values of the Gegenbauer-Humbert
polynomials including the Chebyshev polynomials of the second kind, Un(x), and the
Fibonacci polynomials, F̄n(x). From Corollary 2.2 of [7], we have the relationships

F̃n =
(√
−p2

)n−1
Un−1

(
p1

2
√
−p2

)
,

F̃n = (
√
p2)

n−1 F̄n

(
p1√
p2

)
,

F̃n =
(
−
√
−p2

)n−1
Un−1

(
−p1

2
√
−p2

)
,

F̃n = (−√p2)n−1 F̄n
(
−p1√
p2

)
.

In particular, for E2(1, 1), the above relationships present the expressions of Fibonacci
numbers in term of the values of the Chebyshev polynomials of the second kind and
the Fibonacci polynomials as follows:

Fn = in−1Un−1

(
− i

2

)
,

Fn = F̄n (1) ,

Fn = (−i)n−1 Un−1
(
i

2

)
,

Fn = (−1)n−1 F̄n (−1) ,

where the fLucas sequencet formula can be seen in [1]. Similarly, for E2 = (2, 1), we
have



Sequence Identities 17

Pn = in−1Un−1 (−i) ,
Pn = F̄n (2) ,

Pn = (−i)n−1 Un−1 (i) ,

Pn = (−1)n−1 F̄n (−2) .

If E2 = (1, 2), then the relationships between the Jacobsthal numbers and the values
of the Chebyshev polynomials of the second kind and the Fibonacci polynomials are

Jn =
(√

2i
)n−1

Un−1

(
− i

2
√

2

)
,

Jn = 2(n−1)/2F̄n

(
1√
2

)
,

Jn =
(
−
√

2i
)n−1

Un−1

(
i

2
√

2

)
,

Jn =
(
−
√

2
)n−1

F̄n

(
−1√

2

)
.

Example 3.4 Using the above relationships, we may change the non-linear expres-
sions of F̃n to the non-linear expressions for the values of the Chebyshev polynomials
of the second kind and the Fibonacci polynomials, respectively. For instance, from
Example 3.1, there hold
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Umn+r−1

(
− i

2

)
=

n∑
j=0

(
n

j

)
i−2(n−j)Um−1

(
− i

2

)j
Um−2

(
− i

2

)n−j
Ur+j−1

(
− i

2

)

Umn+r−1(−i) =
n∑
j=0

(
n

j

)
i−2(n−j)Um−1 (−i)j Um−2 (−i)n−j Ur+j−1 (−i)

Umn+r−1

(
− i

2
√

2

)
=

n∑
j=0

(
n

j

)
(i)−2(n−j)Um−1

(
− i

2
√

2

)j
Um−2

(
− i

2
√

2

)n−j
Ur+j−1

(
− i

2
√

2

)
.

Other nonlinear expressions of the values of the Chebyshev polynomials of the second
kind and the Fibonacci polynomials can be constructed similarly from Examples 3.1
and 3.2, which we omitted here.
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