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Abstract

Let M be an integer matrix with absolute values of all its eigenvalues
being greater than 1. We give a characterization of compactly supported
M-refinable splines f and the conditions that the shifts of f form a Riesz
basis.

spline; refinement; blockwise polynomial; Riesz basis; simplex decom-
position 42C40 (39A70, 41A15, 41A30, 65D07, 65D18, 65T60)

1 Introduction and Main Results

Let M € Z™ "™ be an integer matrix with absolute values of all its eigenvalues
being greater than 1. A function f defined on R™ is M-refinable if there exists
a finite sequence {h;} such that

@)= 3 hyf(Ma = j) (1)

jezn

In [1], Lawton et al considered the one-dimensional setting of the scaling
coefficient M being an integer greater than 1. They gave a characterization
of the refinable univariate splines and proved that only the shifts of B-spline
with the smallest support form a Riesz basis. In [2] Sun extended the partial
result of [1] to M = ml using Box-splines, where m € Z,m > 1, and I is the
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identity matrix, namely, an M = ml-refinable and blockwise polynomial with
compact support is a finite linear combination of a box-spline and its translates.
In [3],Y.Guan et al. further gave a characterization of M = mlI-refinable and
blockwise polynomial with compact support forming a Riesz basis. More relative
results can be found in the survey [4, 5] by Goodman et al. In this paper, we
generalize the results of [1, 2, 3] to the setting of a certain class of scaling
matrices, namely. We shall derive a characterization of functions (1) when M
is a matrix with integer entries.

In the following, the multi-index notational system is adopted. First, through-
out the paper, all vectors in R™ or C™ are column vectors.

Let w € R™ and z € C™ with components w; € R and z; := exp(iw;) (j =
1,2,...,n), respectively, where i = /—1. Denote the transpose of vector k and
matrix M by k" and M’ respectively. We also write z = (exp(iw1 ), exp(iwa), . . ., exp(iw,))’ =

(21,22, +,2n) as z = exp(iw) for convenience when it is clear in the content.
' k; . .
For k € Z", we denote 2% = 2V := [[j=, 2. For an integer matrix M, we

denote zM := exp(i(Mw)). Obviously, 2" = zM'* — exp(ik/ Mw).

A trigonometric polynomial R(w) is said to be M-closed if R(Mw)/R(w) is
a trigonometric polynomial too.

Let s > nand A = (aj,as, -, as) a nonsingular matrix with integer entries
and column vectors a; € Z",j = 1,2,---,s. By means of Fourier transform, we
can define box splines B(z) of dimension n as follows:

S . !
. H exp(iajw) — 1 @)

/.
j=1 J

A function ¢ is called a blockwise polynomial if there exists a simplex decom-
position {Aj}lL of ¢, such that ¢ is a polynomial on every simplex. A standard
simplex is defined as A = {(z1,22, -+, 2,) € R";0 < z; < 1,2?:1 x; < 1},
and a simplex A is an affine transform of the standard simplex, A = AA% +¢,
where A is nonsingular and ¢ € R™. We say that {Aj}]L:1 is a simplex de-
composition of a bounded set F if Ule A; D E, where Aj is a simplex for
every 1 < j < L, and A; () A; has Lebesgue measure zero when j # [. For
the adjacent A; and A, let E be their n — 1 dimensional common boundary
lying on the plane m. Then we call 7 a singular hyperplane of f if f(x)| A,
and f(z)] A, are different polynomials. Hence, all the planes passing through
the n — 1 dimensional boundaries of the simplex support of a block polynomial
function are also called singular hyperplane of the blockwise polynomial.

Let s > n, ay,a2,--+,as € Z". We say a matrix A = (ay, a9, -, as) is uni-
modular if any matrix generated by any n linearly independent column vectors
of the matrix A has determinant value +1.

Theorem 1.1. Letn > 2. Suppose ¢ is a compact support blockwise polynomial,
D= (8%, %, R BL), and M is a matrix with integer entries and the absolute

1 1’2' X Tn .
values of all its eigenvalues are greater than 1. Then we have the following
results:



a). ¢ satisfies equation (1) if and only if it can be written as

¢(x) = P(D) | Y rjBalw—j— (M* —1)7") (3)
J
and
1. Ba(x) is a box spline defined on A = (a1,as,---,as), where A satisfies
[[j=1(Ma;)'w = c1 [[5_, djw for some constant ci;

2. k is a positive integer and satisfies (M')¥

ej of every singular hyperplane of ¢;

e; = Aje; for the normal vector

3. L € Z" satisfies (M — I)(M* — 1)~ € Z";

4. P is a polynomial, and satisfies P(M'w) = coP(w), where P(w) and

H;Zl a;-w don’t have common factor, and cy is a constant;

5. R(z) = R(exp(iw)) = >_; r;z7 satisfies that R(z) [[j=i(z% — 1) is M'-
closed trigonometric polynomial;

b). Furthermore, integer shifts of ¢ form Riesz basis if and only if P is polyno-
mial of zero degree, A is unimodular, and R(z) is a monomial.

O

2 The Proof of Main Results

A polynomial P is called a principal homogeneous polynomial if there exists
a natural number k and a; € R", 1 < j < k, such that P(w) = H§:1 a;'w.
In addition, for real b; and complex a;, we call > ;aj exp(ibjw) a generalized
trigonometric polynomial. Clearly, the following result holds.

Lemma 2.1. The fourier transform of d(Mz — k) is |det(M)|”" exp(—iw’ -
(M~1R)) (M) w).

Proposition 2.2. Let f be a blockwise polynomial with compact support satisfy-
ing Equation (1). Then there exists an integer k € Z such that (M')*e; = \je;,
where A\j € R, holds for the normal vectors e; of all singular hyperplanes of f.

Proof. Let E = {e;} be a finite set of the normal vectors e; of all singular
hyperplanes of f. Ve; € E, there exists a hyperplane e;ac —¢; = 0 on which f
is singular. And expression (1) implies that both sides of the equation have the
same singularities. Hence, there exists an integer [ on the right-hand side such
that f is singular at the hyperplane e;(Mz —1) —c; = 0= (M'e;)'w — el — ¢;.
Thus, M'e; is also the normal vector of a singular hyperplane of f. M is one-
to-one mapping from E to itself because M is not singular. Hence, from the
finiteness of E there exist an integer k such that (M’)*e; = \je; for every
e; € E/. Furthermore, since both M and e; are real, \; is also real. O



Proposition 2.3. Let f be an M —refinable blockwise polynomial with compact
support, then its fourier transform f can be written as f (w) = z':—((z)), where
pn(w) are the principal homogeneous polynomials and q,(z) are the generalized
trigonometric polynomials. In addition, there exist k such that p,((M')~*w) =

cnpn(w) for some constants c,,m =1,2,---.

Proof. Let {e;} be the finite set of the normal vectors of singular hyperplanes

of f. From proposition 2.2, there exists an integer k such that (M’)*e; = \je;
for every e;. Denote by v, g, -, oy, the different eigenvalue of (M’)*, where
m < n, and by Vq,Va,---,V,, the corresponding eigenspaces of ay,ag, -, am.

For any j, since ¢; is the eigenvector of (M')k, there exists l; such that e; € V.
Obviously, f is compactly supported and its support must be a polyhedral in R"™.
So every boundary of the polyhedral must be on a singular plane of f and set
{e;} spans R™. Furthermore, every V; has a basis E; consisting of the elements
of {e;}. Hence, we can write E; = (e;;),e;: € {eile; € V;}, i =1,2,---,m;.
Therefore, we obtain a basis E = (F1,FEa, -+, Epn) of V=V + Vo + -+ V,,
which consists of the elements of {e;}. Let E = (El, Eo, -+ ,Em), here El’E~l =1,
[=1,2,---,m, andEJ’.EN'l =0Owhenj#1,s0o E'E=1. Foreveryl =1,2,...,m,
E, spans a space denoted by V, with ‘N/ILVJ when j # [. Obviously, V =
Vi+ VotV

For an arbitrary 1 < j < m, the intersections of f/j and the singular plane
of f(x), whose normal vector belongs to {e;|e; € V;}, form a polyhedral parti-
tion of f/J Furthermore, we can establish a simplex partition {Aj’l} from the
polyhedral decomposition of f/j, so that we obtain a new polyhedral partition
A= {@7 (X, Aj0)} of V.

Viy,la, -+, Ly, we claim that f(z) is a polynomial in the domain €., As}ls.
In fact, since f(x) is a spline, we only need to prove domain @', As,ls is not
divided by any singular hyperplane of f(z), that is, all the point in @]., ASJS
are on the same side of any singular hyperplane of f(z). Let e; be an arbi-
trary normal vector in V., and let the corresponding singular hyperplanes be
<ejx >=cjii=1,2,--- Denotex = 7" | Esa,and y = 3.7 | E,f,, where
Esoq, Efs € Agyys =1,2,---,m. Yo,y € @7, Ay, and i = 1,2,..., we
have (< x,e; > —c;i)(< y,e5 > —¢jq) = (< By ou;,e5 > —c¢j i) (< By, By;,e5 >
—c¢;;) > 0. The last inequality can be obtained from the simplex partition of
7,

If z € V, we may write z = E with some 3 € R™. Furthermore we have
Aj,l = EAJ-J, A = EA and f(Ep) is a polynomial on ®T=1 Aj,. Thus,

f = f(z) exp(—ix'w)dz
R’V‘L

= det(E) . F(EB) exp(—if E'w))dp3



Letﬁ: €l7€/7"'7€/ ! w- El,EQ, ,Em 'w. Then
1,62

f

det(E) /@m o F(EB) exp(—iB'€)dp

det(E) / F(EB) exp(—if'€)dp
2y 2, Oy Ay

dady Y [ J(EB) exp(~if'€)d3
I I Y ®JL1 Ady

If f is a polynomial on @’7°; A, we have

fo= det(E ZZ/

Aty

Y anuda )5 expl-i5)d8

mylm n
det(E)Y > an(la, oy 1) [ ] /A 77 exp(—iBi¢;)dB;
l1 I 1 j=1 3il

After simplifying above sum, from the lemma 1 in [2], there exist principle
homogenous polynomials py ;(§;) in terms of the variants §; and generalized
trigonometric polynomials gy j(exp(—i&;)) such that

. ZH%JGXP —i&;))

n j=1 pn’J
_ ZH n,j (exp( zE w))
n j=1 pn,j U})

qn gu(exp(—iw))

)
n j 1pn,](ij)

where ¢, (exp(—iw)) = H;ﬂ:l In,j (exp(—iE’éw)) are the generalized trigonometric
polynomials.

From the above discussion we know (M’)*E = EX, where A is a diagonal ma-
trix, and (M')*E; = a;E;. Furthermore, M¥E = EX and M*E; = o, E;. Let
Pa(@) = L, puy (B0). then p(M))~4w) = T, puy(B}(M") ) = TT, pus
(M~*E;) w) = Hj pn’j(ajflE;-w) =cp Hj pn,j(Ej/»w) = ¢ppn(w). Obviously,
Pn(w) is a principal homogeneous polynomial because py,_ ;j(w) are principal ho-
mogeneous polynomials. O

Lemma 2.4. Let P; (j = 1,2) be two nonzero polynomials, and let T; (j = 1,2)
be two nonzero genemlzzed trigonometric polynomials. If P; and T; (j = 1,2)
satisfy Py (w)Th (w) = Pe(w)Te(w), then P (w) = CPy(w) and Ty (w) = C™ 1T (w)
for some complex number C.

Proof. Let fi = Pi(w)Ti(w), f2 = Py(w)Ta(w) be two generalized functions,
where T} (w) = Efil 1,5 exp(—ia;w), To(w) = 2‘7;:1 cg, exp(—ibjw), {aj}jzl



are K different real numbers, and {b; } -, are L different real numbers. Denote

Q1(iw) = P (w), Q2(iw) = Pa(w), and D = (3m17 622 . agn). Then f; =

Q1(D) Z]K:l c1,j6(x — aj) and fo = Q2(D )Zle ¢2,;0(x — bj). Thus, for an

arbitrary infinitely differentiable function ¢ with compact support, we have
0= {fr=f2.0) = (S~ fo.0) = () 1,0z~ a;), Qu(D)@) — <z§ 2,50
b;), Q2(D)g). So (Y[, c1,;8(x —a;), Q ( )¢ >=<ZJ 1 €2,50(2 — )Qz( )®).

Since ¢ is arbitrary, we obtain L = K,c1; = Cleaj(j = 1,2,---,K),Q1 =
CQ5 for some constant C, so the lemma is proved. O

Lemma 2.5. Let M € Z"*™ be a matrixz of integer entries, and let all of its
eigenvalue be real and lager than 1. Suppose T(w) is a nonzero generalized
trigonometric polynomial, and H(w) is a nonzero trigonometric polynomial de-
fined on R™. If

T(Mw) = H(w)T(w) (4)
then exp(—il(M — I)~'w)T(w) is a trigonometric polynomial for some l € Z".

Proof. One can write

= el ) = S o)) )

where Tj(w) is a trigonometric polynomial, z; —z; ¢ Z" for j # 7, and Qp(Mw)
is a trigonometric polynomial with M'(y, — y;) ¢ Z" when k # k. So from (4)
and (5) we have

Zexp iy Mw)Qr(Mw) Zexp ixiw)H(w)Tj(w). (6)

For a given k, suppose M’y —x; € Z", then for all j # j we have M'y—z; ¢ Z"
because x; — x> € Z". Similarly, there is only one y;, satisfying My, —z; € Z"
for all ;. So the numbers of the elements in sets {x;} and {yx} are equal. From
H # 0 and (6), we have

exp(iy, Mw)Qp(Mw) = exp(izjw)H (w)T}(w) (7)

In addition, from (5) we have

@) = 3 explia})T; (), ®

where {z;} satisfies M'(z; — ;) ¢ Z" when j # j. Hence for all x;, Ja; and
s € 2" satisfy M'z; = s+ T3 and

exp(iz; Mw)Tj(Mw) = exp(iziw) H (w)T;(w). (9)



Define map Mzx; = x5, where x5 is chosen as above. Then M is a well-defined
one-to-one map on {z;}. We also define X; = {M*zk =1,2,---} for every
zs. Then X; = Xz or X)Xz = 0. Thus we can choose finite numbers of X;
such that {z;} = J, X; and X; () X; = 0. Therefore the lemma is true if we
can prove that X; is a singleton for every [, and there exists only one X; in the
decomposition of {z;}.

First we prove that there is only one element in X; by using the method
of contradiction. Assume X; = {z1,22, - ,zr}, k > 2. Then for 1 < s <k,
Jry € Z™ such that

Ts(Mw) = exp(iTiw)H (w)Ts 1 (w) (10)
Let T1(w) = Tk41(w). Then

k—1
To(M*w) = exp(its'w)To(w) [ [ H(Mw) (11)
j=0

where 7, € Z". Denote H(w) = Hf;é H(M’w) and M = M*. We have
T, (M) = exp(iry ) Ta() H () (12)

Let e1, s, -+, e, be the linearly independent eigenvectors of M. And the
corresponding eigenvalues are denoted by p1, pa, - - -, pn that satisfy 1 > |p1]| =
lp2| = -+ = |pte| > |pes1]l = -+ > |pn| > 0. Thus, the claim is obtained from
the fact of that M is nonsingular, and the absolute value of all its eigenvalues
are greater than 1. Hence there exists a invertible transform w = o€ =
Ea, where E = (eq,e3,--+,¢,). Let the Taylor expansion of Ts(w) with the
remainder be written as

Ts(w) = Ts(Ea) = p1(a) + p2(a) + p3(a), (13)

where p;(a) + p2(a) # 0 is homogeneous polynomial with degree K, in which
p1(a) will be described later, and py(«) is the difference of the Taylor expan-

sion of Ty(w) and p;(«), and the remainder |ps(a)| < C’\a|K+1. Assume in
p1(@) + pa(a) the degrees of ay,,ai,, -+, q;, are nonzero, and denote i; =
min{iq, 4, --,4;}. Hence, for pi(a) + pa(a), the degrees of aq,an,---,0;_;

are zero, where p;(a) is a polynomial in terms of the variants, whose corre-
sponding eigenvalue’s absolute value is | pgl‘(ai — e; — p;). For convenience,
assume 7; = 1, then p;(a) is a homogeneous polynomial with degree K of
a1, Q, -+, and pa(a) is also a homogeneous polynomial with degree K, but
its every monomial has nonzero degree of ayi1,---,a,. Let p € C", write
(p-a) = (pra1, p2aa, -, pnay)T. Therefore,

T,(T7(w)) = To(B(p" - a)) = pPp1(a) + pa(E(p - @) + O(py D),

which implies

Jim PG < i B < ) 1)



Indeed the above formula holds due to py(E(p? - @) /02" — 0 as p — oo, which
can be proved as follows: For every monomial of ps, the degree of ayyq,---, an

is non-zero. Write pa(E(p? - o)) = >, B;(p? a)?, then ‘pg(E(pp )/ PR =

P . . p
23_716.7(27117 a)J S2J|ﬁja‘7| p;)tl —>Oasp_>oo_
For 1 < s <k, from (12) we have
To(w) = Tu(Bo) = explirl E(p o)) H(H ™" Ea)T, (W~ Fo)
P
= expzTE Zp MpEaH MJEa

Since H(w) is a trigonometric polynomial, we have

To(w) exp(itl E((Y p7) - a))Ti (M ~PE«)

NE

1

.
Il

~ Tiw)exp(rlB(Y ) - @) TL(M 7 Ea)

NE

.
I
-

a.e. Divide the two sides of the above formula by p{(p , and let p — oco. From
(14) there exist 81, 8s € R™ as well as polynomials P; and P; such that

exp(ifiw) Ps(E~'w) T (w) = exp(ifjw) P (E~w)T(w) (15)

for 2 < s < k. From lemma 3 in [2] , there exist j; € Z™ and a constant c¢s such
that Ps(w) = CsPy(w) and Ts(w) = Cy exp(ijsw)Ti(w) for 1 < s < k. Without
losing the generality, let j, = 0 by selecting appropriate x;. Thus,

Cs exp iz’ w)Th (w) = exp(iriw)Ts(w)
= exp(ivl M w) H(M 'w) Ty (M w)
= exp(ivl M w)H(M ™ 'w)Ty (M w)Coyq.

From (9) and the definition of M, there exists a fixed j € Z™ such that
— (M’l),mﬂ_l + x5 = (M’l),j for all 1 < s < k. Therefore, using xp11 = 21
yields —xsy1 + Mz, = j for all 1 < s < k. By a direct calculating, z, =
(M’ — I)~1j satisfies the above request and it is only one solution when

M -1

=1
-1 M’
is nonsingular. Furthermore, M’ (x5 —z35) € Z" for all s and §. This is inconsis-

tent with M'(zs — x5) ¢ Z™ as s # §, so the assumption is wrong, that is, there
is only one element for every Xj.



Using the above argument and from (9) we obtain
exp(izjw)T;(w) = exp(iz; M~ w)H (M 'w)T;(M~'w) (16)
similarly as (15) , we also have
exp(ifw) Py (E'w) T (w) = exp(ifyw) P (E'w) Ty (w). (17)

Hence, from lemma 3 in [2], T;(w) = C;exp(ikjw)Ti(w), kj € Z™. Choosing
an appropriate z; one may have k; = 0. Then, for all j, from (16) we have
exp(izjw)T1 (w) = exp(iz; M~ 'w)H(M ~'w)Ti (M ~'w), which implies z; — 1 €
7", this contradiction completes the proof of the lemma.

O

Proposition 2.6. Let M be a matriz of integer entries, and all of its eigenvalue
be real and lager than 1. Then for a given monzero trigonometric polynomial
H(2), if 1(zM) = c1H(2)q1(2) and q2(2™) = coH(2)q2(2) then ¢ = co and
there exist a const ¢ such that q1(z) = cqa(z), where ¢; and ¢y are two nonzero
real constants, and q1(z) and q2(z) are nonzero generalized trigonometric poly-
nomaals.

Proof. From the condition, Vk € N

k

—k —j
a(z) =fa ) [[HE)
j=1
and
k
a(2) = chap (M) [T H(
=1
Thus, q1(2)ckqa(zM ") = kg (zM ") go(2).
Let w = Fo, where E = (e1,e2, -, €,) is a nonsigular matrix and Me; =

)\jej, ] = 1,2,"',77,, )\: ()\1,)\27"‘,)\n). Then
M= exp(iM ~*w) = exp(iM ¥ Ea) = exp(iE(a/\F)).

Using Taylor series of q1, g2 we have for m € N
Zajaj Co\~ J Zb o) (et A~ J

Divide the both sides of the above equation by A2™ = where A\par = max;
{leaA77],|e1A77]}, and let m — oo, then we obtain polynomials p;(a), pa(«)
and the equation

01 (2)p2(@) = ga(2)p1(e).

From lemma 2.4 we have q1(z) = cg2(2). Furthermore, we have ¢; = ¢z, which
completes the proof. O

10



Lemma 2.7. Let T be a trigonometric polynomial and T(w) = 0 on plane
ajw=0,j=1,2,---,N. Then there exist trigonometric polynomial R(w) and
a; €R, j=1,2,---,N such that T(w) = R(w) H;\le(exp(iaja;w) — 1), where
Qa5 € Z"j=1,2,---,N.

Proof. This lemma can be proved by a similar argument of the proof of theorem
11in [2]. O

In the following we give the proof of Theorem 1.1.

Proof: Sufficiency of the first part: from the fourier transform of (3) , it is
easy to get that QB(M 'w)/ ngS(w) is a trigonometric polynomial because ¢ satisfies
equation (1).

Necessity of the first part: By proposition 2.2, there exists k such that
(M')*e; = Aje; for the normal vector e; of an arbitrary singular hyper-plane.
Let M = M¥, then f is M-refinable. By proposition 2.3

- Pa-% ¥ 7

JEA ] s>sg deg Pj=s

(18)

where sy > 0 and Zdegp —so P (w) # 0, and {P; "(w) }deg py—s 1s linearly inde-
pendent (s = sg, 0 + 1,80+ 2,---). In addition,

> 7

§>s0 deg Pj=s

and

Z Z T 1w; 7% — 0

s$>s0 deg Pj=s j ’/‘ w

as r — +oo a.e. for all w on the unit sphere S*~! in R™. .
From (1), there exists trigonometric polynomial H(w) such that ¢(w) =
H((M'")~'w)¢((M')~'w), and from proposition 2.3 it satisfies

(rw (M) 'w)T;(r(M') " w
5 (13() H(r(01")~\w) T3 (r(3T") >> (19)

deg Pj=s0 Pj(w) Pj((M/)_lw)
_ Tj(rw) = N H(r(M) o) T3 (r(M) " 'w) |
- deg%'::so < Pj (w) ) ! (20)

as r — 400 a.e. w e S" L. Write
Tj(w) = N H((M) ') T (M) 'w) =3, cjk expliyyw)

and denote




Hence ), Di(w)exp(iypwr) — 0 as r — oo for yyw # yjw ae. w €
S™. By using lemma 2 of [2], we have Di(w) = 0 a.e. w € S™. Since
{p;l(w)} is linearly independent, we have c;, = 0 for all j, k. Hence Tj(w) =
N H (M) w)Tj((M')~'w). Thus,

3 (T;-(m) H(r(M’ww)Tj(r(M')lw))_o

deg Pj=sq Pj(w) Pj((MI)_lw)

Recursively, for degree of P; = so+1, 5042, -, Tj(w) = N\ H((M") " 'w)T;(M")~

so that for all T} we have Tj(w) = \;H((M")~'w)T;((M')~'w). By using lemma
2.5 and proposition 2.6, there exists a trigonometric polynomlal T(w ) such that
Tj(w) = ¢; exp(zl’((M’) I)~'w)T(w) = ¢jexp(il'(M")F — I)~'w)T(w), which
implies

=> Z exp Gl (MY = D)) T (w).

s>sg deg Pj=s

Let P(w)/Q(w) = Yoo Pdeg py—s %, where Q(w) is a principle homoge-
neous polynomial, and P(w) and Q(w) do not have common factors. Hence
Qw)d(w) = exp(il' (M')* = I)"'w)T(w) P(w)

Let Q(w) = va dfw, 0 # a; € R™. Because |exp(il'(M')* — I)"'w)| = 1,
and there is no common factors for P and Q, we obtain T(w) = 0 on the
hyperplanes of a;-w =0,7=1,2,---,N. From lemma 2.7 we know that there
exists a trigonometric polynomial R(w) and d; = aja; € Z" such that T(w) =
R(w) H;-v:l(exp(id;w) —1). Hence we have

. ek 3 N (exp (iajw) — 1)
B(w) = exp(l' (M')* — 1)~ H%-

Thus, (3) holds. And from (1), there exists a trigonometric polynomial H (w),
such that

¢((M’) )

o(w)

- A f;xz;;gfj;;;” explil' (M) — 1) (M — T)w)

P

N eXp iay(Mw) —1)  djw

X H (ex -1 L(M!
e p(idjw) —1) af(M")w

H(w) =

Let [ = (M — I)((M*) — I)"!, R(w) = R(exp(iw)) [T}, (exp(idjw) — 1), By
using lemma 3 of [2], for [ € Z"

N N
P(M'w) H ajw = CP(w) H a;M'w (21)

j=1 j=1

lw)’



R(M'w)) = C™ H(w) exp(il'w) R(w)

From (21) and noting that Q(w) = []*; ¢’w and P(w) do not have common

. j=1"3
factor, we obtain
N N
P(M'w) = ¢ P(w) H dw=2¢cy || asM'w
j=1 j=1

Sufficiency of the second part: The sufficiency holds from (3) and lemma 3
of [3].
Necessity of the second part:

First we prove that if there is a nonzero constant term in P(w), then P(w)
must be degree of zero. Let E = (e1,ea,---,€,) be a nonsingular matrix con-
sisting of the eigenvector of M’, namely, M'e; = pje;. Write w = Fa, then
P(M'w) = ¢cP(w) = P(M'Ea)) = P(E(p - «)) = ¢cP(Ea), so that P((p-«a)) =
c¢P(a). Suppose P(a) = Zj B;jal, then we have c¢f3; = B;p’ for all j. Since
Bo # 0, we have ¢ = 1. And from |p;| > 1 we have §; = 0 for j # 0.

Because ) ; B(z — j) is a constant, we know)_; ¢(x — j) is also a constant.
Thus, from [6, theorem 5.1](or [7, theorem 1.1]) the shifts of ¢ can not form
a Riesz basis when there isn’t constant term in P(D). So P(D) must be a
polynomial of degree zero.

Similar to the proof of theorem 2 in [3], one can prove A is unimodular and
R(z) does not have any root on T™ = {z = (21,22, -+, 2,) € C" | |21] = |22| =
-+ = |zy| = 1}. Using the same argument of the proof of proposition 9 in [3], it
can be proved that all prime factors of ]_[‘;:1(2“-7‘ — 1) have roots on T, which
implies that R(exp(iw)) have no any prime factor of H;Zl(zaj —1). From this
fact and noting R(2) [[;_; (% — 1) is M'-closed, we know R(exp(iw)) is also
M’-closed. Furthermore, similar to the proof of proposition 6 and 7 in [3], we
have learnt that R(z) is a monomial.
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