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Abstract

Let M be an integer matrix with absolute values of all its eigenvalues
being greater than 1. We give a characterization of compactly supported
M -refinable splines f and the conditions that the shifts of f form a Riesz
basis.
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1 Introduction and Main Results

Let M ∈ Zn×n be an integer matrix with absolute values of all its eigenvalues
being greater than 1. A function f defined on Rn is M -refinable if there exists
a finite sequence {hj} such that

f(x) =
∑
j∈Zn

hjf(Mx− j) (1)

In [1], Lawton et al considered the one-dimensional setting of the scaling
coefficient M being an integer greater than 1. They gave a characterization
of the refinable univariate splines and proved that only the shifts of B-spline
with the smallest support form a Riesz basis. In [2] Sun extended the partial
result of [1] to M = mI using Box-splines, where m ∈ Z,m > 1, and I is the
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identity matrix, namely, an M = mI-refinable and blockwise polynomial with
compact support is a finite linear combination of a box-spline and its translates.
In [3],Y.Guan et al. further gave a characterization of M = mI-refinable and
blockwise polynomial with compact support forming a Riesz basis. More relative
results can be found in the survey [4, 5] by Goodman et al. In this paper, we
generalize the results of [1, 2, 3] to the setting of a certain class of scaling
matrices, namely. We shall derive a characterization of functions (1) when M
is a matrix with integer entries.

In the following, the multi-index notational system is adopted. First, through-
out the paper, all vectors in Rn or Cn are column vectors.

Let ω ∈ Rn and z ∈ Cn with components ωj ∈ R and zj := exp(iωj) (j =
1, 2, . . . , n), respectively, where i =

√
−1. Denote the transpose of vector k and

matrix M by k′ andM ′, respectively. We also write z = (exp(iω1), exp(iω2), . . . , exp(iωn))′ =
(z1, z2, · · · , zn)′ as z ≡ exp(iω) for convenience when it is clear in the content.
For k ∈ Zn, we denote zk = zk

′
:=
∏n
j=1 z

kj

j . For an integer matrix M , we
denote zM := exp(i(Mω)). Obviously, zkM = zM

′k′ = exp(ik′Mω).
A trigonometric polynomial R(ω) is said to be M -closed if R(Mω)/R(ω) is

a trigonometric polynomial too.
Let s ≥ n and A = (a1, a2, · · · , as) a nonsingular matrix with integer entries

and column vectors aj ∈ Zn, j = 1, 2, · · · , s. By means of Fourier transform, we
can define box splines BA(x) of dimension n as follows:

B̂A(ω) =
s∏
j=1

exp(ia′jω)− 1
ia′jω

(2)

A function φ is called a blockwise polynomial if there exists a simplex decom-
position {∆j}L1 of φ, such that φ is a polynomial on every simplex. A standard
simplex is defined as ∆0 = {(x1, x2, · · · , xn) ∈ Rn; 0 ≤ xj ≤ 1,

∑n
j=1 xj ≤ 1},

and a simplex ∆ is an affine transform of the standard simplex, ∆ = A∆0 + c,
where A is nonsingular and c ∈ Rn. We say that {∆j}Lj=1 is a simplex de-
composition of a bounded set E if

⋃L
j=1 ∆j ⊇ E, where ∆j is a simplex for

every 1 ≤ j ≤ L, and ∆j

⋂
∆l has Lebesgue measure zero when j 6= l. For

the adjacent ∆j and ∆l, let E be their n − 1 dimensional common boundary
lying on the plane π. Then we call π a singular hyperplane of f if f(x)|∆j

and f(x)|∆l
are different polynomials. Hence, all the planes passing through

the n− 1 dimensional boundaries of the simplex support of a block polynomial
function are also called singular hyperplane of the blockwise polynomial.

Let s ≥ n, a1, a2, · · · , as ∈ Zn. We say a matrix A = (a1, a2, · · · , as) is uni-
modular if any matrix generated by any n linearly independent column vectors
of the matrix A has determinant value ±1.

Theorem 1.1. Let n ≥ 2. Suppose φ is a compact support blockwise polynomial,
D = ( ∂

∂x1
, ∂
∂x2

, · · · , ∂
∂xn

), and M is a matrix with integer entries and the absolute
values of all its eigenvalues are greater than 1. Then we have the following
results:
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a). φ satisfies equation (1) if and only if it can be written as

φ(x) = P (D)

∑
j

rjBA(x− j − (Mk − I)−1l)

 (3)

and

1. BA(x) is a box spline defined on A = (a1, a2, · · · , as), where A satisfies∏s
j=1(Maj)′ω = c1

∏s
j=1 a

′
jω for some constant c1;

2. k is a positive integer and satisfies (M ′)kej = λjej for the normal vector
ej of every singular hyperplane of φ;

3. l ∈ Zn satisfies (M − I)(Mk − I)−1l ∈ Zn;

4. P is a polynomial, and satisfies P (M ′ω) = c2P (ω), where P (ω) and∏s
j=1 a

′
jω don’t have common factor, and c2 is a constant;

5. R(z) = R(exp(iω)) =
∑
j rjz

j satisfies that R(z)
∏s
j=1(zaj − 1) is M ′-

closed trigonometric polynomial;

b). Furthermore, integer shifts of φ form Riesz basis if and only if P is polyno-
mial of zero degree, A is unimodular, and R(z) is a monomial.

2

2 The Proof of Main Results

A polynomial P is called a principal homogeneous polynomial if there exists
a natural number k and aj ∈ Rn, 1 ≤ j ≤ k, such that P (ω) =

∏k
j=1 aj

′ω.
In addition, for real bj and complex aj , we call

∑
j aj exp(ibjω) a generalized

trigonometric polynomial. Clearly, the following result holds.

Lemma 2.1. The fourier transform of φ(Mx − k) is |det(M)|−1 exp(−iω′ ·
(M−1k))φ̂((M−1)′ω).

Proposition 2.2. Let f be a blockwise polynomial with compact support satisfy-
ing Equation (1). Then there exists an integer k ∈ Z such that (M ′)kej = λjej,
where λj ∈ R, holds for the normal vectors ej of all singular hyperplanes of f .

Proof. Let E = {ej} be a finite set of the normal vectors ej of all singular
hyperplanes of f . ∀ej ∈ E, there exists a hyperplane e′jx − cj = 0 on which f
is singular. And expression (1) implies that both sides of the equation have the
same singularities. Hence, there exists an integer l on the right-hand side such
that f is singular at the hyperplane e′j(Mx− l)− cj = 0 = (M ′ej)′x− e′j l− cj .
Thus, M ′ej is also the normal vector of a singular hyperplane of f . M is one-
to-one mapping from E to itself because M is not singular. Hence, from the
finiteness of E there exist an integer k such that (M ′)kej = λjej for every
ej ∈ E. Furthermore, since both M and ej are real, λj is also real.
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Proposition 2.3. Let f be an M−refinable blockwise polynomial with compact
support, then its fourier transform f̂ can be written as f̂(ω) =

∑ qn(z)
pn(ω) , where

pn(ω) are the principal homogeneous polynomials and qn(z) are the generalized
trigonometric polynomials. In addition, there exist k such that pn((M ′)−kω) =
cnpn(ω) for some constants cn, n = 1, 2, · · ·.

Proof. Let {ej} be the finite set of the normal vectors of singular hyperplanes
of f . From proposition 2.2, there exists an integer k such that (M ′)kej = λjej
for every ej . Denote by α1, α2, · · · , αm the different eigenvalue of (M ′)k, where
m ≤ n, and by V1, V2, · · · , Vm the corresponding eigenspaces of α1, α2, · · · , αm.
For any j, since ej is the eigenvector of (M ′)k, there exists lj such that ej ∈ Vlj .
Obviously, f is compactly supported and its support must be a polyhedral in Rn.
So every boundary of the polyhedral must be on a singular plane of f and set
{ej} spans Rn. Furthermore, every Vj has a basis Ej consisting of the elements
of {ej}. Hence, we can write Ej = (ej,i),ej,i ∈ {el|el ∈ Vj}, i = 1, 2, · · · ,mj .
Therefore, we obtain a basis E = (E1, E2, · · · , Em) of V = V1 + V2 + · · ·+ Vm,
which consists of the elements of {ej}. Let Ẽ = (Ẽ1, Ẽ2, · · · , Ẽm), here E′lẼl = I,
l = 1, 2, · · · ,m, and E′jẼl = 0 when j 6= l, so E′Ẽ = I. For every l = 1, 2, . . . ,m,
Ẽl spans a space denoted by Ṽl with Ṽl⊥Vj when j 6= l. Obviously, V =
Ṽ1 + Ṽ2 + · · ·+ Ṽm.

For an arbitrary 1 ≤ j ≤ m, the intersections of Ṽj and the singular plane
of f(x), whose normal vector belongs to {el|el ∈ Vj}, form a polyhedral parti-
tion of Ṽj . Furthermore, we can establish a simplex partition {∆̃j,l} from the
polyhedral decomposition of Ṽj , so that we obtain a new polyhedral partition
∆̃ = {

⊕m
j=1(

∑
l ∆̃j,l)} of V .

∀l1, l2, · · · , lm, we claim that f(x) is a polynomial in the domain
⊕m

s=1 ∆̃s,ls .
In fact, since f(x) is a spline, we only need to prove domain

⊕m
s=1 ∆̃s,ls is not

divided by any singular hyperplane of f(x), that is, all the point in
⊕m

s=1 ∆̃s,ls

are on the same side of any singular hyperplane of f(x). Let ej be an arbi-
trary normal vector in Vlj , and let the corresponding singular hyperplanes be
< ej , x >= cj,i, i = 1, 2, · · ·. Denote x =

∑m
s=1 Ẽsαs and y =

∑m
s=1 Ẽsβs, where

Ẽsαs, Ẽsβs ∈ ∆̃s,ls , s = 1, 2, · · · ,m. ∀ x, y ∈
⊕m

s=1 ∆̃s,ls and i = 1, 2, . . . , we
have (< x, ej > −cj,i)(< y, ej > −cj,i) = (< Ẽljαlj , ej > −cj,i)(< Ẽljβlj , ej >
−cj,i) ≥ 0. The last inequality can be obtained from the simplex partition of
Ṽlj .

If x ∈ V , we may write x = Ẽβ with some β ∈ Rn. Furthermore we have
∆̃j,l = Ẽ∆j,l, ∆̃ = Ẽ∆ and f(Ẽβ) is a polynomial on

⊗m
j=1 ∆j,lj . Thus,

f̂ =
∫

Rn

f(x) exp(−ix′ω)dx

= det(Ẽ)
∫

Rn

f(Ẽβ) exp(−iβ′Ẽ′ω))dβ
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Let ξ = (ξ′1, ξ
′
2, · · · , ξ′m)′ = Ẽ′ω = (Ẽ1, Ẽ2, · · · , Ẽm)′ω. Then

f̂ = det(Ẽ)
∫

Nm
j=1(

P
l ∆j,l)

f(Ẽβ) exp(−iβ′ξ)dβ

= det(Ẽ)
∫

P
l1
···

P
lm

Nm
j=1 ∆j,lj

f(Ẽβ) exp(−iβ′ξ)dβ

= det(Ẽ)
∑
l1

· · ·
∑
lm

∫
Nm

j=1 ∆j,lj

f(Ẽβ) exp(−iβ′ξ)dβ

If f is a polynomial on
⊗m

j=1 ∆j,lj we have

f̂ = det(Ẽ)
∑
l1

· · ·
∑
lm

∫
∆1,l1

· · ·
∫

∆m,lm

∑
n

an(l1, l2, · · · , lm)βn exp(−iβ′ξ)dβ

= det(Ẽ)
∑
l1

· · ·
∑
lm

∑
n

an(l1, l2, · · · , lm)
m∏
j=1

∫
∆j,lj

β
nj

j exp(−iβ′jξj)dβj

After simplifying above sum, from the lemma 1 in [2], there exist principle
homogenous polynomials pk,j(ξj) in terms of the variants ξj and generalized
trigonometric polynomials qk,j(exp(−iξj)) such that

f̂ =
∑
n

m∏
j=1

qn,j(exp(−iξj))
pn,j(ξj)

=
∑
n

m∏
j=1

qn,j(exp(−iẼ′jω))

pn,j(Ẽ′jω)

=
∑
n

qn(exp(−iω))∏
j=1 pn,j(Ẽ

′
jω)

,

where qn(exp(−iω)) =
∏m
j=1 qn,j(exp(−iẼ′jω)) are the generalized trigonometric

polynomials.
From the above discussion we know (M ′)kE = Eλ, where λ is a diagonal ma-

trix, and (M ′)kEj = αjEj . Furthermore, MkẼ = Ẽλ and MkẼj = αjẼj . Let
pn(ω) =

∏
j pn,j(Ẽ

′
jω), then pn((M ′)−kω) =

∏
j pn,j(Ẽ

′
j(M

′)−kω) =
∏
j pn,j

((M−kẼj)′ ω) =
∏
j pn,j(α

−1
j Ẽ′jω) = cn

∏
j pn,j(Ẽ

′
jω) = cnpn(ω). Obviously,

pn(ω) is a principal homogeneous polynomial because pn,j(ω) are principal ho-
mogeneous polynomials.

Lemma 2.4. Let Pj (j = 1, 2) be two nonzero polynomials, and let Tj (j = 1, 2)
be two nonzero generalized trigonometric polynomials. If Pj and Tj (j = 1, 2)
satisfy P1(ω)T1(ω) = P2(ω)T2(ω), then P1(ω) = CP2(ω) and T1(ω) = C−1T2(ω)
for some complex number C.

Proof. Let f̂1 = P1(ω)T1(ω), f̂2 = P2(ω)T2(ω) be two generalized functions,
where T1(ω) =

∑K
j=1 c1,j exp(−iajω), T2(ω) =

∑L
j=1 c2,j exp(−ibjω), {aj}Kj=1
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are K different real numbers, and {bj}Lj=1 are L different real numbers. Denote
Q1(iω) = P1(ω), Q2(iω) = P2(ω), and D = ( ∂

∂x1
, ∂
∂x2

, · · · , ∂
∂xn

). Then f1 =

Q1(D)
∑K
j=1 c1,jδ(x − aj) and f2 = Q2(D)

∑L
j=1 c2,jδ(x − bj). Thus, for an

arbitrary infinitely differentiable function φ with compact support, we have
0 = 〈f̂1− f̂2, φ̂〉 = 〈f1−f2, φ〉 = 〈

∑K
j=1 c1,jδ(x−aj), Q1(D)φ〉−〈

∑L
j=1 c2,jδ(x−

bj), Q2(D)φ〉. So 〈
∑K
j=1 c1,jδ(x−aj), Q1(D)φ〉 = 〈

∑L
j=1 c2,jδ(x− bj), Q2(D)φ〉.

Since φ is arbitrary, we obtain L = K, c1,j = C−1c2,j(j = 1, 2, · · · ,K), Q1 =
CQ2 for some constant C, so the lemma is proved.

Lemma 2.5. Let M ∈ Zn×n be a matrix of integer entries, and let all of its
eigenvalue be real and lager than 1. Suppose T (ω) is a nonzero generalized
trigonometric polynomial, and H(ω) is a nonzero trigonometric polynomial de-
fined on Rn. If

T (Mω) = H(ω)T (ω) (4)

then exp(−il(M − I)−1ω)T (ω) is a trigonometric polynomial for some l ∈ Zn.

Proof. One can write

T (ω) =
∑
j

exp(ix′jω)Tj(ω) =
∑
k

exp(iy′kω)Qk(ω) (5)

where Tj(ω) is a trigonometric polynomial, xj−xj̃ /∈ Zn for j 6= j̃, and Qk(Mω)
is a trigonometric polynomial with M ′(yk − yk̃) /∈ Zn when k 6= k̃. So from (4)
and (5) we have∑

k

exp(iy′kMω)Qk(Mω) =
∑
j

exp(ix′jω)H(ω)Tj(ω). (6)

For a given k, suppose M ′yk−xj ∈ Zn, then for all j̃ 6= j we have M ′yk−xj̃ /∈ Zn
because xj − xj̃ ∈ Zn. Similarly, there is only one yk satisfying M ′yk − xj ∈ Zn
for all xj . So the numbers of the elements in sets {xj} and {yk} are equal. From
H 6= 0 and (6), we have

exp(iy′kMω)Qk(Mω) = exp(ix′jω)H(ω)Tj(ω) (7)

In addition, from (5) we have

T (ω) =
∑
j

exp(ix′jω)Tj(ω), (8)

where {xj} satisfies M ′(xj − xj̃) /∈ Zn when j 6= j̃. Hence for all xj , ∃xj̃ and
s ∈ Zn satisfy M ′xj = s+ xj̃ and

exp(ix′jMω)Tj(Mω) = exp(ix′
j̃
ω)H(ω)Tj̃(ω). (9)
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Define map Mxj = xj̃ , where xj̃ is chosen as above. Then M is a well-defined
one-to-one map on {xj}. We also define Xs = {Mkxs; k = 1, 2, · · ·} for every
xs. Then Xs = Xs̃ or Xs

⋂
Xs̃ = ∅. Thus we can choose finite numbers of Xl

such that {xj} =
⋃
lXl and Xl

⋂
Xl̃ = ∅. Therefore the lemma is true if we

can prove that Xl is a singleton for every l, and there exists only one Xl in the
decomposition of {xj}.

First we prove that there is only one element in Xl by using the method
of contradiction. Assume Xl = {x1, x2, · · · , xk}, k ≥ 2. Then for 1 ≤ s ≤ k,
∃τs ∈ Zn such that

Ts(Mω) = exp(iτ ′sω)H(ω)Ts+1(ω) (10)

Let T1(ω) = Tk+1(ω). Then

Ts(Mkω) = exp(iτ̃s′ω)Ts(ω)
k−1∏
j=0

H(M jω) (11)

where τ̃s ∈ Zn. Denote H̃(ω) =
∏k−1
j=0 H(M jω) and M̃ = Mk. We have

Ts(M̃ω) = exp(iτ̃s′ω)Ts(ω)H̃(ω) (12)

Let e1, e2, · · · , en be the linearly independent eigenvectors of M̃−1. And the
corresponding eigenvalues are denoted by ρ1, ρ2, · · · , ρn that satisfy 1 > |ρ1| =
|ρ2| = · · · = |ρt| > |ρt+1| ≥ · · · ≥ |ρn| > 0. Thus, the claim is obtained from
the fact of that M is nonsingular, and the absolute value of all its eigenvalues
are greater than 1. Hence there exists a invertible transform ω =

∑
j αjej =

Eα, where E = (e1, e2, · · · , en). Let the Taylor expansion of Ts(ω) with the
remainder be written as

Ts(ω) = Ts(Eα) = p1(α) + p2(α) + p3(α), (13)

where p1(α) + p2(α) 6= 0 is homogeneous polynomial with degree K, in which
p1(α) will be described later, and p2(α) is the difference of the Taylor expan-
sion of Ts(ω) and p1(α), and the remainder |p3(α)| ≤ C |α|K+1. Assume in
p1(α) + p2(α) the degrees of αi1 , αi2 , · · · , αij are nonzero, and denote ĩ1 =
min{i1, i2, · · · , ij}. Hence, for p1(α) + p2(α), the degrees of α1, α2, · · · , αĩ−1

are zero, where p1(α) is a polynomial in terms of the variants, whose corre-
sponding eigenvalue’s absolute value is

∣∣ρĩ1∣∣(αi → ei → ρi). For convenience,
assume ĩ1 = 1, then p1(α) is a homogeneous polynomial with degree K of
α1, α2, · · · , αt and p2(α) is also a homogeneous polynomial with degree K, but
its every monomial has nonzero degree of αt+1, · · · , αn. Let ρ ∈ Cn, write
(ρ · α) = (ρ1α1, ρ2α2, · · · , ρnαn)T . Therefore,

Ts(M̃−p(ω)) = Ts(E(ρp · α)) = ρKp1 p1(α) + p2(E(ρp · α)) +O(|ρ1|p(K+1)),

which implies

lim
p→∞

Ts(M̃−p(ω))

ρKp1

= lim
p→∞

Ts(E(ρp · α))

ρKp1

= p1(α). (14)
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Indeed the above formula holds due to p2(E(ρp ·α))/ρpK1 → 0 as p→∞, which
can be proved as follows: For every monomial of p2, the degree of αt+1, · · · , αn
is non-zero. Write p2(E(ρp · α)) =

∑
j βj(ρ

p · α)j , then
∣∣∣p2(E(ρp · α))/ρpK1

∣∣∣ =∣∣∣∑j βj(
ρp

ρp
1
· α)j

∣∣∣ ≤∑j

∣∣βjαj∣∣ ∣∣∣ρt+1
ρ1

∣∣∣p → 0 as p→∞.
For 1 ≤ s ≤ k, from (12) we have

Ts(ω) = Ts(Eα) = exp(iτ ′sE(ρ · α))H̃(M̃−1Eα)Ts(M̃−1Eα)

= exp(iτ ′sE((
p∑
j=1

ρj) · α))Ts(M̃−pEα)
p∏
j=1

H̃(M̃−jEα)

Since H̃(ω) is a trigonometric polynomial, we have

Ts(ω) exp(iτ ′1E((
p∑
j=1

ρj) · α))T1(M̃−pEα)

= T1(ω) exp(iτ ′sE((
p∑
j=1

ρj) · α))Ts(M̃−pEα)

a.e. Divide the two sides of the above formula by ρKp1 , and let p → ∞. From
(14) there exist β1, βs ∈ Rn as well as polynomials Ps and P1 such that

exp(iβ′sω)Ps(E−1ω)T1(ω) = exp(iβ′1ω)P1(E−1ω)Ts(ω) (15)

for 2 ≤ s ≤ k. From lemma 3 in [2] , there exist js ∈ Zn and a constant cs such
that Ps(ω) = CsP1(ω) and Ts(ω) = Cs exp(ijsω)T1(ω) for 1 ≤ s ≤ k. Without
losing the generality, let js = 0 by selecting appropriate xj . Thus,

Cs exp(ix′sω)T1(ω) = exp(ix′sω)Ts(ω)
= exp(ix′s+1M

−1ω)H(M−1ω)Ts+1(M−1ω)
= exp(ix′s+1M

−1ω)H(M−1ω)T1(M−1ω)Cs+1.

From (9) and the definition of M, there exists a fixed j ∈ Zn such that
−
(
M−1

)′
xs+1 + xs =

(
M−1

)′
j for all 1 ≤ s ≤ k. Therefore, using xk+1 = x1

yields −xs+1 + M ′xs = j for all 1 ≤ s ≤ k. By a direct calculating, xs =
(M ′ − I)−1j satisfies the above request and it is only one solution when

M ′ −I
. . . . . .

. . . −I
−I M ′


is nonsingular. Furthermore, M ′(xs−xs̃) ∈ Zn for all s and s̃. This is inconsis-
tent with M ′(xs − xs̃) /∈ Zn as s 6= s̃, so the assumption is wrong, that is, there
is only one element for every Xl.
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Using the above argument and from (9) we obtain

exp(ix′jω)Tj(ω) = exp(ix′jM
−1ω)H(M−1ω)Tj(M−1ω) (16)

similarly as (15) , we also have

exp(iβ′sω)Ps(E′ω)T1(ω) = exp(iβ′1ω)P1(E′ω)Ts(ω). (17)

Hence, from lemma 3 in [2], Tj(ω) = Cj exp(ikjω)T1(ω), kj ∈ Zn. Choosing
an appropriate xj one may have kj = 0. Then, for all j, from (16) we have
exp(ix′jω)T1(ω) = exp(ix′jM

−1ω)H(M−1ω)T1(M−1ω), which implies xj −x1 ∈
Zn, this contradiction completes the proof of the lemma.

Proposition 2.6. Let M be a matrix of integer entries, and all of its eigenvalue
be real and lager than 1. Then for a given nonzero trigonometric polynomial
H(z), if q1(zM ) = c1H(z)q1(z) and q2(zM ) = c2H(z)q2(z) then c1 = c2 and
there exist a const c such that q1(z) = cq2(z), where c1 and c2 are two nonzero
real constants, and q1(z) and q2(z) are nonzero generalized trigonometric poly-
nomials.

Proof. From the condition, ∀k ∈ N

q1(z) = ck1q1(zM
−k

)
k∏
j=1

H(zM
−j

)

and

q2(z) = ck2q2(zM
−k

)
k∏
j=1

H(zM
−j

).

Thus, q1(z)ck2q2(zM
−k

) = ck1q1(zM
−k

)q2(z).
Let ω = Eα, where E = (e1, e2, · · · , en) is a nonsigular matrix and Mej =

λjej , j = 1, 2, · · · , n, λ = (λ1, λ2, · · · , λn). Then

zM
−k

= exp(iM−kω) = exp(iM−kEα) = exp(iE(α/λk)).

Using Taylor series of q1, q2 we have for m ∈ N

q1(z)
∑
j

ajα
j(c2λ−j)2m = q2(z)

∑
j

bjα
j(c1λ−j)2m

Divide the both sides of the above equation by λ2m
max, where λmax = maxj

{|c2λ−j |, |c1λ−j |}, and let m → ∞, then we obtain polynomials p1(α), p2(α)
and the equation

q1(z)p2(α) = q2(z)p1(α).

From lemma 2.4 we have q1(z) = cq2(z). Furthermore, we have c1 = c2, which
completes the proof.
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Lemma 2.7. Let T be a trigonometric polynomial and T (ω) = 0 on plane
a′jω = 0, j = 1, 2, · · · , N . Then there exist trigonometric polynomial R(ω) and
αj ∈ R, j = 1, 2, · · · , N such that T (ω) = R(ω)

∏N
j=1(exp(iαja′jω) − 1), where

αjaj ∈ Zn,j = 1, 2, · · · , N .

Proof. This lemma can be proved by a similar argument of the proof of theorem
1 in [2].

In the following we give the proof of Theorem 1.1.
Proof: Sufficiency of the first part: from the fourier transform of (3) , it is

easy to get that φ̂(M ′ω)/φ̂(ω) is a trigonometric polynomial because φ satisfies
equation (1).

Necessity of the first part: By proposition 2.2, there exists k such that
(M ′)kej = λjej for the normal vector ej of an arbitrary singular hyper-plane.
Let M̃ = Mk, then f is M̃ -refinable. By proposition 2.3

φ̂(ω) =
∑
j∈Λ

Tj(ω)
Pj(ω)

=
∑
s≥s0

∑
degPj=s

Tj(ω)
Pj(ω)

(18)

where s0 ≥ 0 and
∑

degPj=s0

Tj(ω)
Pj(ω) 6= 0, and {P−1

j (ω)}degPj=s is linearly inde-
pendent (s = s0, s0 + 1, s0 + 2, · · ·). In addition,∑

s>s0

∑
degPj=s

Tj(rω)
Pj(rω)

rs0 → 0

and ∑
s>s0

∑
degPj=s

Tj(r(M̃ ′)−1ω)
Pj(r(M̃ ′)−1ω)

rs0 → 0

as r → +∞ a.e. for all ω on the unit sphere Sn−1 in Rn.
From (1), there exists trigonometric polynomial H(ω) such that φ̂(ω) =

H((M̃ ′)−1ω)φ̂((M̃ ′)−1ω), and from proposition 2.3 it satisfies

∑
degPj=s0

(
Tj(rω)
Pj(ω)

− H(r(M̃ ′)−1ω)Tj(r(M̃ ′)−1ω)
Pj((M̃ ′)−1ω)

)
(19)

=
∑

degPj=s0

(
Tj(rω)− λjH(r(M̃ ′)−1ω)Tj(r(M̃ ′)−1ω)

Pj(ω)

)
→ 0 (20)

as r → +∞ a.e. ω ∈ Sn−1. Write

Tj(ω)− λjH((M̃ ′)−1ω)Tj((M̃ ′)−1ω) =
∑
k cj,k exp(iy′kω)

and denote

Dk(ω) =
∑
j

cj,k
Pj(ω)
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Hence
∑
kDk(ω) exp(iy′kωr) → 0 as r → ∞ for y′kω 6= y′

k̃
ω a.e. ω ∈

Sn. By using lemma 2 of [2], we have Dk(ω) = 0 a.e. ω ∈ Sn. Since
{p−1
j (ω)} is linearly independent, we have cj,k = 0 for all j, k. Hence Tj(ω) =

λjH((M̃ ′)−1ω)Tj((M̃ ′)−1ω). Thus,∑
degPj=s0

(
Tj(rω)
Pj(ω)

− H(r(M̃ ′)−1ω)Tj(r(M̃ ′)−1ω)
Pj((M̃ ′)−1ω)

)
= 0

Recursively, for degree of Pj = s0+1, s0+2, · · ·, Tj(ω) = λjH((M̃ ′)−1ω)Tj((M̃ ′)−1ω),
so that for all Tj we have Tj(ω) = λjH((M̃ ′)−1ω)Tj((M̃ ′)−1ω). By using lemma
2.5 and proposition 2.6, there exists a trigonometric polynomial T̃ (ω) such that
Tj(ω) = cj exp(il′((M̃ ′)− I)−1ω)T̃ (ω) = cj exp(il′((M ′)k − I)−1ω)T̃ (ω), which
implies

φ̂(ω) =
∑
s≥s0

∑
degPj=s

cj
Pj(ω)

exp(il′((M ′)k − I)−1ω)T̃ (ω).

Let P (ω)/Q(ω) =
∑
s≥s0

∑
degPj=s

cj

Pj(ω) , where Q(ω) is a principle homoge-
neous polynomial, and P (ω) and Q(ω) do not have common factors. Hence

Q(ω)φ̂(ω) = exp(il′((M ′)k − I)−1ω)T̃ (ω)P (ω)

Let Q(ω) =
∏N
j=1 a

′
jω, 0 6= aj ∈ Rn. Because | exp(il′((M ′)k − I)−1ω)| = 1,

and there is no common factors for P and Q, we obtain T̃ (ω) = 0 on the
hyperplanes of a′jω = 0, j = 1, 2, · · · , N . From lemma 2.7 we know that there
exists a trigonometric polynomial R(ω) and ãj = αjaj ∈ Zn such that T̃ (ω) =
R(ω)

∏N
j=1(exp(iã′jω)− 1). Hence we have

φ̂(ω) = exp(il′((M ′)k − I)−1ω)P (ω)R(ω)
N∏
j=1

(exp(iã′jω)− 1)
iã′jω

.

Thus, (3) holds. And from (1), there exists a trigonometric polynomial H(ω),
such that

H(ω) =
φ̂((M ′)ω)

φ̂(ω)

=
P ((M ′)ω)
P (ω)

R(exp(i(M ′)ω))
R((exp(iω)))

exp(il′((M ′)k − I)−1(M ′ − I)ω)

×
N∏
j=1

(
(exp(iã′j(M

′)ω)− 1)
(exp(iã′jω)− 1)

a′jω

a′j(M ′)ω

)

Let l̃ = (M − I)((Mk) − I)−1l, R̃(ω) = R(exp(iω))
∏N
j=1(exp(iã′jω) − 1), By

using lemma 3 of [2], for l̃ ∈ Zn

P (M ′ω)
N∏
j=1

a′jω = CP (ω)
N∏
j=1

a′jM
′ω (21)
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R̃(M ′ω)) = C−1H(ω) exp(il̃′ω)R̃(ω)

From (21) and noting that Q(ω) =
∏N
j=1 a

′
jω and P (ω) do not have common

factor, we obtain

P (M ′ω) = c̃1P (ω)
N∏
j=1

ã′jω = c̃2

N∏
j=1

ã′jM
′ω

Sufficiency of the second part: The sufficiency holds from (3) and lemma 3
of [3].

Necessity of the second part:
First we prove that if there is a nonzero constant term in P (ω), then P (ω)

must be degree of zero. Let E = (e1, e2, · · · , en) be a nonsingular matrix con-
sisting of the eigenvector of M ′, namely, M ′ej = ρjej . Write ω = Eα, then
P (M ′ω) = cP (ω) = P (M ′Eα) = P (E(ρ · α)) = cP (Eα), so that P ((ρ · α)) =
cP (α). Suppose P (α) =

∑
j βjα

j , then we have cβj = βjρ
j for all j. Since

β0 6= 0, we have c = 1. And from |ρi| > 1 we have βj = 0 for j 6= 0.
Because

∑
j B(x− j) is a constant, we know

∑
j φ(x− j) is also a constant.

Thus, from [6, theorem 5.1](or [7, theorem 1.1]) the shifts of φ can not form
a Riesz basis when there isn’t constant term in P (D). So P (D) must be a
polynomial of degree zero.

Similar to the proof of theorem 2 in [3], one can prove A is unimodular and
R(z) does not have any root on Tn = {z = (z1, z2, · · · , zn) ∈ Cn | |z1| = |z2| =
· · · = |zn| = 1}. Using the same argument of the proof of proposition 9 in [3], it
can be proved that all prime factors of

∏s
j=1(zaj − 1) have roots on Tn, which

implies that R(exp(iω)) have no any prime factor of
∏s
j=1(zaj − 1). From this

fact and noting R(z)
∏s
j=1(zaj − 1) is M ′-closed, we know R(exp(iω)) is also

M ′-closed. Furthermore, similar to the proof of proposition 6 and 7 in [3], we
have learnt that R(z) is a monomial.
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