10.1080/0003681YYxxxxxxxx 1563-504X 0003-6811 00002008 January

Characterization of Compactly Supported Refinable Splines With Integer Matrix

Yu-jing Guan ${ }^{\text {a* * }}$ and Tian-xiao He^{b}
${ }^{\text {a }}$ School of Mathematics, Jilin University, Changchun, Jilin 130023, PR China;
${ }^{\text {b }}$ Department of Mathematics and Computer Science
Illinois Wesleyan University, Bloomington, IL 61702-2900, USA

v3.3 released May 2008
August 8, 2009

Abstract

Let M be an integer matrix with absolute values of all its eigenvalues being greater than 1 . We give a characterization of compactly supported M-refinable splines f and the conditions that the shifts of f form a Riesz basis. spline; refinement; blockwise polynomial; Riesz basis; simplex decomposition 42C40 (39A70, 41A15, 41A30, 65D07, 65D18, 65T60)

1 Introduction and Main Results

Let $M \in \mathbb{Z}^{n \times n}$ be an integer matrix with absolute values of all its eigenvalues being greater than 1 . A function f defined on \mathbb{R}^{n} is M-refinable if there exists a finite sequence $\left\{h_{j}\right\}$ such that

$$
\begin{equation*}
f(x)=\sum_{j \in \mathbb{Z}^{n}} h_{j} f(M x-j) \tag{1}
\end{equation*}
$$

In [1], Lawton et al considered the one-dimensional setting of the scaling coefficient M being an integer greater than 1 . They gave a characterization of the refinable univariate splines and proved that only the shifts of B-spline with the smallest support form a Riesz basis. In [2] Sun extended the partial result of [1] to $M=m I$ using Box-splines, where $m \in \mathbb{Z}, m>1$, and I is the

[^0]identity matrix, namely, an $M=m I$-refinable and blockwise polynomial with compact support is a finite linear combination of a box-spline and its translates. In [3],Y.Guan et al. further gave a characterization of $M=m I$-refinable and blockwise polynomial with compact support forming a Riesz basis. More relative results can be found in the survey $[4,5]$ by Goodman et al. In this paper, we generalize the results of $[1,2,3]$ to the setting of a certain class of scaling matrices, namely. We shall derive a characterization of functions (1) when M is a matrix with integer entries.

In the following, the multi-index notational system is adopted. First, throughout the paper, all vectors in \mathbb{R}^{n} or \mathbb{C}^{n} are column vectors.

Let $\omega \in \mathbb{R}^{n}$ and $z \in \mathbb{C}^{n}$ with components $\omega_{j} \in \mathbb{R}$ and $z_{j}:=\exp \left(i \omega_{j}\right)(j=$ $1,2, \ldots, n)$, respectively, where $i=\sqrt{-1}$. Denote the transpose of vector k and matrix M by k^{\prime} and M^{\prime}, respectively. We also write $z=\left(\exp \left(i \omega_{1}\right), \exp \left(i \omega_{2}\right), \ldots, \exp \left(i \omega_{n}\right)\right)^{\prime}=$ $\left(z_{1}, z_{2}, \cdots, z_{n}\right)^{\prime}$ as $z \equiv \exp (i \omega)$ for convenience when it is clear in the content. For $k \in \mathbb{Z}^{n}$, we denote $z^{k}=z^{k^{\prime}}:=\prod_{j=1}^{n} z_{j}^{k_{j}}$. For an integer matrix M, we denote $z^{M}:=\exp (i(M \omega))$. Obviously, $z^{k M}=z^{M^{\prime} k^{\prime}}=\exp \left(i k^{\prime} M \omega\right)$.

A trigonometric polynomial $R(\omega)$ is said to be M-closed if $R(M \omega) / R(\omega)$ is a trigonometric polynomial too.

Let $s \geq n$ and $A=\left(a_{1}, a_{2}, \cdots, a_{s}\right)$ a nonsingular matrix with integer entries and column vectors $a_{j} \in \mathbb{Z}^{n}, j=1,2, \cdots, s$. By means of Fourier transform, we can define box splines $B_{A}(x)$ of dimension n as follows:

$$
\begin{equation*}
\hat{B}_{A}(\omega)=\prod_{j=1}^{s} \frac{\exp \left(i a_{j}^{\prime} \omega\right)-1}{i a_{j}^{\prime} \omega} \tag{2}
\end{equation*}
$$

A function ϕ is called a blockwise polynomial if there exists a simplex decomposition $\left\{\Delta_{j}\right\}_{1}^{L}$ of ϕ, such that ϕ is a polynomial on every simplex. A standard simplex is defined as $\Delta^{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n} ; 0 \leq x_{j} \leq 1, \sum_{j=1}^{n} x_{j} \leq 1\right\}$, and a simplex Δ is an affine transform of the standard simplex, $\Delta=A \Delta^{0}+c$, where A is nonsingular and $c \in \mathbb{R}^{n}$. We say that $\left\{\Delta_{j}\right\}_{j=1}^{L}$ is a simplex decomposition of a bounded set E if $\bigcup_{j=1}^{L} \Delta_{j} \supseteq E$, where Δ_{j} is a simplex for every $1 \leq j \leq L$, and $\Delta_{j} \bigcap \Delta_{l}$ has Lebesgue measure zero when $j \neq l$. For the adjacent Δ_{j} and Δ_{l}, let E be their $n-1$ dimensional common boundary lying on the plane π. Then we call π a singular hyperplane of f if $\left.f(x)\right|_{\Delta_{j}}$ and $\left.f(x)\right|_{\Delta_{l}}$ are different polynomials. Hence, all the planes passing through the $n-1$ dimensional boundaries of the simplex support of a block polynomial function are also called singular hyperplane of the blockwise polynomial.

Let $s \geq n, a_{1}, a_{2}, \cdots, a_{s} \in \mathbb{Z}^{n}$. We say a matrix $A=\left(a_{1}, a_{2}, \cdots, a_{s}\right)$ is unimodular if any matrix generated by any n linearly independent column vectors of the matrix A has determinant value ± 1.

Theorem 1.1. Let $n \geq 2$. Suppose ϕ is a compact support blockwise polynomial, $D=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{n}}\right)$, and M is a matrix with integer entries and the absolute values of all its eigenvalues are greater than 1. Then we have the following results:
a). ϕ satisfies equation (1) if and only if it can be written as

$$
\begin{equation*}
\phi(x)=P(D)\left(\sum_{j} r_{j} B_{A}\left(x-j-\left(M^{k}-I\right)^{-1} l\right)\right) \tag{3}
\end{equation*}
$$

and

1. $B_{A}(x)$ is a box spline defined on $A=\left(a_{1}, a_{2}, \cdots, a_{s}\right)$, where A satisfies $\prod_{j=1}^{s}\left(M a_{j}\right)^{\prime} \omega=c_{1} \prod_{j=1}^{s} a_{j}^{\prime} \omega$ for some constant c_{1};
2. k is a positive integer and satisfies $\left(M^{\prime}\right)^{k} e_{j}=\lambda_{j} e_{j}$ for the normal vector e_{j} of every singular hyperplane of ϕ;
3. $l \in \mathbb{Z}^{n}$ satisfies $(M-I)\left(M^{k}-I\right)^{-1} l \in \mathbb{Z}^{n}$;
4. P is a polynomial, and satisfies $P\left(M^{\prime} \omega\right)=c_{2} P(\omega)$, where $P(\omega)$ and $\prod_{j=1}^{s} a_{j}^{\prime} \omega$ don't have common factor, and c_{2} is a constant;
5. $R(z)=R(\exp (i \omega))=\sum_{j} r_{j} z^{j}$ satisfies that $R(z) \prod_{j=1}^{s}\left(z^{a_{j}}-1\right)$ is M^{\prime} closed trigonometric polynomial;
b). Furthermore, integer shifts of ϕ form Riesz basis if and only if P is polynomial of zero degree, A is unimodular, and $R(z)$ is a monomial.

2 The Proof of Main Results

A polynomial P is called a principal homogeneous polynomial if there exists a natural number k and $a_{j} \in \mathbb{R}^{n}, 1 \leq j \leq k$, such that $P(\omega)=\prod_{j=1}^{k} a_{j}{ }^{\prime} \omega$. In addition, for real b_{j} and complex a_{j}, we call $\sum_{j} a_{j} \exp \left(i b_{j} \omega\right)$ a generalized trigonometric polynomial. Clearly, the following result holds.

Lemma 2.1. The fourier transform of $\phi(M x-k)$ is $|\operatorname{det}(M)|^{-1} \exp \left(-i \omega^{\prime}\right.$. $\left.\left(M^{-1} k\right)\right) \hat{\phi}\left(\left(M^{-1}\right)^{\prime} \omega\right)$.

Proposition 2.2. Let f be a blockwise polynomial with compact support satisfying Equation (1). Then there exists an integer $k \in \mathbb{Z}$ such that $\left(M^{\prime}\right)^{k} e_{j}=\lambda_{j} e_{j}$, where $\lambda_{j} \in \mathbb{R}$, holds for the normal vectors e_{j} of all singular hyperplanes of f.

Proof. Let $E=\left\{e_{j}\right\}$ be a finite set of the normal vectors e_{j} of all singular hyperplanes of $f . \forall e_{j} \in E$, there exists a hyperplane $e_{j}^{\prime} x-c_{j}=0$ on which f is singular. And expression (1) implies that both sides of the equation have the same singularities. Hence, there exists an integer l on the right-hand side such that f is singular at the hyperplane $e_{j}^{\prime}(M x-l)-c_{j}=0=\left(M^{\prime} e_{j}\right)^{\prime} x-e_{j}^{\prime} l-c_{j}$. Thus, $M^{\prime} e_{j}$ is also the normal vector of a singular hyperplane of $f . M$ is one-to-one mapping from E to itself because M is not singular. Hence, from the finiteness of E there exist an integer k such that $\left(M^{\prime}\right)^{k} e_{j}=\lambda_{j} e_{j}$ for every $e_{j} \in E$. Furthermore, since both M and e_{j} are real, λ_{j} is also real.

Proposition 2.3. Let f be an M-refinable blockwise polynomial with compact support, then its fourier transform \hat{f} can be written as $\hat{f}(\omega)=\sum \frac{q_{n}(z)}{p_{n}(\omega)}$, where $p_{n}(\omega)$ are the principal homogeneous polynomials and $q_{n}(z)$ are the generalized trigonometric polynomials. In addition, there exist k such that $p_{n}\left(\left(M^{\prime}\right)^{-k} \omega\right)=$ $c_{n} p_{n}(\omega)$ for some constants $c_{n}, n=1,2, \cdots$.

Proof. Let $\left\{e_{j}\right\}$ be the finite set of the normal vectors of singular hyperplanes of f. From proposition 2.2 , there exists an integer k such that $\left(M^{\prime}\right)^{k} e_{j}=\lambda_{j} e_{j}$ for every e_{j}. Denote by $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ the different eigenvalue of $\left(M^{\prime}\right)^{k}$, where $m \leq n$, and by $V_{1}, V_{2}, \cdots, V_{m}$ the corresponding eigenspaces of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$. For any j, since e_{j} is the eigenvector of $\left(M^{\prime}\right)^{k}$, there exists l_{j} such that $e_{j} \in V_{l_{j}}$. Obviously, f is compactly supported and its support must be a polyhedral in \mathbb{R}^{n}. So every boundary of the polyhedral must be on a singular plane of f and set $\left\{e_{j}\right\}$ spans \mathbb{R}^{n}. Furthermore, every V_{j} has a basis E_{j} consisting of the elements of $\left\{e_{j}\right\}$. Hence, we can write $E_{j}=\left(e_{j, i}\right), e_{j, i} \in\left\{e_{l} \mid e_{l} \in V_{j}\right\}, i=1,2, \cdots, m_{j}$. Therefore, we obtain a basis $E=\left(E_{1}, E_{2}, \cdots, E_{m}\right)$ of $V=V_{1}+V_{2}+\cdots+V_{m}$, which consists of the elements of $\left\{e_{j}\right\}$. Let $\tilde{E}=\left(\tilde{E}_{1}, \tilde{E}_{2}, \cdots, \tilde{E}_{m}\right)$, here $E_{l}^{\prime} \tilde{E}_{l}=I$, $l=1,2, \cdots, m$, and $E_{j}^{\prime} \tilde{E}_{l}=0$ when $j \neq l$, so $E^{\prime} \tilde{E}=I$. For every $l=1,2, \ldots, m$, \tilde{E}_{l} spans a space denoted by \tilde{V}_{l} with $\tilde{V}_{l} \perp V_{j}$ when $j \neq l$. Obviously, $V=$ $\tilde{V}_{1}+\tilde{V}_{2}+\cdots+\tilde{V}_{m}$.

For an arbitrary $1 \leq j \leq m$, the intersections of \tilde{V}_{j} and the singular plane of $f(x)$, whose normal vector belongs to $\left\{e_{l} \mid e_{l} \in V_{j}\right\}$, form a polyhedral partition of \tilde{V}_{j}. Furthermore, we can establish a simplex partition $\left\{\tilde{\Delta}_{j, l}\right\}$ from the polyhedral decomposition of \tilde{V}_{j}, so that we obtain a new polyhedral partition $\tilde{\Delta}=\left\{\bigoplus_{j=1}^{m}\left(\sum_{l} \tilde{\Delta}_{j, l}\right)\right\}$ of V.
$\forall l_{1}, l_{2}, \cdots, l_{m}$, we claim that $f(x)$ is a polynomial in the domain $\bigoplus_{s=1}^{m} \tilde{\Delta}_{s, l_{s}}$. In fact, since $f(x)$ is a spline, we only need to prove domain $\bigoplus_{s=1}^{m} \tilde{\Delta}_{s, l_{s}}$ is not divided by any singular hyperplane of $f(x)$, that is, all the point in $\bigoplus_{s=1}^{m} \tilde{\Delta}_{s, l_{s}}$ are on the same side of any singular hyperplane of $f(x)$. Let e_{j} be an arbitrary normal vector in $V_{l_{j}}$, and let the corresponding singular hyperplanes be $<e_{j}, x>=c_{j, i}, i=1,2, \cdots$. Denote $x=\sum_{s=1}^{m} \tilde{E}_{s} \alpha_{s}$ and $y=\sum_{s=1}^{m} \tilde{E}_{s} \beta_{s}$, where $\tilde{E}_{s} \alpha_{s}, \tilde{E}_{s} \beta_{s} \in \tilde{\Delta}_{s, l_{s}}, s=1,2, \cdots, m . \forall x, y \in \bigoplus_{s=1}^{m} \tilde{\Delta}_{s, l_{s}}$ and $i=1,2, \ldots$, we have $\left(<x, e_{j}>-c_{j, i}\right)\left(<y, e_{j}>-c_{j, i}\right)=\left(<\tilde{E}_{l_{j}} \alpha_{l_{j}}, e_{j}>-c_{j, i}\right)\left(<\tilde{E}_{l_{j}} \beta_{l_{j}}, e_{j}>\right.$ $\left.-c_{j, i}\right) \geq 0$. The last inequality can be obtained from the simplex partition of $\tilde{V}_{l_{j}}$ 。

If $x \in V$, we may write $x=\tilde{E} \beta$ with some $\beta \in \mathbb{R}^{n}$. Furthermore we have $\tilde{\Delta}_{j, l}=\tilde{E} \Delta_{j, l}, \tilde{\Delta}=\tilde{E} \Delta$ and $f(\tilde{E} \beta)$ is a polynomial on $\bigotimes_{j=1}^{m} \Delta_{j, l_{j}}$. Thus,

$$
\begin{aligned}
\hat{f} & =\int_{\mathbb{R}^{n}} f(x) \exp \left(-i x^{\prime} \omega\right) d x \\
& \left.=\operatorname{det}(\tilde{E}) \int_{\mathbb{R}^{n}} f(\tilde{E} \beta) \exp \left(-i \beta^{\prime} \tilde{E}^{\prime} \omega\right)\right) d \beta
\end{aligned}
$$

Let $\xi=\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}, \cdots, \xi_{m}^{\prime}\right)^{\prime}=\tilde{E}^{\prime} \omega=\left(\tilde{E}_{1}, \tilde{E}_{2}, \cdots, \tilde{E}_{m}\right)^{\prime} \omega$. Then

$$
\begin{aligned}
\hat{f} & =\operatorname{det}(\tilde{E}) \int_{\bigotimes_{j=1}^{m}\left(\sum_{l} \Delta_{j, l}\right)} f(\tilde{E} \beta) \exp \left(-i \beta^{\prime} \xi\right) d \beta \\
& =\operatorname{det}(\tilde{E}) \int_{\sum_{l_{1}} \cdots \sum_{l_{m}} \otimes_{j=1}^{m} \Delta_{j, l_{j}}} f(\tilde{E} \beta) \exp \left(-i \beta^{\prime} \xi\right) d \beta \\
& =\operatorname{det}(\tilde{E}) \sum_{l_{1}} \cdots \sum_{l_{m}} \int_{\bigotimes_{j=1}^{m} \Delta_{j, l_{j}}} f(\tilde{E} \beta) \exp \left(-i \beta^{\prime} \xi\right) d \beta
\end{aligned}
$$

If f is a polynomial on $\bigotimes_{j=1}^{m} \Delta_{j, l_{j}}$ we have

$$
\begin{aligned}
\hat{f} & =\operatorname{det}(\tilde{E}) \sum_{l_{1}} \cdots \sum_{l_{m}} \int_{\Delta_{1, l_{1}}} \cdots \int_{\Delta_{m, l_{m}}} \sum_{n} a_{n}\left(l_{1}, l_{2}, \cdots, l_{m}\right) \beta^{n} \exp \left(-i \beta^{\prime} \xi\right) d \beta \\
& =\operatorname{det}(\tilde{E}) \sum_{l_{1}} \cdots \sum_{l_{m}} \sum_{n} a_{n}\left(l_{1}, l_{2}, \cdots, l_{m}\right) \prod_{j=1}^{m} \int_{\Delta_{j, l_{j}}} \beta_{j}^{n_{j}} \exp \left(-i \beta_{j}^{\prime} \xi_{j}\right) d \beta_{j}
\end{aligned}
$$

After simplifying above sum, from the lemma 1 in [2], there exist principle homogenous polynomials $p_{k, j}\left(\xi_{j}\right)$ in terms of the variants ξ_{j} and generalized trigonometric polynomials $q_{k, j}\left(\exp \left(-i \xi_{j}\right)\right)$ such that

$$
\begin{aligned}
\hat{f} & =\sum_{n} \prod_{j=1}^{m} \frac{q_{n, j}\left(\exp \left(-i \xi_{j}\right)\right)}{p_{n, j}\left(\xi_{j}\right)} \\
& =\sum_{n} \prod_{j=1}^{m} \frac{q_{n, j}\left(\exp \left(-i \tilde{E}_{j}^{\prime} \omega\right)\right)}{p_{n, j}\left(\tilde{E}_{j}^{\prime} \omega\right)} \\
& =\sum_{n} \frac{q_{n}(\exp (-i \omega))}{\prod_{j=1} p_{n, j}\left(\tilde{E}_{j}^{\prime} \omega\right)},
\end{aligned}
$$

where $q_{n}(\exp (-i \omega))=\prod_{j=1}^{m} q_{n, j}\left(\exp \left(-i \tilde{E}_{j}^{\prime} \omega\right)\right)$ are the generalized trigonometric polynomials.

From the above discussion we know $\left(M^{\prime}\right)^{k} E=E \lambda$, where λ is a diagonal matrix, and $\left(M^{\prime}\right)^{k} E_{j}=\alpha_{j} E_{j}$. Furthermore, $M^{k} \tilde{E}=\tilde{E} \lambda$ and $M^{k} \tilde{E}_{j}=\alpha_{j} \tilde{E}_{j}$. Let $p_{n}(\omega)=\prod_{j} p_{n, j}\left(\tilde{E}_{j}^{\prime} \omega\right)$, then $p_{n}\left(\left(M^{\prime}\right)^{-k} \omega\right)=\prod_{j} p_{n, j}\left(\tilde{E}_{j}^{\prime}\left(M^{\prime}\right)^{-k} \omega\right)=\prod_{j} p_{n, j}$ $\left(\left(M^{-k} \tilde{E}_{j}\right)^{\prime} \omega\right)=\prod_{j} p_{n, j}\left(\alpha_{j}^{-1} \tilde{E}_{j}^{\prime} \omega\right)=c_{n} \prod_{j} p_{n, j}\left(\tilde{E}_{j}^{\prime} \omega\right)=c_{n} p_{n}(\omega)$. Obviously, $p_{n}(\omega)$ is a principal homogeneous polynomial because $p_{n, j}(\omega)$ are principal homogeneous polynomials.

Lemma 2.4. Let $P_{j}(j=1,2)$ be two nonzero polynomials, and $\operatorname{let} T_{j}(j=1,2)$ be two nonzero generalized trigonometric polynomials. If P_{j} and $T_{j}(j=1,2)$ satisfy $P_{1}(\omega) T_{1}(\omega)=P_{2}(\omega) T_{2}(\omega)$, then $P_{1}(\omega)=C P_{2}(\omega)$ and $T_{1}(\omega)=C^{-1} T_{2}(\omega)$ for some complex number C.

Proof. Let $\hat{f}_{1}=P_{1}(\omega) T_{1}(\omega), \hat{f}_{2}=P_{2}(\omega) T_{2}(\omega)$ be two generalized functions, where $T_{1}(\omega)=\sum_{j=1}^{K} c_{1, j} \exp \left(-i a_{j} \omega\right), T_{2}(\omega)=\sum_{j=1}^{L} c_{2, j} \exp \left(-i b_{j} \omega\right),\left\{a_{j}\right\}_{j=1}^{K}$
are K different real numbers, and $\left\{b_{j}\right\}_{j=1}^{L}$ are L different real numbers. Denote $Q_{1}(i \omega)=P_{1}(\omega), Q_{2}(i \omega)=P_{2}(\omega)$, and $D=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{n}}\right)$. Then $f_{1}=$ $Q_{1}(D) \sum_{j=1}^{K} c_{1, j} \delta\left(x-a_{j}\right)$ and $f_{2}=Q_{2}(D) \sum_{j=1}^{L} c_{2, j} \delta\left(x-b_{j}\right)$. Thus, for an arbitrary infinitely differentiable function ϕ with compact support, we have $0=\left\langle\hat{f}_{1}-\hat{f}_{2}, \hat{\phi}\right\rangle=\left\langle f_{1}-f_{2}, \phi\right\rangle=\left\langle\sum_{j=1}^{K} c_{1, j} \delta\left(x-a_{j}\right), Q_{1}(D) \phi\right\rangle-\left\langle\sum_{j=1}^{L} c_{2, j} \delta(x-\right.$ $\left.\left.b_{j}\right), Q_{2}(D) \phi\right\rangle$. So $\left\langle\sum_{j=1}^{K} c_{1, j} \delta\left(x-a_{j}\right), Q_{1}(D) \phi\right\rangle=\left\langle\sum_{j=1}^{L} c_{2, j} \delta\left(x-b_{j}\right), Q_{2}(D) \phi\right\rangle$. Since ϕ is arbitrary, we obtain $L=K, c_{1, j}=C^{-1} c_{2, j}(j=1,2, \cdots, K), Q_{1}=$ $C Q_{2}$ for some constant C , so the lemma is proved.

Lemma 2.5. Let $M \in \mathbb{Z}^{n \times n}$ be a matrix of integer entries, and let all of its eigenvalue be real and lager than 1. Suppose $T(\omega)$ is a nonzero generalized trigonometric polynomial, and $H(\omega)$ is a nonzero trigonometric polynomial defined on \mathbb{R}^{n}. If

$$
\begin{equation*}
T(M \omega)=H(\omega) T(\omega) \tag{4}
\end{equation*}
$$

then $\exp \left(-i l(M-I)^{-1} \omega\right) T(\omega)$ is a trigonometric polynomial for some $l \in \mathbb{Z}^{n}$.
Proof. One can write

$$
\begin{equation*}
T(\omega)=\sum_{j} \exp \left(i x_{j}^{\prime} \omega\right) T_{j}(\omega)=\sum_{k} \exp \left(i y_{k}^{\prime} \omega\right) Q_{k}(\omega) \tag{5}
\end{equation*}
$$

where $T_{j}(\omega)$ is a trigonometric polynomial, $x_{j}-x_{\tilde{j}} \notin \mathbb{Z}^{n}$ for $j \neq \tilde{j}$, and $Q_{k}(M \omega)$ is a trigonometric polynomial with $M^{\prime}\left(y_{k}-y_{\tilde{k}}\right) \notin \mathbb{Z}^{n}$ when $k \neq \tilde{k}$. So from (4) and (5) we have

$$
\begin{equation*}
\sum_{k} \exp \left(i y_{k}^{\prime} M \omega\right) Q_{k}(M \omega)=\sum_{j} \exp \left(i x_{j}^{\prime} \omega\right) H(\omega) T_{j}(\omega) \tag{6}
\end{equation*}
$$

For a given k, suppose $M^{\prime} y_{k}-x_{j} \in \mathbb{Z}^{n}$, then for all $\tilde{j} \neq j$ we have $M^{\prime} y_{k}-x_{\tilde{j}} \notin \mathbb{Z}^{n}$ because $x_{j}-x_{\tilde{j}} \in \mathbb{Z}^{n}$. Similarly, there is only one y_{k} satisfying $M^{\prime} y_{k}-x_{j} \in \mathbb{Z}^{n}$ for all x_{j}. So the numbers of the elements in sets $\left\{x_{j}\right\}$ and $\left\{y_{k}\right\}$ are equal. From $H \neq 0$ and (6), we have

$$
\begin{equation*}
\exp \left(i y_{k}^{\prime} M \omega\right) Q_{k}(M \omega)=\exp \left(i x_{j}^{\prime} \omega\right) H(\omega) T_{j}(\omega) \tag{7}
\end{equation*}
$$

In addition, from (5) we have

$$
\begin{equation*}
T(\omega)=\sum_{j} \exp \left(i x_{j}^{\prime} \omega\right) T_{j}(\omega) \tag{8}
\end{equation*}
$$

where $\left\{x_{j}\right\}$ satisfies $M^{\prime}\left(x_{j}-x_{\tilde{j}}\right) \notin \mathbb{Z}^{n}$ when $j \neq \tilde{j}$. Hence for all $x_{j}, \exists x_{\tilde{j}}$ and $s \in \mathbb{Z}^{n}$ satisfy $M^{\prime} x_{j}=s+x_{\tilde{j}}$ and

$$
\begin{equation*}
\exp \left(i x_{j}^{\prime} M \omega\right) T_{j}(M \omega)=\exp \left(i x_{\tilde{j}}^{\prime} \omega\right) H(\omega) T_{\tilde{j}}(\omega) \tag{9}
\end{equation*}
$$

Define map $\mathcal{M} x_{j}=x_{\tilde{j}}$, where $x_{\tilde{j}}$ is chosen as above. Then \mathcal{M} is a well-defined one-to-one map on $\left\{x_{j}\right\}$. We also define $X_{s}=\left\{\mathcal{M}^{k} x_{s} ; k=1,2, \cdots\right\}$ for every x_{s}. Then $X_{s}=X_{\tilde{s}}$ or $X_{s} \cap X_{\tilde{s}}=\emptyset$. Thus we can choose finite numbers of X_{l} such that $\left\{x_{j}\right\}=\bigcup_{l} X_{l}$ and $X_{l} \bigcap X_{\tilde{l}}=\emptyset$. Therefore the lemma is true if we can prove that X_{l} is a singleton for every l, and there exists only one X_{l} in the decomposition of $\left\{x_{j}\right\}$.

First we prove that there is only one element in X_{l} by using the method of contradiction. Assume $X_{l}=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}, k \geq 2$. Then for $1 \leq s \leq k$, $\exists \tau_{s} \in \mathbb{Z}^{n}$ such that

$$
\begin{equation*}
T_{s}(M \omega)=\exp \left(i \tau_{s}^{\prime} \omega\right) H(\omega) T_{s+1}(\omega) \tag{10}
\end{equation*}
$$

Let $T_{1}(\omega)=T_{k+1}(\omega)$. Then

$$
\begin{equation*}
T_{s}\left(M^{k} \omega\right)=\exp \left(i{\tilde{\tau_{s}}}^{\prime} \omega\right) T_{s}(\omega) \prod_{j=0}^{k-1} H\left(M^{j} \omega\right) \tag{11}
\end{equation*}
$$

where $\tilde{\tau}_{s} \in \mathbb{Z}^{n}$. Denote $\tilde{H}(\omega)=\prod_{j=0}^{k-1} H\left(M^{j} \omega\right)$ and $\tilde{M}=M^{k}$. We have

$$
\begin{equation*}
T_{s}(\tilde{M} \omega)=\exp \left(i \tilde{\tau}_{s}^{\prime} \omega\right) T_{s}(\omega) \tilde{H}(\omega) \tag{12}
\end{equation*}
$$

Let $e_{1}, e_{2}, \cdots, e_{n}$ be the linearly independent eigenvectors of \tilde{M}^{-1}. And the corresponding eigenvalues are denoted by $\rho_{1}, \rho_{2}, \cdots, \rho_{n}$ that satisfy $1>\left|\rho_{1}\right|=$ $\left|\rho_{2}\right|=\cdots=\left|\rho_{t}\right|>\left|\rho_{t+1}\right| \geq \cdots \geq\left|\rho_{n}\right|>0$. Thus, the claim is obtained from the fact of that M is nonsingular, and the absolute value of all its eigenvalues are greater than 1. Hence there exists a invertible transform $\omega=\sum_{j} \alpha_{j} e_{j}=$ $E \alpha$, where $E=\left(e_{1}, e_{2}, \cdots, e_{n}\right)$. Let the Taylor expansion of $T_{s}(\omega)$ with the remainder be written as

$$
\begin{equation*}
T_{s}(\omega)=T_{s}(E \alpha)=p_{1}(\alpha)+p_{2}(\alpha)+p_{3}(\alpha) \tag{13}
\end{equation*}
$$

where $p_{1}(\alpha)+p_{2}(\alpha) \neq 0$ is homogeneous polynomial with degree K, in which $p_{1}(\alpha)$ will be described later, and $p_{2}(\alpha)$ is the difference of the Taylor expansion of $T_{s}(\omega)$ and $p_{1}(\alpha)$, and the remainder $\left|p_{3}(\alpha)\right| \leq C|\alpha|^{K+1}$. Assume in $p_{1}(\alpha)+p_{2}(\alpha)$ the degrees of $\alpha_{i_{1}}, \alpha_{i_{2}}, \cdots, \alpha_{i_{j}}$ are nonzero, and denote $\tilde{i}_{1}=$ $\min \left\{i_{1}, i_{2}, \cdots, i_{j}\right\}$. Hence, for $p_{1}(\alpha)+p_{2}(\alpha)$, the degrees of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\tilde{i}-1}$ are zero, where $p_{1}(\alpha)$ is a polynomial in terms of the variants, whose corresponding eigenvalue's absolute value is $\left|\rho_{\tilde{i}_{1}}\right|\left(\alpha_{i} \rightarrow e_{i} \rightarrow \rho_{i}\right)$. For convenience, assume $\tilde{i}_{1}=1$, then $p_{1}(\alpha)$ is a homogeneous polynomial with degree K of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t}$ and $p_{2}(\alpha)$ is also a homogeneous polynomial with degree K, but its every monomial has nonzero degree of $\alpha_{t+1}, \cdots, \alpha_{n}$. Let $\rho \in \mathbb{C}^{n}$, write $(\rho \cdot \alpha)=\left(\rho_{1} \alpha_{1}, \rho_{2} \alpha_{2}, \cdots, \rho_{n} \alpha_{n}\right)^{T}$. Therefore,

$$
T_{s}\left(\tilde{M}^{-p}(\omega)\right)=T_{s}\left(E\left(\rho^{p} \cdot \alpha\right)\right)=\rho_{1}^{K p} p_{1}(\alpha)+p_{2}\left(E\left(\rho^{p} \cdot \alpha\right)\right)+O\left(\left|\rho_{1}\right|^{p(K+1)}\right)
$$

which implies

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{T_{s}\left(\tilde{M}^{-p}(\omega)\right)}{\rho_{1}^{K p}}=\lim _{p \rightarrow \infty} \frac{T_{s}\left(E\left(\rho^{p} \cdot \alpha\right)\right)}{\rho_{1}^{K p}}=p_{1}(\alpha) \tag{14}
\end{equation*}
$$

Indeed the above formula holds due to $p_{2}\left(E\left(\rho^{p} \cdot \alpha\right)\right) / \rho_{1}^{p K} \rightarrow 0$ as $p \rightarrow \infty$, which can be proved as follows: For every monomial of p_{2}, the degree of $\alpha_{t+1}, \cdots, \alpha_{n}$ is non-zero. Write $p_{2}\left(E\left(\rho^{p} \cdot \alpha\right)\right)=\sum_{j} \beta_{j}\left(\rho^{p} \cdot \alpha\right)^{j}$, then $\left|p_{2}\left(E\left(\rho^{p} \cdot \alpha\right)\right) / \rho_{1}^{p K}\right|=$ $\left|\sum_{j} \beta_{j}\left(\frac{\rho^{p}}{\rho_{1}^{p}} \cdot \alpha\right)^{j}\right| \leq \sum_{j}\left|\beta_{j} \alpha^{j}\right|\left|\frac{\rho_{t+1}}{\rho_{1}}\right|^{p} \rightarrow 0$ as $p \rightarrow \infty$.

For $1 \leq s \leq k$, from (12) we have

$$
\begin{aligned}
T_{s}(\omega) & =T_{s}(E \alpha)=\exp \left(i \tau_{s}^{\prime} E(\rho \cdot \alpha)\right) \tilde{H}\left(\tilde{M}^{-1} E \alpha\right) T_{s}\left(\tilde{M}^{-1} E \alpha\right) \\
& =\exp \left(i \tau_{s}^{\prime} E\left(\left(\sum_{j=1}^{p} \rho^{j}\right) \cdot \alpha\right)\right) T_{s}\left(\tilde{M}^{-p} E \alpha\right) \prod_{j=1}^{p} \tilde{H}\left(\tilde{M}^{-j} E \alpha\right)
\end{aligned}
$$

Since $\tilde{H}(\omega)$ is a trigonometric polynomial, we have

$$
\begin{aligned}
& T_{s}(\omega) \exp \left(i \tau_{1}^{\prime} E\left(\left(\sum_{j=1}^{p} \rho^{j}\right) \cdot \alpha\right)\right) T_{1}\left(\tilde{M}^{-p} E \alpha\right) \\
= & T_{1}(\omega) \exp \left(i \tau_{s}^{\prime} E\left(\left(\sum_{j=1}^{p} \rho^{j}\right) \cdot \alpha\right)\right) T_{s}\left(\tilde{M}^{-p} E \alpha\right)
\end{aligned}
$$

a.e. Divide the two sides of the above formula by $\rho_{1}^{K p}$, and let $p \rightarrow \infty$. From (14) there exist $\beta_{1}, \beta_{s} \in \mathbb{R}^{n}$ as well as polynomials P_{s} and P_{1} such that

$$
\begin{equation*}
\exp \left(i \beta_{s}^{\prime} \omega\right) P_{s}\left(E^{-1} \omega\right) T_{1}(\omega)=\exp \left(i \beta_{1}^{\prime} \omega\right) P_{1}\left(E^{-1} \omega\right) T_{s}(\omega) \tag{15}
\end{equation*}
$$

for $2 \leq s \leq k$. From lemma 3 in [2], there exist $j_{s} \in \mathbb{Z}^{n}$ and a constant c_{s} such that $P_{s}(\omega)=C_{s} P_{1}(\omega)$ and $T_{s}(\omega)=C_{s} \exp \left(i j_{s} \omega\right) T_{1}(\omega)$ for $1 \leq s \leq k$. Without losing the generality, let $j_{s}=0$ by selecting appropriate x_{j}. Thus,

$$
\begin{aligned}
& C_{s} \exp \left(i x_{s}^{\prime} \omega\right) T_{1}(\omega)=\exp \left(i x_{s}^{\prime} \omega\right) T_{s}(\omega) \\
= & \exp \left(i x_{s+1}^{\prime} M^{-1} \omega\right) H\left(M^{-1} \omega\right) T_{s+1}\left(M^{-1} \omega\right) \\
= & \exp \left(i x_{s+1}^{\prime} M^{-1} \omega\right) H\left(M^{-1} \omega\right) T_{1}\left(M^{-1} \omega\right) C_{s+1}
\end{aligned}
$$

From (9) and the definition of \mathcal{M}, there exists a fixed $j \in \mathbb{Z}^{n}$ such that $-\left(M^{-1}\right)^{\prime} x_{s+1}+x_{s}=\left(M^{-1}\right)^{\prime} j$ for all $1 \leq s \leq k$. Therefore, using $x_{k+1}=x_{1}$ yields $-x_{s+1}+M^{\prime} x_{s}=j$ for all $1 \leq s \leq k$. By a direct calculating, $x_{s}=$ $\left(M^{\prime}-I\right)^{-1} j$ satisfies the above request and it is only one solution when

$$
\left(\begin{array}{cccc}
M^{\prime} & -I & & \\
& \ddots & \ddots & \\
& & \ddots & -I \\
-I & & & M^{\prime}
\end{array}\right)
$$

is nonsingular. Furthermore, $M^{\prime}\left(x_{s}-x_{\tilde{s}}\right) \in \mathbb{Z}^{n}$ for all s and \tilde{s}. This is inconsistent with $M^{\prime}\left(x_{s}-x_{\tilde{s}}\right) \notin \mathbb{Z}^{n}$ as $s \neq \tilde{s}$, so the assumption is wrong, that is, there is only one element for every X_{l}.

Using the above argument and from (9) we obtain

$$
\begin{equation*}
\exp \left(i x_{j}^{\prime} \omega\right) T_{j}(\omega)=\exp \left(i x_{j}^{\prime} M^{-1} \omega\right) H\left(M^{-1} \omega\right) T_{j}\left(M^{-1} \omega\right) \tag{16}
\end{equation*}
$$

similarly as (15), we also have

$$
\begin{equation*}
\exp \left(i \beta_{s}^{\prime} \omega\right) P_{s}\left(E^{\prime} \omega\right) T_{1}(\omega)=\exp \left(i \beta_{1}^{\prime} \omega\right) P_{1}\left(E^{\prime} \omega\right) T_{s}(\omega) \tag{17}
\end{equation*}
$$

Hence, from lemma 3 in [2], $T_{j}(\omega)=C_{j} \exp \left(i k_{j} \omega\right) T_{1}(\omega), k_{j} \in \mathbb{Z}^{n}$. Choosing an appropriate x_{j} one may have $k_{j}=0$. Then, for all j, from (16) we have $\exp \left(i x_{j}^{\prime} \omega\right) T_{1}(\omega)=\exp \left(i x_{j}^{\prime} M^{-1} \omega\right) H\left(M^{-1} \omega\right) T_{1}\left(M^{-1} \omega\right)$, which implies $x_{j}-x_{1} \in$ \mathbb{Z}^{n}, this contradiction completes the proof of the lemma.

Proposition 2.6. Let M be a matrix of integer entries, and all of its eigenvalue be real and lager than 1. Then for a given nonzero trigonometric polynomial $H(z)$, if $q_{1}\left(z^{M}\right)=c_{1} H(z) q_{1}(z)$ and $q_{2}\left(z^{M}\right)=c_{2} H(z) q_{2}(z)$ then $c_{1}=c_{2}$ and there exist a const c such that $q_{1}(z)=c q_{2}(z)$, where c_{1} and c_{2} are two nonzero real constants, and $q_{1}(z)$ and $q_{2}(z)$ are nonzero generalized trigonometric polynomials.

Proof. From the condition, $\forall k \in \mathbb{N}$

$$
q_{1}(z)=c_{1}^{k} q_{1}\left(z^{M^{-k}}\right) \prod_{j=1}^{k} H\left(z^{M^{-j}}\right)
$$

and

$$
q_{2}(z)=c_{2}^{k} q_{2}\left(z^{M^{-k}}\right) \prod_{j=1}^{k} H\left(z^{M^{-j}}\right) .
$$

Thus, $q_{1}(z) c_{2}^{k} q_{2}\left(z^{M^{-k}}\right)=c_{1}^{k} q_{1}\left(z^{M^{-k}}\right) q_{2}(z)$.
Let $\omega=E \alpha$, where $E=\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ is a nonsigular matrix and $M e_{j}=$ $\lambda_{j} e_{j}, j=1,2, \cdots, n, \lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$. Then

$$
z^{M^{-k}}=\exp \left(i M^{-k} \omega\right)=\exp \left(i M^{-k} E \alpha\right)=\exp \left(i E\left(\alpha / \lambda^{k}\right)\right)
$$

Using Taylor series of q_{1}, q_{2} we have for $m \in \mathbb{N}$

$$
q_{1}(z) \sum_{j} a_{j} \alpha^{j}\left(c_{2} \lambda^{-j}\right)^{2 m}=q_{2}(z) \sum_{j} b_{j} \alpha^{j}\left(c_{1} \lambda^{-j}\right)^{2 m}
$$

Divide the both sides of the above equation by $\lambda_{\max }^{2 m}$, where $\lambda_{\max }=\max _{j}$ $\left\{\left|c_{2} \lambda^{-j}\right|,\left|c_{1} \lambda^{-j}\right|\right\}$, and let $m \rightarrow \infty$, then we obtain polynomials $p_{1}(\alpha), p_{2}(\alpha)$ and the equation

$$
q_{1}(z) p_{2}(\alpha)=q_{2}(z) p_{1}(\alpha)
$$

From lemma 2.4 we have $q_{1}(z)=c q_{2}(z)$. Furthermore, we have $c_{1}=c_{2}$, which completes the proof.

Lemma 2.7. Let T be a trigonometric polynomial and $T(\omega)=0$ on plane $a_{j}^{\prime} \omega=0, j=1,2, \cdots, N$. Then there exist trigonometric polynomial $R(\omega)$ and $\alpha_{j} \in \mathbb{R}, j=1,2, \cdots, N$ such that $T(\omega)=R(\omega) \prod_{j=1}^{N}\left(\exp \left(i \alpha_{j} a_{j}^{\prime} \omega\right)-1\right)$, where $\alpha_{j} a_{j} \in \mathbb{Z}^{n}, j=1,2, \cdots, N$.

Proof. This lemma can be proved by a similar argument of the proof of theorem 1 in [2].

In the following we give the proof of Theorem 1.1.
Proof: Sufficiency of the first part: from the fourier transform of (3), it is easy to get that $\hat{\phi}\left(M^{\prime} \omega\right) / \hat{\phi}(\omega)$ is a trigonometric polynomial because ϕ satisfies equation (1).

Necessity of the first part: By proposition 2.2, there exists k such that $\left(M^{\prime}\right)^{k} e_{j}=\lambda_{j} e_{j}$ for the normal vector e_{j} of an arbitrary singular hyper-plane. Let $\tilde{M}=M^{k}$, then f is \tilde{M}-refinable. By proposition 2.3

$$
\begin{equation*}
\hat{\phi}(\omega)=\sum_{j \in \Lambda} \frac{T_{j}(\omega)}{P_{j}(\omega)}=\sum_{s \geq s_{0}} \sum_{\operatorname{deg} P_{j}=s} \frac{T_{j}(\omega)}{P_{j}(\omega)} \tag{18}
\end{equation*}
$$

where $s_{0} \geq 0$ and $\sum_{\operatorname{deg} P_{j}=s_{0}} \frac{T_{j}(\omega)}{P_{j}(\omega)} \neq 0$, and $\left\{P_{j}^{-1}(\omega)\right\}_{\operatorname{deg} P_{j}=s}$ is linearly independent $\left(s=s_{0}, s_{0}+1, s_{0}+2, \cdots\right)$. In addition,

$$
\sum_{s>s_{0}} \sum_{\operatorname{deg} P_{j}=s} \frac{T_{j}(r \omega)}{P_{j}(r \omega)} r^{s_{0}} \rightarrow 0
$$

and

$$
\sum_{s>s_{0}} \sum_{\operatorname{deg} P_{j}=s} \frac{T_{j}\left(r\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)}{P_{j}\left(r\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)} r^{s_{0}} \rightarrow 0
$$

as $r \rightarrow+\infty$ a.e. for all ω on the unit sphere \mathbb{S}^{n-1} in \mathbb{R}^{n}.
From (1), there exists trigonometric polynomial $H(\omega)$ such that $\hat{\phi}(\omega)=$ $H\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right) \hat{\phi}\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)$, and from proposition 2.3 it satisfies

$$
\begin{align*}
& \sum_{\operatorname{deg} P_{j}=s_{0}}\left(\frac{T_{j}(r \omega)}{P_{j}(\omega)}-\frac{H\left(r\left(\tilde{M}^{\prime}\right)^{-1} \omega\right) T_{j}\left(r\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)}{P_{j}\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)}\right) \tag{19}\\
= & \sum_{\operatorname{deg} P_{j}=s_{0}}\left(\frac{T_{j}(r \omega)-\lambda_{j} H\left(r\left(\tilde{M}^{\prime}\right)^{-1} \omega\right) T_{j}\left(r\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)}{P_{j}(\omega)}\right) \rightarrow 0 \tag{20}
\end{align*}
$$

as $r \rightarrow+\infty$ a.e. $\omega \in \mathbb{S}^{n-1}$. Write

$$
T_{j}(\omega)-\lambda_{j} H\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right) T_{j}\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)=\sum_{k} c_{j, k} \exp \left(i y_{k}^{\prime} \omega\right)
$$

and denote

$$
D_{k}(\omega)=\sum_{j} \frac{c_{j, k}}{P_{j}(\omega)}
$$

Hence $\sum_{k} D_{k}(\omega) \exp \left(i y_{k}^{\prime} \omega r\right) \rightarrow 0$ as $r \rightarrow \infty$ for $y_{k}^{\prime} \omega \neq y_{\tilde{k}}^{\prime} \omega \quad$ a.e. $\quad \omega \in$ \mathbb{S}^{n}. By using lemma 2 of [2], we have $D_{k}(\omega)=0 \quad$ a.e. $\quad \omega \in \mathbb{S}^{n}$. Since $\left\{p_{j}^{-1}(\omega)\right\}$ is linearly independent, we have $c_{j, k}=0$ for all j, k. Hence $T_{j}(\omega)=$ $\lambda_{j} H\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right) T_{j}\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)$. Thus,

$$
\sum_{\operatorname{deg} P_{j}=s_{0}}\left(\frac{T_{j}(r \omega)}{P_{j}(\omega)}-\frac{H\left(r\left(\tilde{M}^{\prime}\right)^{-1} \omega\right) T_{j}\left(r\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)}{P_{j}\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)}\right)=0
$$

Recursively, for degree of $P_{j}=s_{0}+1, s_{0}+\underset{\sim}{2}, \cdots, T_{j}(\omega)=\lambda_{j} H\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right) T_{j}\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)$, so that for all T_{j} we have $T_{j}(\omega)=\lambda_{j} H\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right) T_{j}\left(\left(\tilde{M}^{\prime}\right)^{-1} \omega\right)$. By using lemma 2.5 and proposition 2.6 , there exists a trigonometric polynomial $\tilde{T}(\omega)$ such that $T_{j}(\omega)=c_{j} \exp \left(i l^{\prime}\left(\left(\tilde{M}^{\prime}\right)-I\right)^{-1} \omega\right) \tilde{T}(\omega)=c_{j} \exp \left(i l^{\prime}\left(\left(M^{\prime}\right)^{k}-I\right)^{-1} \omega\right) \tilde{T}(\omega)$, which implies

$$
\hat{\phi}(\omega)=\sum_{s \geq s_{0}} \sum_{\operatorname{deg} P_{j}=s} \frac{c_{j}}{P_{j}(\omega)} \exp \left(i l^{\prime}\left(\left(M^{\prime}\right)^{k}-I\right)^{-1} \omega\right) \tilde{T}(\omega)
$$

Let $P(\omega) / Q(\omega)=\sum_{s \geq s_{0}} \sum_{\operatorname{deg} P_{j}=s} \frac{c_{j}}{P_{j}(\omega)}$, where $Q(\omega)$ is a principle homogeneous polynomial, and $P(\omega)$ and $Q(\omega)$ do not have common factors. Hence

$$
Q(\omega) \hat{\phi}(\omega)=\exp \left(i l^{\prime}\left(\left(M^{\prime}\right)^{k}-I\right)^{-1} \omega\right) \tilde{T}(\omega) P(\omega)
$$

Let $Q(\omega)=\prod_{j=1}^{N} a_{j}^{\prime} \omega, 0 \neq a_{j} \in \mathbb{R}^{n}$. Because $\left|\exp \left(i l^{\prime}\left(\left(M^{\prime}\right)^{k}-I\right)^{-1} \omega\right)\right|=1$, and there is no common factors for P and Q, we obtain $\tilde{T}(\omega)=0$ on the hyperplanes of $a_{j}^{\prime} \omega=0, j=1,2, \cdots, N$. From lemma 2.7 we know that there exists a trigonometric polynomial $R(\omega)$ and $\tilde{a}_{j}=\alpha_{j} a_{j} \in \mathbb{Z}^{n}$ such that $\tilde{T}(\omega)=$ $R(\omega) \prod_{j=1}^{N}\left(\exp \left(i \tilde{a}_{j}^{\prime} \omega\right)-1\right)$. Hence we have

$$
\hat{\phi}(\omega)=\exp \left(i l^{\prime}\left(\left(M^{\prime}\right)^{k}-I\right)^{-1} \omega\right) P(\omega) R(\omega) \prod_{j=1}^{N} \frac{\left(\exp \left(i \tilde{a}_{j}^{\prime} \omega\right)-1\right)}{i \tilde{a}_{j}^{\prime} \omega}
$$

Thus, (3) holds. And from (1), there exists a trigonometric polynomial $H(\omega)$, such that

$$
\begin{aligned}
& H(\omega)=\frac{\hat{\phi}\left(\left(M^{\prime}\right) \omega\right)}{\hat{\phi}(\omega)} \\
= & \frac{P\left(\left(M^{\prime}\right) \omega\right)}{P(\omega)} \frac{R\left(\exp \left(i\left(M^{\prime}\right) \omega\right)\right)}{R((\exp (i \omega)))} \exp \left(i l^{\prime}\left(\left(M^{\prime}\right)^{k}-I\right)^{-1}\left(M^{\prime}-I\right) \omega\right) \\
& \times \prod_{j=1}^{N}\left(\frac{\left(\exp \left(i \tilde{a}_{j}^{\prime}\left(M^{\prime}\right) \omega\right)-1\right)}{\left(\exp \left(i \tilde{a}_{j}^{\prime} \omega\right)-1\right)} \frac{a_{j}^{\prime} \omega}{a_{j}^{\prime}\left(M^{\prime}\right) \omega}\right)
\end{aligned}
$$

Let $\tilde{l}=(M-I)\left(\left(M^{k}\right)-I\right)^{-1} l, \tilde{R}(\omega)=R(\exp (i \omega)) \prod_{j=1}^{N}\left(\exp \left(i \tilde{a}_{j}^{\prime} \omega\right)-1\right)$, By using lemma 3 of $[2]$, for $\tilde{l} \in \mathbb{Z}^{n}$

$$
\begin{equation*}
P\left(M^{\prime} \omega\right) \prod_{j=1}^{N} a_{j}^{\prime} \omega=C P(\omega) \prod_{j=1}^{N} a_{j}^{\prime} M^{\prime} \omega \tag{21}
\end{equation*}
$$

$$
\left.\tilde{R}\left(M^{\prime} \omega\right)\right)=C^{-1} H(\omega) \exp \left(i \tilde{l}^{\prime} \omega\right) \tilde{R}(\omega)
$$

From (21) and noting that $Q(\omega)=\prod_{j=1}^{N} a_{j}^{\prime} \omega$ and $P(\omega)$ do not have common factor, we obtain

$$
P\left(M^{\prime} \omega\right)=\tilde{c}_{1} P(\omega) \quad \prod_{j=1}^{N} \tilde{a}_{j}^{\prime} \omega=\tilde{c}_{2} \prod_{j=1}^{N} \tilde{a}_{j}^{\prime} M^{\prime} \omega
$$

Sufficiency of the second part: The sufficiency holds from (3) and lemma 3 of [3].

Necessity of the second part:
First we prove that if there is a nonzero constant term in $P(\omega)$, then $P(\omega)$ must be degree of zero. Let $E=\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ be a nonsingular matrix consisting of the eigenvector of M^{\prime}, namely, $M^{\prime} e_{j}=\rho_{j} e_{j}$. Write $\omega=E \alpha$, then $P\left(M^{\prime} \omega\right)=c P(\omega)=P\left(M^{\prime} E \alpha\right)=P(E(\rho \cdot \alpha))=c P(E \alpha)$, so that $P((\rho \cdot \alpha))=$ $c P(\alpha)$. Suppose $P(\alpha)=\sum_{j} \beta_{j} \alpha^{j}$, then we have $c \beta_{j}=\beta_{j} \rho^{j}$ for all j. Since $\beta_{0} \neq 0$, we have $c=1$. And from $\left|\rho_{i}\right|>1$ we have $\beta_{j}=0$ for $j \neq 0$.

Because $\sum_{j} B(x-j)$ is a constant, we know $\sum_{j} \phi(x-j)$ is also a constant. Thus, from [6, theorem 5.1](or [7, theorem 1.1]) the shifts of ϕ can not form a Riesz basis when there isn't constant term in $P(D)$. So $P(D)$ must be a polynomial of degree zero.

Similar to the proof of theorem 2 in [3], one can prove A is unimodular and $R(z)$ does not have any root on $T^{n}=\left\{z=\left(z_{1}, z_{2}, \cdots, z_{n}\right) \in \mathbb{C}^{n}| | z_{1}\left|=\left|z_{2}\right|=\right.\right.$ $\left.\cdots=\left|z_{n}\right|=1\right\}$. Using the same argument of the proof of proposition 9 in [3], it can be proved that all prime factors of $\prod_{j=1}^{s}\left(z^{a_{j}}-1\right)$ have roots on T^{n}, which implies that $R(\exp (i \omega))$ have no any prime factor of $\prod_{j=1}^{s}\left(z^{a_{j}}-1\right)$. From this fact and noting $R(z) \prod_{j=1}^{s}\left(z^{a_{j}}-1\right)$ is M^{\prime}-closed, we know $R(\exp (i \omega))$ is also M^{\prime}-closed. Furthermore, similar to the proof of proposition 6 and 7 in [3], we have learnt that $R(z)$ is a monomial.

Acknowledgments

We wish to thank the editor and referees for their helpful comments and suggestions.

References

[1] W. Lawton, S.L. Lee, Zuowei Shen, Characterization of compactly supported refinable splines, Advances in Computational Mathematics, 3(1995), 137-145.
[2] Qiyu Sun, Refinable Function with Compact Support, J. of Approximation Theory. 86(1996), pp. 240-252.
[3] Yujing Guan, Shuwang Lv and Yuanyan Tang, Character of Compactly Supported Refinable Spline Whose Shifts form a Riesz Basis, J. of Approximation Theory , 133(2005), pp. 245-250
[4] Tim N.T. Goodman, Refinable Spline Functions, in Approximation Theory IX, Charels C. Chui and Larry L. Schumaker, eds., Vanderbilt University Press, Nashville, TN, 1998, pp.1-25.
[5] Tim N.T. Goodman and D. Hardin, Refinable shift invariant spaces of spline functions, Mathematical Methods for Curves and Surfaces: Tromso 2004, H.Daehlen, K.Morken,L.L.Schumaker (eds.), p.179-197, Nashboro Press, Brentwood, 2005
[6] R. Q. Jia and C. A. Micchelli, On linear independence of integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36(1992) 69-75.
[7] Q. Sun, Stability of the shifts of global supported distributions, J. of Mathematical Analysis and Applications. 261(2001), pp. 113-125.

[^0]: ${ }^{* *}$ The author was supported by the 985 project of Jilin University, Email: guanyj@jlu.edu.cn

