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Abstract

Here we present an application of Horner’s method in evaluating
the sequence of Stirling numbers of the second kind. Based on
the method, we also give an efficient way to calculate the differ-
ence sequence and divided difference sequence of a polynomial,
which can be applied in the Newton interpolation. Finally, we
survey all of the results in Proposition 1.4.
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1 Introduction

The number of ways of partition a set of n elements into k nonempty
subsets is called the Stirling number of the second kind, denoted by
S(n, k). In other words, S(n, k) is the number of equivalence relations
with k classes on a finite set with n elements. From [3], S(n, k) equals
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As a division algorithm, Horner’s method is a nesting technique
requiring only nmultiplications and n additions to evaluate an arbitrary
nth-degree polynomial, which can be surveyed by Horner’s theorem
(see, for example, [1]).

Theorem 1.1 Let

P (x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0.

If bd = ad and

bk = ak + bk+1x0, k = n− 1, n− 2, . . . , 1, 0,

then b0 = P (x0), and P (x) can be written as

P (x) = (x− x0)Q(x) + b0,

where

Q(x) = bdx
d−1 + bd−1x

d−2 + · · ·+ b2x+ b1.

The theorem can be proved using a direct calculation. An additional
advantage of Horner’s method is the differentiation of P (x):

P ′(x) = Q(x) + (x− x0)Q′(x).

Hence, P ′(x0) = Q(x0), which is very convenient when applying New-
ton’s method to find roots of a polynomial.

Example 1 As an example, we use Horner’s method to evaluate P (x) =
x4− 2x2 + 3x− 4 at x0 = −1. First we construct the synthetic division
as follows.
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x0 = −1 a4 = 1 a3 = 0 a2 = −2 a1 = 3 a0 = −4

b4x0 = −1 b3x0 = 1 b2x0 = 1 b1x0 = −4

b4 = 1 b3 = −1 b2 = −1 b1 = 4 b0 = −8

Hence,

x4 − 2x2 + 3x− 4 = (x+ 1)(x3 − x2 − x+ 4)− 8.

In [6], Pathan and Collyer present an excellent survey on Horner’s
method and its application in solving polynomial equations by deter-
mining the location of roots. In this note, we shall give other appli-
cations of Horner’s method in the calculation of Stirling numbers of
the second kind, the difference sequences, and the divided difference
sequences (or equivalently, the coefficients of Newton interpolation) of
polynomials. There are numerous ways to evaluate a Stirling number
sequence or Stirling matrix. For example, in [4], El-Mikkawy gives an
algorithm based on Newton’s divided difference interpolating polyno-
mials. In [2], Cheon and Kim present a method based on the relation-
ship between the Stirling matrix and other combinatorial sequences
such as the Vandermonde matrix, the Bernoulli numbers, and Eule-
rian numbers. However, our algorithm of calculating Stirling number
sequences based on Horner’s method is different and efficient, which
contains an idea suitable for constructing algorithms in calculation of
many sequences. This general idea will be presented in Proposition 1.4.

From Proposition 1.4.2 of [7], if the polynomial f(n) of degree ≤ d
is expanded in terms of the basis

(
n
k

)
, 0 ≤ k ≤ d, then the coefficients

are ∆kf(0), namely,

f(n) =
d∑

k=0

∆kf(0)

(
n

k

)
=

d∑
k=0

∆kf(0)

k!
(n)k, (2)

where (n)k = n(n−1) · · · (n−k+1) are the falling factorial polynomials.
In particular, for f(n) = nd, we have ∆0f(0) = f(0) = 0 and

nd =
d∑

k=1

∆k0d

(
n

k

)
=

d∑
k=1

S(d, k)(n)k, (3)
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where the rightmost equation comes from (1). Therefore, we may give
the following algorithm to find out the kth order difference of f at 0
and Stirling numbers of the second order from (2) and (3) respectively.

Algorithm 1.2 Write (2) as

f(n) = (n− 0)

(
∆0f(0) + (n− 1)

(
∆1f(0)

1!
+ (n− 2)

(
∆2f(0)

2!
+ · · ·

+(n− d+ 1)
∆df(0)

d!

))
· · ·
)
.

Use synthetic division to obtain f(n)/(n − 0), a polynomial of degree
d− 1, with the constant term ∆0f(0). Then, evaluate (f(n)/(n− 0)−
∆0f(0))/(n−1) to find the quotient polynomial of degree d−2 including
its constant term ∆1f(0). Continue this process until a single constant
is left, which is ∆df(0)/d!. Or equivalently, Use Horner’s method to
find

f(n) = (n− 0)f1(n), deg f1(n) ≤ d− 1,

where the constant term of f1(n) is ∆0f(0). Then, use Horner’s method
again to evaluate

f1(n) = (n− 1)f2(n), deg f2(n) ≤ d− 2,

which contain the constant term ∆1f(0)/1!. Continue the process and
finally obtain

fd−1 = (n− d+ 1)fd(n), fd(n) = ∆df(0)/d!.

When f(n) = nd, from (3) it can be seen that the above algo-
rithm provides a way to evaluate the Stirling numbers of the second
kind S(d, 1), S(d, 2), . . ., S(d, d) defined by (1).

Example 2 Consider f(n) = n4 − 2n2 + 3n− 4. We use the following
synthetic division to find out its difference sequence from order 0 to 4.
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0 1 0 −2 3 −4

0 0 0 0

1 1 0 −2 3 −4

1 1 −1

2 1 1 −1 2

2 6

3 1 3 5

3

1 6

Hence, ∆0f(0) = f(0) = −4, ∆1f(0) = 2, ∆2f(0) = 5(2!) = 10, and
∆3f(0) = 6(3!) = 36, and ∆4f(0) = 1(4!) = 24, which can be read on
the diagonal from the top right to the bottom line.

Example 3 From expansion (see, for examples, [3] and [7])

n4 =
4∑

k=1

S(4, k)(n)k,

or equivalently,

n3 = S(4, 1) + (n− 1)(S(4, 2) + (n− 2)(S(4, 3) + (n− 3)S(4, 4))),

we may use the following division to evaluate S(4, k) (k = 1, 2, 3, 4).

1 1 0 0 0

1 1 1

2 1 1 1 1

2 6

3 1 3 7

3

1 6
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Hence, we can read S(4, 1) = 1, S(4, 2) = 7, S(4, 3) = 6, and S(4, 4) = 1
diagonally from the top right to the bottom line. In addition, the first
calculation gives {1, 0, 0, 0, 0}, the second calculation {1, 1, 1, 1, }, the
third calculation {1, 3, 7}, and the fourth calculation {1, 6}, which are
respectively the first, second, third, and fourth row of the table of the
Stirling numbers of the second kind. In other words, the division of xd

by x− j generates {S(d, j), S(d− 1, j), · · · , S(j, j)}.
From (3) we immediately know that S(d, d) = 1 because it is the

coefficient of nd. Using our method, one may calculate the matrices
related to Stirling numbers easily, for example, matrices Tn and Wn

defined by (2) and (16) in [8].
Algorithm 1.2 can also be used to evaluate non-centeral Stirling

numbers of the second kind (cf. [5]) defined by

(x− a)d =
d∑

k=0

Sa(d, k)(x)k

with a parameter a. In fact, a similar argument can be used to calculate
{Sa(d, k)} by using the transformation x− a 7→ x in Algorithm 1.2.

From Theorem 1.1 we also know that Horner’s method provides
simple algorithms to evaluate divided differences and derivatives of a
polynomial, and the former can be used to find the coefficients of the
Newton interpolation while the latter can be used to approximate the
zeros of the polynomial with any required significant digits.

Let X = {x0, x1, . . . , xd} be a set of d + 1 distinct points, and let
f(x) be a polynomial of degree d. Then we can write f(x) in terms of
its Newton interpolation form on the set X as

f(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + · · ·
+f [x0, x1, . . . , xd](x− x0)(x− x1) · · · (x− xd−1), (4)

where f [x0] = f(x0) and f [x0, x1, . . . xk] is the kth order divided differ-
ence of f at {x0, x1, . . . , xk} defined by

f [x0, x1, . . . xk] =
1

xk − x0
(f [x1, x2, . . . , xk]− f [x0, x1, . . . , xk−1])

for k = 1, 2, . . . , d, and can be evaluated using the following algorithm.
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Algorithm 1.3 Write (4) as

f(x) = f [x0] + (x− x0) (f [x0, x1] + (x− x1) (f [x0, x1, x2] + · · ·
+(x− xd−1)f [x0, x1, . . . , xd])) ,

where f [x0] = f(x0). Use synthetic division to obtain (f(x)−f(x0))/(x−
x0), a polynomial of degree d−1, with the constant term f [x0, x1]. Then,
evaluate (f(x)−f(x0))/(x−x0)−f [x0, x1])/(x−x1) to find the quotient
polynomial of degree d−2 and its constant term f [x0, x1, x2]. Continue
this process until a single constant is left, which is f [x0, x1, . . . , xd]. Or
equivalently, Use Horner’s method to find

f(x)− f(x0) = (x− x0)f1(x), deg f1(x) ≤ d− 1,

where the constant term of f1(x) is f [x0, x1]. Then, use Horner’s
method again to evaluate

f1(x) = (x− x1)f2(x), deg f2(x) ≤ d− 2,

which contains the constant term f [x0, x1, x2]. Continue the process
and finally to obtain

fd−1 = (x− xd−1)fd(x), fd(n) = f [x0, x1, . . . , xd].

Example 4 To find the divided differences of f(x) = x4− 2x2 + 3x− 4
on the set {−1, 0, 1, 3, 4}, we consider f(x)−f(−1) = x4−2x2 + 3x+ 4
and use the following synthetic division to obtain its divided difference
at the given knot points.

−1 1 0 −2 3 4

−1 1 1 −4

0 1 −1 −1 4 0

0 0 0

1 1 −1 −1 4

1 0

3 1 0 −1

3

1 3
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Hence, f [−1] = f(−1) = −8, f [−1, 0] = 4, f [−1, 0, 1] = −1, f [−1, 0, 1, 3] =
3, and f [−1, 0, 1, 3, 4] = 1. It can be seen that the new method is much
easier than the traditional method.

Let r be a real number, and let f(x) be a polynomial of degree d.
Then, using the Taylor expansion of f(x) yields

f(x) = f(r) + f ′(r)(x− r) +
f ′′(r)

2!
(x− r)2 + · · ·+ f (d)(r)

d!
(x− r)d, (5)

which can written recursively as

f(x)−f(r) = (x−r)f1(x), fk(x) = (x−r)fk+1(x), k = 1, 2, . . . , d−1,

and the constant term of fk(x) is f (k)(r)/k! (k = 1, 2, . . . , d). Thus we
may apply Horner’s method to find all derivatives of f at r. Obviously,
for polynomial

g(x) = f(r) + f ′(r)x+
f ′′(r)

2!
x2 + · · ·+ f (d)(r)

d!
xd, (6)

the roots of g(x) = 0 are the roots of equation f(x) = 0, each dimin-
ished by r. We can use the process to diminish a root of the proposed
equation by its first digit. Then we apply it again to diminish the cor-
responding root of the resulting equation by its first digit, which is the
second digit of the required root of the original equation. Using this
process continuously, we finally approximate the root of the original
equation f(x) = 0 to the required significant digits. More details can
be found in [9]. Here is an example.

Example 5 Consider equation f(x) = x4 − 2x2 + 3x − 4 = 0, which
has a root in the interval (1, 2). We may use (6) to find g(x), where
r = 1. The process can be shown in the following synthetic division.
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1 1 0 −2 3 −4

1 1 −1 2

1 1 −1 2 −2

1 2 1

1 2 1 3

1 3

1 3 4

1

1 4

Hence, we obtain

f(1) = −2, f ′(1) = 3,
f ′′(1)

2!
= 4,

f ′′′(1)

3!
= 4,

f (4)(1)

4!
= 1,

and the corresponding

g(x) = −2 + 3x+ 4x2 + 4x3 + x4.

Therefore the new equation is g(x) = 0. Multiply the root by 10 and
change the equation to be

x4 + 40x3 + 400x2 + 3000x− 20000 = 0.

It is easy to see that g(x) has a root between 3 and 4. Thus we may
use (6) again to generate a new polynomial and solve the corresponding
equation.
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3 1 40 400 3000 −20000

3 129 1587 13761

1 43 529 4587 −6239

3 138 2001

1 46 667 6588

3 147

1 49 814

3

1 52

The above table shows that an approximation of the original polynomial
equation to its second significant digit is 1.3, and the third significant
digit can be found using the polynomial equation

x4 + 52x3 + 814x2 + 6588x− 6239 = 0.

Multiply the root by 10 to change the equation to be

x4 + 520x3 + 81400x2 + 6588000x− 62390000 = 0,

which has a root in the interval (8, 9). Thus, the original polynomial
equation f(x) = x4 − 2x2 + 3x − 4 = 0 has a root of approximately
1.38, and its better approximation with more significant digits can be
found from the equation

x4 + 552x3 + 94264x2 + 7992288x− 4206064 = 0

generated by using the following table. Since x4 + 552x3 + 94264x2 +
7992288x − 4206064 = 0 has a root between 5 and 6, we obtain the
root of original equation with four significant digits as 1.385.
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8 1 520 81400 6588000 −62390000

8 4224 684992 58183936

1 528 85624 7272992 −4206064

8 4288 719296

1 536 89912 7992288

8 4352

1 544 94264

8

1 552

From Example 5, one may find Horner’s method is not an efficient
way to evaluate the roots of polynomial equations, but it is a faster way
to find out the coefficients of the expansions of polynomials in terms of
nested bases formed by products of linear polynomials.

Proposition 1.4 Let φk(x) = akx− bk, k = 1, 2, . . ., and let f(x) be a
polynomial of degree d. Then

f(x) = c0 +
d∑

k=1

ckΠk
j=1φj(x), (7)

where ck (k = 0, 1, . . . , d) can be found using the synthetic division
based on Horner’s method.

One may see the examples of Proposition 1.4 from the algorithms
applied to the expansions (2)-(5). Interested readers may also construct
examples for any polynomial expansion defined by (7). For instance,
we may calculate the binomial sequence

(
n
k

)
(k = 0, 1, . . . , n) for n ∈ N

by applying Horner’s method to the expansion

xn =
n∑

k=0

(
n

k

)
(x− 1)k.
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