10.1080/0003681 YY xxxxxx 1563-504 X 0003-6811 00 00 2008 January

Characterization of Compactly Supported Refinable Splines With Integer Matrix

Yu-jing Guan^{a*} *and Tian-xiao He^b

^aSchool of Mathematics, Jilin University, Changchun, Jilin 130023, PR China;

^b Department of Mathematics and Computer Science Illinois Wesleyan University, Bloomington, IL 61702-2900, USA

v3.3 released May 2008

August 8, 2009

Abstract

Let M be an integer matrix with absolute values of all its eigenvalues being greater than 1. We give a characterization of compactly supported M-refinable splines f and the conditions that the shifts of f form a Riesz basis.

spline; refinement; blockwise polynomial; Riesz basis; simplex decomposition 42C40 (39A70, 41A15, 41A30, 65D07, 65D18, 65T60)

1 Introduction and Main Results

Let $M \in \mathbb{Z}^{n \times n}$ be an integer matrix with absolute values of all its eigenvalues being greater than 1. A function f defined on \mathbb{R}^n is M-refinable if there exists a finite sequence $\{h_i\}$ such that

$$f(x) = \sum_{j \in \mathbb{Z}^n} h_j f(Mx - j) \tag{1}$$

In [1], Lawton et al considered the one-dimensional setting of the scaling coefficient M being an integer greater than 1. They gave a characterization of the refinable univariate splines and proved that only the shifts of B-spline with the smallest support form a Riesz basis. In [2] Sun extended the partial result of [1] to M = mI using Box-splines, where $m \in \mathbb{Z}, m > 1$, and I is the

^{**}The author was supported by the 985 project of Jilin University, Email: guanyj@jlu.edu.cn

identity matrix, namely, an M = mI-refinable and blockwise polynomial with compact support is a finite linear combination of a box-spline and its translates. In [3],Y.Guan et al. further gave a characterization of M = mI-refinable and blockwise polynomial with compact support forming a Riesz basis. More relative results can be found in the survey [4, 5] by Goodman et al. In this paper, we generalize the results of [1, 2, 3] to the setting of a certain class of scaling matrices, namely. We shall derive a characterization of functions (1) when Mis a matrix with integer entries.

In the following, the multi-index notational system is adopted. First, throughout the paper, all vectors in \mathbb{R}^n or \mathbb{C}^n are column vectors.

Let $\omega \in \mathbb{R}^n$ and $z \in \mathbb{C}^n$ with components $\omega_j \in \mathbb{R}$ and $z_j := \exp(i\omega_j)$ (j = 1, 2, ..., n), respectively, where $i = \sqrt{-1}$. Denote the transpose of vector k and matrix M by k' and M', respectively. We also write $z = (\exp(i\omega_1), \exp(i\omega_2), ..., \exp(i\omega_n))' = (z_1, z_2, ..., z_n)'$ as $z \equiv \exp(i\omega)$ for convenience when it is clear in the content. For $k \in \mathbb{Z}^n$, we denote $z^k = z^{k'} := \prod_{j=1}^n z_j^{k_j}$. For an integer matrix M, we denote $z^M := \exp(i(M\omega))$. Obviously, $z^{kM} = z^{M'k'} = \exp(ik'M\omega)$.

A trigonometric polynomial $R(\omega)$ is said to be *M*-closed if $R(M\omega)/R(\omega)$ is a trigonometric polynomial too.

Let $s \ge n$ and $A = (a_1, a_2, \dots, a_s)$ a nonsingular matrix with integer entries and column vectors $a_j \in \mathbb{Z}^n, j = 1, 2, \dots, s$. By means of Fourier transform, we can define box splines $B_A(x)$ of dimension n as follows:

$$\hat{B}_A(\omega) = \prod_{j=1}^s \frac{\exp(ia'_j\omega) - 1}{ia'_j\omega}$$
(2)

A function ϕ is called a blockwise polynomial if there exists a simplex decomposition $\{\Delta_j\}_1^L$ of ϕ , such that ϕ is a polynomial on every simplex. A standard simplex is defined as $\Delta^0 = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n; 0 \le x_j \le 1, \sum_{j=1}^n x_j \le 1\}$, and a simplex Δ is an affine transform of the standard simplex, $\Delta = A\Delta^0 + c$, where A is nonsingular and $c \in \mathbb{R}^n$. We say that $\{\Delta_j\}_{j=1}^L$ is a simplex decomposition of a bounded set E if $\bigcup_{j=1}^L \Delta_j \supseteq E$, where Δ_j is a simplex for every $1 \le j \le L$, and $\Delta_j \bigcap \Delta_l$ has Lebesgue measure zero when $j \ne l$. For the adjacent Δ_j and Δ_l , let E be their n-1 dimensional common boundary lying on the plane π . Then we call π a singular hyperplane of f if $f(x)|_{\Delta_j}$ and $f(x)|_{\Delta_l}$ are different polynomials. Hence, all the planes passing through the n-1 dimensional boundaries of the simplex support of a block polynomial function are also called singular hyperplane of the blockwise polynomial.

Let $s \ge n, a_1, a_2, \dots, a_s \in \mathbb{Z}^n$. We say a matrix $A = (a_1, a_2, \dots, a_s)$ is unimodular if any matrix generated by any n linearly independent column vectors of the matrix A has determinant value ± 1 .

Theorem 1.1. Let $n \ge 2$. Suppose ϕ is a compact support blockwise polynomial, $D = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n})$, and M is a matrix with integer entries and the absolute values of all its eigenvalues are greater than 1. Then we have the following results:

a). ϕ satisfies equation (1) if and only if it can be written as

$$\phi(x) = P(D)\left(\sum_{j} r_{j} B_{A}(x - j - (M^{k} - I)^{-1}l)\right)$$
(3)

and

- 1. $B_A(x)$ is a box spline defined on $A = (a_1, a_2, \dots, a_s)$, where A satisfies $\prod_{j=1}^s (Ma_j)'\omega = c_1 \prod_{j=1}^s a'_j \omega$ for some constant c_1 ;
- 2. k is a positive integer and satisfies $(M')^k e_j = \lambda_j e_j$ for the normal vector e_j of every singular hyperplane of ϕ ;
- 3. $l \in \mathbb{Z}^n$ satisfies $(M I)(M^k I)^{-1}l \in \mathbb{Z}^n$;
- 4. *P* is a polynomial, and satisfies $P(M'\omega) = c_2 P(\omega)$, where $P(\omega)$ and $\prod_{i=1}^{s} a'_i \omega$ don't have common factor, and c_2 is a constant;
- 5. $R(z) = R(\exp(i\omega)) = \sum_{j} r_j z^j$ satisfies that $R(z) \prod_{j=1}^{s} (z^{a_j} 1)$ is M'-closed trigonometric polynomial;

b). Furthermore, integer shifts of ϕ form Riesz basis if and only if P is polynomial of zero degree, A is unimodular, and R(z) is a monomial.

2 The Proof of Main Results

A polynomial P is called a principal homogeneous polynomial if there exists a natural number k and $a_j \in \mathbb{R}^n$, $1 \leq j \leq k$, such that $P(\omega) = \prod_{j=1}^k a_j'\omega$. In addition, for real b_j and complex a_j , we call $\sum_j a_j \exp(ib_j\omega)$ a generalized trigonometric polynomial. Clearly, the following result holds.

Lemma 2.1. The fourier transform of $\phi(Mx - k)$ is $|det(M)|^{-1} \exp(-i\omega' \cdot (M^{-1}k))\hat{\phi}((M^{-1})'\omega)$.

Proposition 2.2. Let f be a blockwise polynomial with compact support satisfying Equation (1). Then there exists an integer $k \in \mathbb{Z}$ such that $(M')^k e_j = \lambda_j e_j$, where $\lambda_j \in \mathbb{R}$, holds for the normal vectors e_j of all singular hyperplanes of f.

Proof. Let $E = \{e_j\}$ be a finite set of the normal vectors e_j of all singular hyperplanes of f. $\forall e_j \in E$, there exists a hyperplane $e'_j x - c_j = 0$ on which fis singular. And expression (1) implies that both sides of the equation have the same singularities. Hence, there exists an integer l on the right-hand side such that f is singular at the hyperplane $e'_j (Mx - l) - c_j = 0 = (M'e_j)'x - e'_j l - c_j$. Thus, $M'e_j$ is also the normal vector of a singular hyperplane of f. M is oneto-one mapping from E to itself because M is not singular. Hence, from the finiteness of E there exist an integer k such that $(M')^k e_j = \lambda_j e_j$ for every $e_j \in E$. Furthermore, since both M and e_j are real, λ_j is also real. **Proposition 2.3.** Let f be an M-refinable blockwise polynomial with compact support, then its fourier transform \hat{f} can be written as $\hat{f}(\omega) = \sum \frac{q_n(z)}{p_n(\omega)}$, where $p_n(\omega)$ are the principal homogeneous polynomials and $q_n(z)$ are the generalized trigonometric polynomials. In addition, there exist k such that $p_n((M')^{-k}\omega) = c_n p_n(\omega)$ for some constants $c_n, n = 1, 2, \cdots$.

Proof. Let $\{e_j\}$ be the finite set of the normal vectors of singular hyperplanes of f. From proposition 2.2, there exists an integer k such that $(M')^k e_j = \lambda_j e_j$ for every e_j . Denote by $\alpha_1, \alpha_2, \dots, \alpha_m$ the different eigenvalue of $(M')^k$, where $m \leq n$, and by V_1, V_2, \dots, V_m the corresponding eigenspaces of $\alpha_1, \alpha_2, \dots, \alpha_m$. For any j, since e_j is the eigenvector of $(M')^k$, there exists l_j such that $e_j \in V_{l_j}$. Obviously, f is compactly supported and its support must be a polyhedral in \mathbb{R}^n . So every boundary of the polyhedral must be on a singular plane of f and set $\{e_j\}$ spans \mathbb{R}^n . Furthermore, every V_j has a basis E_j consisting of the elements of $\{e_j\}$. Hence, we can write $E_j = (e_{j,i}), e_{j,i} \in \{e_l | e_l \in V_j\}, i = 1, 2, \dots, m_j$. Therefore, we obtain a basis $E = (E_1, E_2, \dots, E_m)$ of $V = V_1 + V_2 + \dots + V_m$, which consists of the elements of $\{e_j\}$. Let $\tilde{E} = (\tilde{E}_1, \tilde{E}_2, \dots, \tilde{E}_m)$, here $E'_l \tilde{E}_l = I$, $l = 1, 2, \dots, m$, and $E'_j \tilde{E}_l = 0$ when $j \neq l$, so $E' \tilde{E} = I$. For every $l = 1, 2, \dots, m$, \tilde{E}_l spans a space denoted by \tilde{V}_l with $\tilde{V}_l \perp V_j$ when $j \neq l$. Obviously, V = $\tilde{V}_1 + \tilde{V}_2 + \dots + \tilde{V}_m$.

For an arbitrary $1 \leq j \leq m$, the intersections of \tilde{V}_j and the singular plane of f(x), whose normal vector belongs to $\{e_l | e_l \in V_j\}$, form a polyhedral partition of \tilde{V}_j . Furthermore, we can establish a simplex partition $\{\tilde{\Delta}_{j,l}\}$ from the polyhedral decomposition of \tilde{V}_j , so that we obtain a new polyhedral partition $\tilde{\Delta} = \{\bigoplus_{j=1}^m (\sum_l \tilde{\Delta}_{j,l})\}$ of V.

 $\forall l_1, l_2, \dots, l_m$, we claim that f(x) is a polynomial in the domain $\bigoplus_{s=1}^m \tilde{\Delta}_{s,l_s}$. In fact, since f(x) is a spline, we only need to prove domain $\bigoplus_{s=1}^m \tilde{\Delta}_{s,l_s}$ is not divided by any singular hyperplane of f(x), that is, all the point in $\bigoplus_{s=1}^m \tilde{\Delta}_{s,l_s}$ are on the same side of any singular hyperplane of f(x). Let e_j be an arbitrary normal vector in V_{l_j} , and let the corresponding singular hyperplanes be $\langle e_j, x \rangle = c_{j,i}, i = 1, 2, \dots$. Denote $x = \sum_{s=1}^m \tilde{E}_s \alpha_s$ and $y = \sum_{s=1}^m \tilde{E}_s \beta_s$, where $\tilde{E}_s \alpha_s, \tilde{E}_s \beta_s \in \tilde{\Delta}_{s,l_s}, s = 1, 2, \dots, m$. $\forall x, y \in \bigoplus_{s=1}^m \tilde{\Delta}_{s,l_s}$ and $i = 1, 2, \dots$, we have $(\langle x, e_j \rangle - c_{j,i})(\langle y, e_j \rangle - c_{j,i}) = (\langle \tilde{E}_{l_j} \alpha_{l_j}, e_j \rangle - c_{j,i})(\langle \tilde{E}_{l_j} \beta_{l_j}, e_j \rangle - c_{j,i}) \geq 0$. The last inequality can be obtained from the simplex partition of \tilde{V}_{l_j} .

If $x \in V$, we may write $x = E\beta$ with some $\beta \in \mathbb{R}^n$. Furthermore we have $\tilde{\Delta}_{j,l} = \tilde{E}\Delta_{j,l}, \ \tilde{\Delta} = \tilde{E}\Delta$ and $f(\tilde{E}\beta)$ is a polynomial on $\bigotimes_{j=1}^m \Delta_{j,l_j}$. Thus,

$$\hat{f} = \int_{\mathbb{R}^n} f(x) \exp(-ix'\omega) dx$$
$$= \det(\tilde{E}) \int_{\mathbb{R}^n} f(\tilde{E}\beta) \exp(-i\beta'\tilde{E}'\omega)) d\beta$$

Let $\xi = (\xi'_1, \xi'_2, \cdots, \xi'_m)' = \tilde{E}' \omega = (\tilde{E}_1, \tilde{E}_2, \cdots, \tilde{E}_m)' \omega$. Then

$$\hat{f} = \det(\tilde{E}) \int_{\bigotimes_{j=1}^{m} (\sum_{l} \Delta_{j,l})} f(\tilde{E}\beta) \exp(-i\beta'\xi) d\beta$$
$$= \det(\tilde{E}) \int_{\sum_{l_1} \cdots \sum_{l_m} \bigotimes_{j=1}^{m} \Delta_{j,l_j}} f(\tilde{E}\beta) \exp(-i\beta'\xi) d\beta$$
$$= \det(\tilde{E}) \sum_{l_1} \cdots \sum_{l_m} \int_{\bigotimes_{j=1}^{m} \Delta_{j,l_j}} f(\tilde{E}\beta) \exp(-i\beta'\xi) d\beta$$

If f is a polynomial on $\bigotimes_{j=1}^{m} \Delta_{j,l_j}$ we have

$$\hat{f} = \det(\tilde{E}) \sum_{l_1} \cdots \sum_{l_m} \int_{\Delta_{1,l_1}} \cdots \int_{\Delta_{m,l_m}} \sum_n a_n(l_1, l_2, \cdots, l_m) \beta^n \exp(-i\beta'\xi) d\beta$$
$$= \det(\tilde{E}) \sum_{l_1} \cdots \sum_{l_m} \sum_n a_n(l_1, l_2, \cdots, l_m) \prod_{j=1}^m \int_{\Delta_{j,l_j}} \beta_j^{n_j} \exp(-i\beta'_j\xi_j) d\beta_j$$

After simplifying above sum, from the lemma 1 in [2], there exist principle homogenous polynomials $p_{k,j}(\xi_j)$ in terms of the variants ξ_j and generalized trigonometric polynomials $q_{k,j}(\exp(-i\xi_j))$ such that

$$\begin{split} \hat{f} &= \sum_{n} \prod_{j=1}^{m} \frac{q_{n,j}(\exp(-i\xi_j))}{p_{n,j}(\xi_j)} \\ &= \sum_{n} \prod_{j=1}^{m} \frac{q_{n,j}(\exp(-i\tilde{E}'_{j}\omega))}{p_{n,j}(\tilde{E}'_{j}\omega)} \\ &= \sum_{n} \frac{q_{n}(\exp(-i\omega))}{\prod_{j=1} p_{n,j}(\tilde{E}'_{j}\omega)}, \end{split}$$

where $q_n(\exp(-i\omega)) = \prod_{j=1}^m q_{n,j}(\exp(-i\tilde{E}'_j\omega))$ are the generalized trigonometric polynomials.

From the above discussion we know $(M')^k E = E\lambda$, where λ is a diagonal matrix, and $(M')^k E_j = \alpha_j E_j$. Furthermore, $M^k \tilde{E} = \tilde{E}\lambda$ and $M^k \tilde{E}_j = \alpha_j \tilde{E}_j$. Let $p_n(\omega) = \prod_j p_{n,j}(\tilde{E}'_j\omega)$, then $p_n((M')^{-k}\omega) = \prod_j p_{n,j}(\tilde{E}'_j(M')^{-k}\omega) = \prod_j p_{n,j}((M'^{-k}\tilde{E}_j)'\omega)) = \prod_j p_{n,j}(\alpha_j^{-1}\tilde{E}'_j\omega) = c_n \prod_j p_{n,j}(\tilde{E}'_j\omega) = c_n p_n(\omega)$. Obviously, $p_n(\omega)$ is a principal homogeneous polynomial because $p_{n,j}(\omega)$ are principal homogeneous polynomials.

Lemma 2.4. Let P_j (j = 1, 2) be two nonzero polynomials, and let T_j (j = 1, 2)be two nonzero generalized trigonometric polynomials. If P_j and T_j (j = 1, 2)satisfy $P_1(\omega)T_1(\omega) = P_2(\omega)T_2(\omega)$, then $P_1(\omega) = CP_2(\omega)$ and $T_1(\omega) = C^{-1}T_2(\omega)$ for some complex number C.

Proof. Let $\hat{f}_1 = P_1(\omega)T_1(\omega)$, $\hat{f}_2 = P_2(\omega)T_2(\omega)$ be two generalized functions, where $T_1(\omega) = \sum_{j=1}^{K} c_{1,j} \exp(-ia_j\omega)$, $T_2(\omega) = \sum_{j=1}^{L} c_{2,j} \exp(-ib_j\omega)$, $\{a_j\}_{j=1}^{K}$

are K different real numbers, and $\{b_j\}_{j=1}^L$ are L different real numbers. Denote $Q_1(i\omega) = P_1(\omega), \ Q_2(i\omega) = P_2(\omega), \ \text{and} \ D = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \cdots, \frac{\partial}{\partial x_n}\right)$. Then $f_1 = Q_1(D) \sum_{j=1}^K c_{1,j}\delta(x-a_j)$ and $f_2 = Q_2(D) \sum_{j=1}^L c_{2,j}\delta(x-b_j)$. Thus, for an arbitrary infinitely differentiable function ϕ with compact support, we have $0 = \langle \hat{f}_1 - \hat{f}_2, \hat{\phi} \rangle = \langle f_1 - f_2, \phi \rangle = \langle \sum_{j=1}^K c_{1,j}\delta(x-a_j), Q_1(D)\phi \rangle - \langle \sum_{j=1}^L c_{2,j}\delta(x-b_j), Q_2(D)\phi \rangle$. So $\langle \sum_{j=1}^K c_{1,j}\delta(x-a_j), Q_1(D)\phi \rangle = \langle \sum_{j=1}^L c_{2,j}\delta(x-b_j), Q_2(D)\phi \rangle$. Since ϕ is arbitrary, we obtain $L = K, c_{1,j} = C^{-1}c_{2,j}(j = 1, 2, \cdots, K), Q_1 = CQ_2$ for some constant C, so the lemma is proved.

Lemma 2.5. Let $M \in \mathbb{Z}^{n \times n}$ be a matrix of integer entries, and let all of its eigenvalue be real and lager than 1. Suppose $T(\omega)$ is a nonzero generalized trigonometric polynomial, and $H(\omega)$ is a nonzero trigonometric polynomial defined on \mathbb{R}^n . If

$$T(M\omega) = H(\omega)T(\omega) \tag{4}$$

then $\exp(-il(M-I)^{-1}\omega)T(\omega)$ is a trigonometric polynomial for some $l \in \mathbb{Z}^n$.

Proof. One can write

$$T(\omega) = \sum_{j} \exp(ix'_{j}\omega)T_{j}(\omega) = \sum_{k} \exp(iy'_{k}\omega)Q_{k}(\omega)$$
(5)

where $T_j(\omega)$ is a trigonometric polynomial, $x_j - x_{\tilde{j}} \notin \mathbb{Z}^n$ for $j \neq \tilde{j}$, and $Q_k(M\omega)$ is a trigonometric polynomial with $M'(y_k - y_{\tilde{k}}) \notin \mathbb{Z}^n$ when $k \neq \tilde{k}$. So from (4) and (5) we have

$$\sum_{k} \exp(iy'_{k} M\omega) Q_{k}(M\omega) = \sum_{j} \exp(ix'_{j} \omega) H(\omega) T_{j}(\omega).$$
(6)

For a given k, suppose $M'y_k - x_j \in \mathbb{Z}^n$, then for all $\tilde{j} \neq j$ we have $M'y_k - x_{\tilde{j}} \notin \mathbb{Z}^n$ because $x_j - x_{\tilde{j}} \in \mathbb{Z}^n$. Similarly, there is only one y_k satisfying $M'y_k - x_j \in \mathbb{Z}^n$ for all x_j . So the numbers of the elements in sets $\{x_j\}$ and $\{y_k\}$ are equal. From $H \neq 0$ and (6), we have

$$\exp(iy'_k M\omega)Q_k(M\omega) = \exp(ix'_j\omega)H(\omega)T_j(\omega)$$
(7)

In addition, from (5) we have

$$T(\omega) = \sum_{j} \exp(ix'_{j}\omega)T_{j}(\omega), \qquad (8)$$

where $\{x_j\}$ satisfies $M'(x_j - x_{\tilde{j}}) \notin \mathbb{Z}^n$ when $j \neq \tilde{j}$. Hence for all x_j , $\exists x_{\tilde{j}}$ and $s \in \mathbb{Z}^n$ satisfy $M'x_j = s + x_{\tilde{j}}$ and

$$\exp(ix'_{j}M\omega)T_{j}(M\omega) = \exp(ix'_{j}\omega)H(\omega)T_{\tilde{j}}(\omega).$$
(9)

Define map $\mathcal{M}x_j = x_{\tilde{j}}$, where $x_{\tilde{j}}$ is chosen as above. Then \mathcal{M} is a well-defined one-to-one map on $\{x_j\}$. We also define $X_s = \{\mathcal{M}^k x_s; k = 1, 2, \cdots\}$ for every x_s . Then $X_s = X_{\tilde{s}}$ or $X_s \bigcap X_{\tilde{s}} = \emptyset$. Thus we can choose finite numbers of X_l such that $\{x_j\} = \bigcup_l X_l$ and $X_l \bigcap X_{\tilde{l}} = \emptyset$. Therefore the lemma is true if we can prove that X_l is a singleton for every l, and there exists only one X_l in the decomposition of $\{x_j\}$.

First we prove that there is only one element in X_l by using the method of contradiction. Assume $X_l = \{x_1, x_2, \dots, x_k\}, k \ge 2$. Then for $1 \le s \le k$, $\exists \tau_s \in \mathbb{Z}^n$ such that

$$T_s(M\omega) = \exp(i\tau'_s\omega)H(\omega)T_{s+1}(\omega)$$
(10)

Let $T_1(\omega) = T_{k+1}(\omega)$. Then

$$T_s(M^k\omega) = \exp(i\tilde{\tau_s}'\omega)T_s(\omega)\prod_{j=0}^{k-1} H(M^j\omega)$$
(11)

where $\tilde{\tau}_s \in \mathbb{Z}^n$. Denote $\tilde{H}(\omega) = \prod_{j=0}^{k-1} H(M^j \omega)$ and $\tilde{M} = M^k$. We have

$$T_s(\tilde{M}\omega) = \exp(i\tilde{\tau}_s'\omega)T_s(\omega)\tilde{H}(\omega)$$
(12)

Let e_1, e_2, \dots, e_n be the linearly independent eigenvectors of \tilde{M}^{-1} . And the corresponding eigenvalues are denoted by $\rho_1, \rho_2, \dots, \rho_n$ that satisfy $1 > |\rho_1| = |\rho_2| = \dots = |\rho_t| > |\rho_{t+1}| \ge \dots \ge |\rho_n| > 0$. Thus, the claim is obtained from the fact of that M is nonsingular, and the absolute value of all its eigenvalues are greater than 1. Hence there exists a invertible transform $\omega = \sum_j \alpha_j e_j = E\alpha$, where $E = (e_1, e_2, \dots, e_n)$. Let the Taylor expansion of $T_s(\omega)$ with the remainder be written as

$$T_s(\omega) = T_s(E\alpha) = p_1(\alpha) + p_2(\alpha) + p_3(\alpha), \tag{13}$$

where $p_1(\alpha) + p_2(\alpha) \neq 0$ is homogeneous polynomial with degree K, in which $p_1(\alpha)$ will be described later, and $p_2(\alpha)$ is the difference of the Taylor expansion of $T_s(\omega)$ and $p_1(\alpha)$, and the remainder $|p_3(\alpha)| \leq C |\alpha|^{K+1}$. Assume in $p_1(\alpha) + p_2(\alpha)$ the degrees of $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_j}$ are nonzero, and denote $\tilde{i}_1 = \min\{i_1, i_2, \dots, i_j\}$. Hence, for $p_1(\alpha) + p_2(\alpha)$, the degrees of $\alpha_1, \alpha_2, \dots, \alpha_{\tilde{i}-1}$ are zero, where $p_1(\alpha)$ is a polynomial in terms of the variants, whose corresponding eigenvalue's absolute value is $|\rho_{\tilde{i}_1}|(\alpha_i \to e_i \to \rho_i)$. For convenience, assume $\tilde{i}_1 = 1$, then $p_1(\alpha)$ is a homogeneous polynomial with degree K of $\alpha_1, \alpha_2, \dots, \alpha_t$ and $p_2(\alpha)$ is also a homogeneous polynomial with degree K, but its every monomial has nonzero degree of $\alpha_{t+1}, \dots, \alpha_n$. Let $\rho \in \mathbb{C}^n$, write $(\rho \cdot \alpha) = (\rho_1 \alpha_1, \rho_2 \alpha_2, \dots, \rho_n \alpha_n)^T$. Therefore,

$$T_s(\tilde{M}^{-p}(\omega)) = T_s(E(\rho^p \cdot \alpha)) = \rho_1^{Kp} p_1(\alpha) + p_2(E(\rho^p \cdot \alpha)) + O(|\rho_1|^{p(K+1)}),$$

which implies

$$\lim_{p \to \infty} \frac{T_s(\tilde{M}^{-p}(\omega))}{\rho_1^{Kp}} = \lim_{p \to \infty} \frac{T_s(E(\rho^p \cdot \alpha))}{\rho_1^{Kp}} = p_1(\alpha).$$
(14)

Indeed the above formula holds due to $p_2(E(\rho^p \cdot \alpha))/\rho_1^{pK} \to 0$ as $p \to \infty$, which can be proved as follows: For every monomial of p_2 , the degree of $\alpha_{t+1}, \dots, \alpha_n$ is non-zero. Write $p_2(E(\rho^p \cdot \alpha)) = \sum_j \beta_j(\rho^p \cdot \alpha)^j$, then $\left| p_2(E(\rho^p \cdot \alpha))/\rho_1^{pK} \right| =$ $\left| \sum_j \beta_j (\frac{\rho^p}{\rho_1^p} \cdot \alpha)^j \right| \le \sum_j \left| \beta_j \alpha^j \right| \left| \frac{\rho_{t+1}}{\rho_1} \right|^p \to 0$ as $p \to \infty$. For $1 \le s \le k$, from (12) we have

$$T_{s}(\omega) = T_{s}(E\alpha) = \exp(i\tau'_{s}E(\rho \cdot \alpha))\tilde{H}(\tilde{M}^{-1}E\alpha)T_{s}(\tilde{M}^{-1}E\alpha)$$
$$= \exp(i\tau'_{s}E(\sum_{j=1}^{p}\rho^{j})\cdot\alpha)T_{s}(\tilde{M}^{-p}E\alpha)\prod_{j=1}^{p}\tilde{H}(\tilde{M}^{-j}E\alpha)$$

Since $H(\omega)$ is a trigonometric polynomial, we have

$$T_{s}(\omega) \exp(i\tau_{1}' E((\sum_{j=1}^{p} \rho^{j}) \cdot \alpha))T_{1}(\tilde{M}^{-p} E\alpha)$$

= $T_{1}(\omega) \exp(i\tau_{s}' E((\sum_{j=1}^{p} \rho^{j}) \cdot \alpha))T_{s}(\tilde{M}^{-p} E\alpha)$

a.e. Divide the two sides of the above formula by ρ_1^{Kp} , and let $p \to \infty$. From (14) there exist $\beta_1, \beta_s \in \mathbb{R}^n$ as well as polynomials P_s and P_1 such that

$$\exp(i\beta'_s\omega)P_s(E^{-1}\omega)T_1(\omega) = \exp(i\beta'_1\omega)P_1(E^{-1}\omega)T_s(\omega)$$
(15)

for $2 \leq s \leq k$. From lemma 3 in [2], there exist $j_s \in \mathbb{Z}^n$ and a constant c_s such that $P_s(\omega) = C_s P_1(\omega)$ and $T_s(\omega) = C_s \exp(ij_s\omega)T_1(\omega)$ for $1 \leq s \leq k$. Without losing the generality, let $j_s = 0$ by selecting appropriate x_j . Thus,

$$C_s \exp(ix'_s\omega)T_1(\omega) = \exp(ix'_s\omega)T_s(\omega)$$

= $\exp(ix'_{s+1}M^{-1}\omega)H(M^{-1}\omega)T_{s+1}(M^{-1}\omega)$
= $\exp(ix'_{s+1}M^{-1}\omega)H(M^{-1}\omega)T_1(M^{-1}\omega)C_{s+1}$

From (9) and the definition of \mathcal{M} , there exists a fixed $j \in \mathbb{Z}^n$ such that $-(M^{-1})' x_{s+1} + x_s = (M^{-1})' j$ for all $1 \leq s \leq k$. Therefore, using $x_{k+1} = x_1$ yields $-x_{s+1} + M' x_s = j$ for all $1 \leq s \leq k$. By a direct calculating, $x_s = (M' - I)^{-1} j$ satisfies the above request and it is only one solution when

$$\left(\begin{array}{cccc} M' & -I & & \\ & \ddots & \ddots & \\ & & \ddots & -I \\ -I & & M' \end{array}\right)$$

is nonsingular. Furthermore, $M'(x_s - x_{\tilde{s}}) \in \mathbb{Z}^n$ for all s and \tilde{s} . This is inconsistent with $M'(x_s - x_{\tilde{s}}) \notin \mathbb{Z}^n$ as $s \neq \tilde{s}$, so the assumption is wrong, that is, there is only one element for every X_l .

Using the above argument and from (9) we obtain

$$\exp(ix'_{j}\omega)T_{j}(\omega) = \exp(ix'_{j}M^{-1}\omega)H(M^{-1}\omega)T_{j}(M^{-1}\omega)$$
(16)

similarly as (15), we also have

$$\exp(i\beta'_s\omega)P_s(E'\omega)T_1(\omega) = \exp(i\beta'_1\omega)P_1(E'\omega)T_s(\omega).$$
(17)

Hence, from lemma 3 in [2], $T_j(\omega) = C_j \exp(ik_j\omega)T_1(\omega)$, $k_j \in \mathbb{Z}^n$. Choosing an appropriate x_j one may have $k_j = 0$. Then, for all j, from (16) we have $\exp(ix'_j\omega)T_1(\omega) = \exp(ix'_jM^{-1}\omega)H(M^{-1}\omega)T_1(M^{-1}\omega)$, which implies $x_j - x_1 \in \mathbb{Z}^n$, this contradiction completes the proof of the lemma.

Proposition 2.6. Let M be a matrix of integer entries, and all of its eigenvalue be real and lager than 1. Then for a given nonzero trigonometric polynomial H(z), if $q_1(z^M) = c_1H(z)q_1(z)$ and $q_2(z^M) = c_2H(z)q_2(z)$ then $c_1 = c_2$ and there exist a const c such that $q_1(z) = cq_2(z)$, where c_1 and c_2 are two nonzero real constants, and $q_1(z)$ and $q_2(z)$ are nonzero generalized trigonometric polynomials.

Proof. From the condition, $\forall k \in \mathbb{N}$

$$q_1(z) = c_1^k q_1(z^{M^{-k}}) \prod_{j=1}^k H(z^{M^{-j}})$$

and

$$q_2(z) = c_2^k q_2(z^{M^{-k}}) \prod_{j=1}^k H(z^{M^{-j}}).$$

Thus, $q_1(z)c_2^k q_2(z^{M^{-k}}) = c_1^k q_1(z^{M^{-k}})q_2(z).$

Let $\omega = E\alpha$, where $E = (e_1, e_2, \dots, e_n)$ is a nonsigular matrix and $Me_j = \lambda_j e_j, j = 1, 2, \dots, n, \lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$. Then

$$z^{M^{-k}} = \exp(iM^{-k}\omega) = \exp(iM^{-k}E\alpha) = \exp(iE(\alpha/\lambda^k)).$$

Using Taylor series of q_1, q_2 we have for $m \in \mathbb{N}$

$$q_1(z)\sum_j a_j \alpha^j (c_2 \lambda^{-j})^{2m} = q_2(z)\sum_j b_j \alpha^j (c_1 \lambda^{-j})^{2m}$$

Divide the both sides of the above equation by λ_{max}^{2m} , where $\lambda_{max} = \max_j \{|c_2\lambda^{-j}|, |c_1\lambda^{-j}|\}$, and let $m \to \infty$, then we obtain polynomials $p_1(\alpha), p_2(\alpha)$ and the equation

$$q_1(z)p_2(\alpha) = q_2(z)p_1(\alpha).$$

From lemma 2.4 we have $q_1(z) = cq_2(z)$. Furthermore, we have $c_1 = c_2$, which completes the proof.

Lemma 2.7. Let T be a trigonometric polynomial and $T(\omega) = 0$ on plane $a'_{j}\omega = 0, j = 1, 2, \dots, N$. Then there exist trigonometric polynomial $R(\omega)$ and $\alpha_{j} \in \mathbb{R}, j = 1, 2, \dots, N$ such that $T(\omega) = R(\omega) \prod_{j=1}^{N} (\exp(i\alpha_{j}a'_{j}\omega) - 1)$, where $\alpha_{j}a_{j} \in \mathbb{Z}^{n}, j = 1, 2, \dots, N$.

Proof. This lemma can be proved by a similar argument of the proof of theorem 1 in [2]. \Box

In the following we give the proof of Theorem 1.1.

Proof: Sufficiency of the first part: from the fourier transform of (3), it is easy to get that $\hat{\phi}(M'\omega)/\hat{\phi}(\omega)$ is a trigonometric polynomial because ϕ satisfies equation (1).

Necessity of the first part: By proposition 2.2, there exists k such that $(M')^k e_j = \lambda_j e_j$ for the normal vector e_j of an arbitrary singular hyper-plane. Let $\tilde{M} = M^k$, then f is \tilde{M} -refinable. By proposition 2.3

$$\hat{\phi}(\omega) = \sum_{j \in \Lambda} \frac{T_j(\omega)}{P_j(\omega)} = \sum_{s \ge s_0} \sum_{\deg P_j = s} \frac{T_j(\omega)}{P_j(\omega)}$$
(18)

where $s_0 \ge 0$ and $\sum_{\deg P_j=s_0} \frac{T_j(\omega)}{P_j(\omega)} \ne 0$, and $\{P_j^{-1}(\omega)\}_{\deg P_j=s}$ is linearly independent $(s = s_0, s_0 + 1, s_0 + 2, \cdots)$. In addition,

$$\sum_{s>s_0} \sum_{\deg P_j=s} \frac{T_j(r\omega)}{P_j(r\omega)} r^{s_0} \to 0$$

and

$$\sum_{s>s_0} \sum_{\deg P_j=s} \frac{T_j(r(\tilde{M}')^{-1}\omega)}{P_j(r(\tilde{M}')^{-1}\omega)} r^{s_0} \to 0$$

as $r \to +\infty$ a.e. for all ω on the unit sphere \mathbb{S}^{n-1} in \mathbb{R}^n .

From (1), there exists trigonometric polynomial $H(\omega)$ such that $\hat{\phi}(\omega) = H((\tilde{M}')^{-1}\omega)\hat{\phi}((\tilde{M}')^{-1}\omega)$, and from proposition 2.3 it satisfies

$$\sum_{\deg P_j=s_0} \left(\frac{T_j(r\omega)}{P_j(\omega)} - \frac{H(r(\tilde{M}')^{-1}\omega)T_j(r(\tilde{M}')^{-1}\omega)}{P_j((\tilde{M}')^{-1}\omega)} \right)$$
(19)

$$= \sum_{\deg P_j=s_0} \left(\frac{T_j(r\omega) - \lambda_j H(r(\tilde{M}')^{-1}\omega) T_j(r(\tilde{M}')^{-1}\omega)}{P_j(\omega)} \right) \to 0 \quad (20)$$

as $r \to +\infty$ a.e. $\omega \in \mathbb{S}^{n-1}$. Write

$$T_j(\omega) - \lambda_j H((\tilde{M}')^{-1}\omega) T_j((\tilde{M}')^{-1}\omega) = \sum_k c_{j,k} \exp(iy'_k\omega)$$

and denote

$$D_k(\omega) = \sum_j \frac{c_{j,k}}{P_j(\omega)}$$

Hence $\sum_k D_k(\omega) \exp(iy'_k\omega r) \to 0$ as $r \to \infty$ for $y'_k\omega \neq y'_{\tilde{k}}\omega$ a.e. $\omega \in \mathbb{S}^n$. By using lemma 2 of [2], we have $D_k(\omega) = 0$ a.e. $\omega \in \mathbb{S}^n$. Since $\{p_j^{-1}(\omega)\}$ is linearly independent, we have $c_{j,k} = 0$ for all j, k. Hence $T_j(\omega) = \lambda_j H((\tilde{M}')^{-1}\omega)T_j((\tilde{M}')^{-1}\omega)$. Thus,

$$\sum_{\deg P_j=s_0} \left(\frac{T_j(r\omega)}{P_j(\omega)} - \frac{H(r(\tilde{M}')^{-1}\omega)T_j(r(\tilde{M}')^{-1}\omega)}{P_j((\tilde{M}')^{-1}\omega)} \right) = 0$$

Recursively, for degree of $P_j = s_0+1, s_0+2, \cdots, T_j(\omega) = \lambda_j H((\tilde{M}')^{-1}\omega)T_j((\tilde{M}')^{-1}\omega)$, so that for all T_j we have $T_j(\omega) = \lambda_j H((\tilde{M}')^{-1}\omega)T_j((\tilde{M}')^{-1}\omega)$. By using lemma 2.5 and proposition 2.6, there exists a trigonometric polynomial $\tilde{T}(\omega)$ such that $T_j(\omega) = c_j \exp(il'((\tilde{M}') - I)^{-1}\omega)\tilde{T}(\omega) = c_j \exp(il'((M')^k - I)^{-1}\omega)\tilde{T}(\omega)$, which implies

$$\hat{\phi}(\omega) = \sum_{s \ge s_0} \sum_{\deg P_j = s} \frac{c_j}{P_j(\omega)} \exp(il'((M')^k - I)^{-1}\omega)\tilde{T}(\omega).$$

Let $P(\omega)/Q(\omega) = \sum_{s \ge s_0} \sum_{\deg P_j = s} \frac{c_j}{P_j(\omega)}$, where $Q(\omega)$ is a principle homogeneous polynomial, and $P(\omega)$ and $Q(\omega)$ do not have common factors. Hence

$$Q(\omega)\hat{\phi}(\omega) = \exp(il'((M')^k - I)^{-1}\omega)\tilde{T}(\omega)P(\omega)$$

Let $Q(\omega) = \prod_{j=1}^{N} a'_{j}\omega, \ 0 \neq a_{j} \in \mathbb{R}^{n}$. Because $|\exp(il'((M')^{k} - I)^{-1}\omega)| = 1$, and there is no common factors for P and Q, we obtain $\tilde{T}(\omega) = 0$ on the hyperplanes of $a'_{j}\omega = 0, \ j = 1, 2, \dots, N$. From lemma 2.7 we know that there exists a trigonometric polynomial $R(\omega)$ and $\tilde{a}_{j} = \alpha_{j}a_{j} \in \mathbb{Z}^{n}$ such that $\tilde{T}(\omega) =$ $R(\omega) \prod_{j=1}^{N} (\exp(i\tilde{a}'_{j}\omega) - 1)$. Hence we have

$$\hat{\phi}(\omega) = \exp(il'((M')^k - I)^{-1}\omega)P(\omega)R(\omega)\prod_{j=1}^N \frac{(\exp(i\tilde{a}'_j\omega) - 1)}{i\tilde{a}'_j\omega}.$$

Thus, (3) holds. And from (1), there exists a trigonometric polynomial $H(\omega)$, such that

$$H(\omega) = \frac{\hat{\phi}((M')\omega)}{\hat{\phi}(\omega)}$$

=
$$\frac{P((M')\omega)}{P(\omega)} \frac{R(\exp(i(M')\omega))}{R((\exp(i\omega)))} \exp(il'((M')^k - I)^{-1}(M' - I)\omega)$$
$$\times \prod_{j=1}^N \left(\frac{(\exp(i\tilde{a}'_j(M')\omega) - 1)}{(\exp(i\tilde{a}'_j\omega) - 1)} \frac{a'_j\omega}{a'_j(M')\omega} \right)$$

Let $\tilde{l} = (M - I)((M^k) - I)^{-1}l$, $\tilde{R}(\omega) = R(\exp(i\omega)) \prod_{j=1}^{N} (\exp(i\tilde{a}'_j\omega) - 1)$, By using lemma 3 of [2], for $\tilde{l} \in \mathbb{Z}^n$

$$P(M'\omega)\prod_{j=1}^{N}a'_{j}\omega = CP(\omega)\prod_{j=1}^{N}a'_{j}M'\omega$$
(21)

$$\tilde{R}(M'\omega)) = C^{-1}H(\omega)\exp(i\tilde{l}'\omega)\tilde{R}(\omega)$$

From (21) and noting that $Q(\omega) = \prod_{j=1}^{N} a'_{j}\omega$ and $P(\omega)$ do not have common factor, we obtain

$$P(M'\omega) = \tilde{c}_1 P(\omega) \qquad \prod_{j=1}^N \tilde{a}'_j \omega = \tilde{c}_2 \prod_{j=1}^N \tilde{a}'_j M'\omega$$

Sufficiency of the second part: The sufficiency holds from (3) and lemma 3 of [3].

Necessity of the second part:

First we prove that if there is a nonzero constant term in $P(\omega)$, then $P(\omega)$ must be degree of zero. Let $E = (e_1, e_2, \dots, e_n)$ be a nonsingular matrix consisting of the eigenvector of M', namely, $M'e_j = \rho_j e_j$. Write $\omega = E\alpha$, then $P(M'\omega) = cP(\omega) = P(M'E\alpha) = P(E(\rho \cdot \alpha)) = cP(E\alpha)$, so that $P((\rho \cdot \alpha)) =$ $cP(\alpha)$. Suppose $P(\alpha) = \sum_j \beta_j \alpha^j$, then we have $c\beta_j = \beta_j \rho^j$ for all j. Since $\beta_0 \neq 0$, we have c = 1. And from $|\rho_i| > 1$ we have $\beta_j = 0$ for $j \neq 0$.

 $\beta_0 \neq 0$, we have c = 1. And from $|\rho_i| > 1$ we have $\beta_j = 0$ for $j \neq 0$. Because $\sum_j B(x-j)$ is a constant, we know $\sum_j \phi(x-j)$ is also a constant. Thus, from [6, theorem 5.1](or [7, theorem 1.1]) the shifts of ϕ can not form a Riesz basis when there isn't constant term in P(D). So P(D) must be a polynomial of degree zero.

Similar to the proof of theorem 2 in [3], one can prove A is unimodular and R(z) does not have any root on $T^n = \{z = (z_1, z_2, \dots, z_n) \in \mathbb{C}^n \mid |z_1| = |z_2| = \dots = |z_n| = 1\}$. Using the same argument of the proof of proposition 9 in [3], it can be proved that all prime factors of $\prod_{j=1}^{s} (z^{a_j} - 1)$ have roots on T^n , which implies that $R(\exp(i\omega))$ have no any prime factor of $\prod_{j=1}^{s} (z^{a_j} - 1)$. From this fact and noting $R(z) \prod_{j=1}^{s} (z^{a_j} - 1)$ is M'-closed, we know $R(\exp(i\omega))$ is also M'-closed. Furthermore, similar to the proof of proposition 6 and 7 in [3], we have learnt that R(z) is a monomial.

Acknowledgments

We wish to thank the editor and referees for their helpful comments and suggestions.

References

- W. Lawton, S.L. Lee, Zuowei Shen, Characterization of compactly supported refinable splines, Advances in Computational Mathematics, 3(1995), 137-145.
- [2] Qiyu Sun, Refinable Function with Compact Support, J. of Approximation Theory. 86(1996), pp. 240-252.

- [3] Yujing Guan, Shuwang Lv and Yuanyan Tang, Character of Compactly Supported Refinable Spline Whose Shifts form a Riesz Basis, J. of Approximation Theory, 133(2005), pp. 245-250
- [4] Tim N.T. Goodman, Refinable Spline Functions, in Approximation Theory IX, Charels C. Chui and Larry L. Schumaker, eds., Vanderbilt University Press, Nashville, TN, 1998, pp.1-25.
- [5] Tim N.T. Goodman and D. Hardin, Refinable shift invariant spaces of spline functions, Mathematical Methods for Curves and Surfaces: Tromso 2004, H.Daehlen, K.Morken, L.L.Schumaker (eds.), p.179-197, Nashboro Press, Brentwood, 2005
- [6] R. Q. Jia and C. A. Micchelli, On linear independence of integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36(1992) 69-75.
- [7] Q. Sun, Stability of the shifts of global supported distributions, J. of Mathematical Analysis and Applications. 261(2001), pp. 113-125.