
Schröder matrix as inverse of Delannoy matrix

Sheng-liang Yanga∗†, Sai-nan Zhenga, Shao-peng Yuana, Tian-Xiao Heb

a Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China

b Department of Mathematics, Illinois Wesleyan University, Bloomington, IL, 61702, USA

Abstract

Using Riordan arrays, we introduce a generalized Delannoy matrix by weighted

Delannoy numbers. It turn out that Delannoy matrix, Pascal matrix, and Fi-

bonacci matrix are all special cases of the generalized Delannoy matrices, mean-

while Schröder matrix and Catalan matrix also arise in involving inverses of the

generalized Delannoy matrices. These connections are the focus of our paper.

The half of generalized Delannoy matrix is also considered. In addition, we

obtain a combinatorial interpretation for the generalized Fibonacci numbers.
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1 Introduction

The Pascal matrix [2–4] appears often in combinatorics, probability and linear al-

gebra. The infinite lower triangular Pascal matrix P is defined by generic term

pn,k =
(
n
k

)
, where the binomial coefficient

(
n
k

)
counts the number of lattice paths from

(0, 0) to (n− k, k) with steps (1, 0) and (0, 1), which satisfy the recurrence relation(
n+ 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)
.
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It is easy to check that the inverse of P is P−1 =
(
(−1)n−k

(
n
k

))
n,k≥0

.

The generic term fn,k =
(

k
n−k

)
of the Fibonacci matrix F = (fn,k)n,k≥0 counts the

number of lattice paths from (0, 0) to (n− k, k) with steps (0, 1) and (1, 1), and the

entries of the Fibonacci matrix F satisfy the recurrence relation

fn+1,k+1 = fn,k + fn−1,k.

The first few rows of F and F−1 are:

F =



1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 0 2 1 0 0 · · ·
0 0 1 3 1 0 · · ·
0 0 0 3 4 1 · · ·
...

...
...

...
...

...
. . .


, F−1 =



1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 −1 1 0 0 · · ·
0 2 −2 1 0 · · ·
0 −5 5 −3 1 · · ·
...

...
...

...
...

. . .


.

The row sums of F are the Fibonacci numbers defined by ordinary generating function∑∞
n=0 Fnx

n = 1
1−x−x2 . In this inverse F−1, if we ignore the signs, we find that the row

sums are the Catalan numbers Cn, which are defined by ordinary generating function∑∞
n=0 Cnx

n = 1−
√
1−4x
2x

.

The Delannoy number d(n, k) may be defined as the number of lattice paths from

(0, 0) to (n, k) with steps (1, 0), (0, 1), and (1, 1). If we introduce the infinite lower

triangular Delannoy matrix D = (dn,k)n,k≥0 by dn,k = d(n − k, k). Then its entries

satisfy the recurrence relation

dn+1,k+1 = dn,k+1 + dn,k + dn−1,k,

and dn,k counts the number of lattice paths from (0, 0) to (n− k, k) with steps (1, 0),

(0, 1) and (1, 1). The first few entries of D and D−1 are as follows:

D =



1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 3 1 0 0 0 · · ·
1 5 5 1 0 0 · · ·
1 7 13 7 1 0 · · ·
1 9 25 25 9 1 · · ·
...

...
...

...
...

...
. . .


, D−1 =



1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·
2 −3 1 0 0 0 · · ·
−6 10 −5 1 0 0 · · ·
22 −38 22 −7 1 0 · · ·
−90 158 −98 38 −9 1 · · ·
...

...
...

...
...

...
. . .


.
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An immediate calculation show that the row sums of the Delannoy matrix D are the

Pell sequence 1, 2, 5, 12, · · · , while the row sums of unsigned entries of D−1 are the

large Schröder numbers 1, 2, 6, 22, · · · , see [7, 19].

The analogue between the Pascal matrix, Fibonacci matrix, and Delannoy matrix

motivate us to study a more generalized situation. In this paper, by using Riordan

arrays, we introduce a generalized Delannoy matrices by weighted Delannoy numbers.

It turns out that Delannoy matrix, Pascal matrix, and Fibonacci matrix are all spe-

cial cases of generalized Delannoy matrices, meanwhile Schröder matrix and Catalan

matrix also arise in involving inverses of weighted Delannoy matrices. These con-

nections are the focus of our paper. The half of generalized Delannoy matrix is also

considered. In addition, we obtain a combinatorial interpretation for the generalized

Fibonacci numbers.

2 Riordan arrays

Riordan arrays were first introduced in 1991 by Shapiro et al. [16], and many works

and applications on this subject have been done, for example [5,6,8,9,17]. An infinite

lower triangular matrix D is called a Riordan array if its column k ( k = 0, 1, 2, · · · )

has generating function g(x)f(x)k, where g(x) =
∑∞

n=0 gnx
n and f(x) =

∑∞
n=0 fnx

n

are formal power series with g0 ̸= 0, f0 = 0 and f1 ̸= 0. That is, the general term of

array D is dn,k = [xn]g(x)f(x)k, where [xn]h(x) denotes the coefficient of xn in power

series h(x).

Suppose we multiply the array D = (g(x), f(x)) by a column vector (b0, b1, b2, . . .)
T

and get a column vector (a0, a1, a2, . . .)
T . Let b(x) be the ordinary generating func-

tions for the sequence (b0, b1, b2, . . .)
T . Then it follows that the ordinary generating

functions for the sequence (a0, a1, a2, . . .)
T is g(x)b(f(x)). If we identify a sequence

with its ordinary generating function, the composition rule can be presented as

(g(x), f(x))b(x) = g(x)b(f(x)). (1)

This is called the fundamental theorem for Riordan arrays and this leads to the
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multiplication rule for the Riordan arrays ( see Shapiro et al [16]):

(g(x), f(x))(h(x), l(x)) = (g(x)h(f(x)), l(f(x))). (2)

The inverse of (g(x), f(x)) is

(g(x), f(x))−1 = (1/g(f̄(x)), f̄(x)), (3)

where f̄(x) is the compositional inverse of f(x).

The bivariate generating function D(x, y) of the Riordan array D = (g(x), f(x))

is given by

D(x, y) = (g(x), f(x))
1

1− yx
=

g(x)

1− yf(x)
. (4)

Lemma 2.1 ( [8]). Let D = (dn,k) be an infinite lower triangular matrix. Then

D is a Riordan array if and only if d0,0 = 1 and there exists two sequences A = (ai)i≥0

and Z = (zi)i≥0 with a0 ̸= 0 such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · , n, k = 0, 1, · · · ,

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · , n = 0, 1, · · · .

Such sequences are called the A-sequence and the Z-sequence of the Riordan array

D, respectively.

Lemma 2.2( [8]). Let D = (g(x), f(x)) be a Riordan array with inverse D−1 =

(d(x), h(x)). Then the A- and Z-sequences of D are

A(x) =
x

h(x)
; Z(x) =

1

h(x)
(1− d(x)). (5)

Example 2.1. (a) It is well known that the Pascal matrix P =
((

n
k

))
can be

expressed as the Riordan array
(

1
1−x

, x
1−x

)
, and the generating functions of its A- and

Z-sequences are A(x) = 1 + x, Z(x) = 1. More generally, for the generalized Pascal

array P[r] =
(
rn−k

(
n
k

))
, we have P [r] =

(
1

1−rx
, x
1−rx

)
, P [r]−1 =

(
1

1+rx
, x
1+rx

)
.

(b) The Fibonacci matrix F =
((

k
n−k

))
can be expressed as the Riordan matrix

F = (1, x+ x2), and its inverse is F−1 = (1, xC(−x)).
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The set of all Riordan arrays associated with the usual row-by-column product

shown in (2) forms a group denoted by R, where I = (1, x) acts as the identity for

this product, that is, (1, x) ∗ (d(x), h(x)) = (d(x), h(x)) ∗ (1, x) = (d(x), h(x)). A

subgroup, denoted by B, of R is the set of of Bell-type arrays or renewal arrays, that

is the Riordan arrays D = (d(x), h(x)) for which h(x) = xd(x), which was considered

in the literature [15].

He [9] uses the sequence characterization of Bell-type Riordan array to define

(c, r)-(generalized or parametric) Catalan numbers with parameters c and r, which

have the generating function

dc,r(x) =
1− (c− r)x−

√
1− 2(c+ r)x+ (c− r)2x2

2rx
. (6)

(6) was shown in (10) of [9]. The corresponding Bell-type Riordan arrays (dc,r(x), xdc,r(x))

are called the (c, r)-(generalized or parametric) Catalan triangles. The Taylor expan-

sion and some properties of the generalized Catalan numbers and generalized Catalan

triangles are presented. In addition, [9] gives some combinatorial interpretations for

the Bell-type Riordan arrays including those of the generalized Catalan triangles. [9]

also discusses the inverse of the generalized Catalan triangles, from which the expres-

sions of the parametric Catalan numbers and triangles in terms of classical Catalan

numbers are given. All of those results will be useful in Sections 3 and 4 of this paper.

3 Generalized Delannoy matrix

We consider those lattice paths in the Cartesian plane starting from (0, 0) that use

the steps E, D, and N , where E = (1, 0), a east-step; D = (1, 1), a diagonal-step; and

N = (0, 1), a north-step, with assigned weights e, d, and w, respectively, where e, d

and w are positive integers. Many properties and applications of Delannoy numbers

have been discussed [1, 10, 12, 13, 20, 21]. In combinatorics, we regard weight as the

number of colors and normalize by setting w = 1. Let P be a path. We define the

weight w(P ) to be the product of the weight of the steps. Let A(n, k) be the set of

all weighted lattice paths ending at the point (n − k, k) and let B(n, k) be the set
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of lattice paths in A(n, k) which have no east steps on the x-axis. The generalized

Delannoy numbers an,k are the sum of all w(P ) with P in A(n, k) and bn,k are the

sum of all w(P ) with P in B(n, k).

The array A is called the generalized Delannoy matrix of the first kind, and the

array B is called the generalized Delannoy matrix of the second kind. It is straight

forward to show that the array A = (an,k)n,k≥0 satisfies for n ≥ 0 and k ≥ 0 the

recursion equation

an+1,k+1 = ean,k+1 + an,k + dan−1,k (7)

with the conditions a0,0 = 1 and an,k = 0 if n < 0 and an,k = 0 if n < k. Using this

recursion equation we get the generating function A(x, y) of the array (an,k) is

A(x, y) =
∞∑
n=0

∞∑
k=0

an,kx
nyk =

1

1− ex− xy − dx2y
. (8)

Similarly, the array B = (bn,k)n,k≥0 satisfies for n ≥ 0 and k ≥ 0 the recursion

equation

bn+1,k+1 = ebn,k+1 + bn,k + dbn−1,k (9)

with the conditions b0,0 = 1, bn,0 = 0 if n ≥ 1 and bn,k = 0 if n < k. Hence we have

B(x, y) =
∞∑
n=0

∞∑
k=0

bn,kx
nyk =

1− ex

1− ex− xy − dx2y
. (10)

Some entries of the arrays A and B are:

A =



1 0 0 0 0 · · ·
e 1 0 0 0 · · ·
e2 2e+ d 1 0 0 · · ·
e3 3e2 + 2ed 3e+ 2d 1 0 · · ·
e4 4e3 + 3e2d 6e2 + 6ed+ d2 4e+ 3d 1 · · ·
...

...
...

...
...

. . .


,

B =



1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 e+ d 1 0 0 · · ·
0 e2 + ed 2e+ 2d 1 0 · · ·
0 e3 + e2d 3e2 + 4ed+ d2 3e+ 3d 1 · · ·
...

...
...

...
...

. . .


.
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Theorem 3.1. The generalized Delannoy matrices of the first kind and of the

second kind can be represented by Riordan arrays as

A =

(
1

1− ex
,
x+ dx2

1− ex

)
, B =

(
1,

x+ dx2

1− ex

)
.

Proof From (4), the bivariate generating function of the Riordan array
(

1
1−ex

, x+dx2

1−ex

)
is
(

1
1−ex

, x+dx2

1−ex

)
1

1−yx
= 1

1−ex
· 1

1−y x+dx2

1−ex

= 1
1−ex−xy−dx2y

. Hence, the result follows by

(8). In a similar way we can prove another result.

Corollary 3.2. The general terms of the arrays A and B are given by

ai,j =

i−j∑
k=0

(
j

k

)(
i− k

j

)
ei−j−kdk, (11)

bi,j =

i−j∑
k=0

(
j

k

)(
i− k − 1

j − 1

)
ei−j−kdk. (12)

It is easy to see that after deleting the first column and the first row of B, we

obtain a Bell-type Riordan array ((1 + dx)/(1− ex), (x+ dx2)/(1− ex)). Hence, its

inverse ((1 + dx)/(1− ex), (x+ dx2)/(1− ex))
−1

= (f(x; e, d), xf(x; e, d)) is also a

Bell-type Riordan array. From (30) and (10) of [9], we have

f(x; e, d) =
1 + ex−

√
e2x2 + 2(e+ 2d)x+ 1

−2dx
= d−(e+d),−d(x),

where dc,r(x) is shown in (6).

Let An =
∑n

k=0 an,k. Then An is the sum of the weights of all lattice paths from

origin (0, 0) to the line x+ y = n using steps (1, 0), (1, 1) and (0, 1) with weights e, d,

and 1, respectively. Setting y = 1 in the above proof, we get the generating function

for the row sums of A is

∞∑
n=0

Anx
n =

1

1− (1 + e)x− dx2
. (13)

Therefore, the sequence {An} satisfy the following recurrence relation :

An = (e+ 1)An−1 + dAn−2, n ≥ 2,
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with A0 = 1 and A1 = e + 1. The sequence {An} is called generalized Fibonacci

numbers, and by (13) its generic element is

An =

⌊n/2⌋∑
k=0

(
n− k

k

)
(e+ 1)n−2kdk.

Let Bn =
∑n

k=0 bn,k. Then Bn is the sum of the weights of all lattice paths from

origin (0, 0) to the line x + y = n using steps (1, 0), (1, 1) and (0, 1) with weights e,

d, and 1, respectively, and without step (1, 0) on the x-axis. The generating function

for the row sums of B is

∞∑
n=0

Bnx
n =

1− ex

1− (1 + e)x− dx2
. (14)

Therefore, the sequence {Bn} satisfy the following recurrence relation :

Bn = (e+ 1)Bn−1 + dBn−2, n ≥ 2,

with B0 = 1 and B1 = 1. Furthermore, B0 = A0, and Bn = An − eAn−1 = An−1 +

dAn−2 for n ≥ 1.

In the case e = 1 and d = 0, we have A =
(

1
1−x

, x
1−x

)
, which is the Pascal matrix

P . When e = d = 1, A =
(

1
1−x

, x+x2

1−x

)
is the Delannoy matrix D whose row sums are

Pell numbers. When e = 0, and d = 1, A = (1, x+ x2) is the Fibonacci matrix F . So

we can consider the generalized Delannoy matrices A as an extension of the Pascal

matrix, Delannoy matrix and Fibonacci matrix.

4 Generalized Schröder matrix

In this section, we consider those lattice paths from (0, 0) with steps E = (1, 0),

D = (1, 1) and N = (0, 1) which are endowed with weighs d, e and w = 1, respectively.

Let R(n, k) be the set of all weighted lattice paths ending at the point (n− k, n) and

that its last step is not east step and that never falling below the line y = x. Let

S(n, k) be the set of lattice paths in R(n, k) which have no diagonal steps on the

line y = x. Let rn,k be the sum of all w(P ) with P in R(n, k) and let sn,k be the
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sum of all w(P ) with P in S(n, k). Then rn(e, d) = rn,0 + drn,1 + · · · + dnrn,n is the

sum of weights of all weighted paths ending on (n, n) that never falling below the line

y = x, and sn(e, d) = sn,0 + dsn,1 + · · · + dnsn,n is the sum of weights of paths with

no step (1, 1) on the line y = x and ending on (n, n) and that never falling below the

line y = x. We call rn(e, d) the n-th large weighted Schröder number and rn(e, d) the

n-th small weighted Schröder number. The array R is called the generalized Schröder

matrix of the first kind, and the array S is called the generalized Schröder matrix of

the second kind. Some entries of the arrays R = (rn,k)n,k≥0 and S = (sn,k)n,k≥0 are:

R =



1 0 0 0 0 · · ·
e 1 0 0 0 · · ·

e2 + ed 2e+ d 1 0 0 · · ·
e3 + 3e2d+ 2ed2 3e2 + 5ed+ 2d2 3e+ 2d 1 0 · · ·
e4+6e3d+10e2d2+5ed3 4e3+14e2d+15ed2+5d3 6e2+11ed+5d2 4e+3d 1 · · ·

...
...

...
...

...
. . .


.

S =



1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 e+ d 1 0 0 · · ·
0 e2 + 3ed+ 2d2 2e+ 2d 1 0 · · ·
0 e3+6e2d+10ed2+5d3 3e2+8ed+5d2 3e+3d 1 · · ·
...

...
...

...
...

. . .


.

By considering the positions preceding to the last step of a lattice path in R(n, k),

we have r0,0 = 1, r0,k = 0 for k > 0 and

rn+1,k+1 = rn,k+(e+d)rn,k+1+(e+d)d rn,k+2+· · ·+(e+d)dn−k−1rn,n, n, k ≥ 0, (15)

rn+1,0 = ern,0 + edrn,1 + · · ·+ ednrn,n, n ≥ 0. (16)

Similarly, the array S = (sn,k)n,k≥0 satisfies the recurrence

sn+1,k+1 = sn,k+(e+d)sn,k+1+(e+d)dsn,k+2+· · ·+(e+d)dn−k−1sn,n, n, k ≥ 0, (17)

with the conditions s0,0 = 1, sn,0 = 0 if n ≥ 1 and s0,k = 0 if k ≥ 1.

If d = 0 and e ̸= 0, we find that R =
(

1
1+ex

, x
1+ex

)−1
=
(

1
1−ex

, x
1−ex

)
, and S =(

1, x
1+ex

)−1
=
(
1, x

1−ex

)
, which are the generalized Pascal matrices.
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Theorem 4.1. If d ̸= 0, then the array R has a Riordan array expression given

by

R =

(
1

1 + ex
,
x− dx2

1 + ex

)−1

= (1 + eh(x), h(x)) ,

where h(x) =
1−ex−

√
e2x2−(2e+4d)x+1

2d
.

Proof By the formulae (15) and (16), the A- and Z- sequences of the array R are

A = (1, (e+d), (e+d)d, · · · ) and Z = (e, ed, ed2, · · · ), or A(x) = 1+ex
1−dx

and Z(x) = e
1−dx

.

Hence, form Lemmas 2.1 and 2.2, the array R is a Rioran array (g(x), h(x)) and

h(x) = x · 1+eh(x)
1−dh(x)

, g(x) = 1
1− ex

1−dh(x)
. Solving these functional equations, we obtain

h(x) =
1−ex−

√
e2x2−(2e+4d)x+1

2d
, and g(x) = 1 + eh(x).

In (9) of [9], by transforming c to e+ d and r to d, one may obtain the following

corollary.

Corollary 4.2. If d ̸= 0, then the array S can be expressed as

S =

(
1,

x− dx2

1 + ex

)−1

=

(
1,

1− ex−
√

e2x2 − (2e+ 4d)x+ 1

2d

)
.

From (28) of [9], noting dn−1,k−1 = sn,k and transforming c to e+ d and r to d, we

have

sn,k =
k

n

n∑
i=0

(
n

i

)(
2n− k − i− 1

n− k − i

)
eidn−i−k.

Hence, we have the following relationship between sn,k and rn,k.

Corollary 4.3. For the generalized Schröder matrix of the first kind R = (rn,k)

and the generalized Schröder matrix of the second kind S = (sn,k), there holds

rn,k = sn,k + esn,k+1.

Theorem 4.4. The generating function for the large weighted Schröder numbers is

given by

R(x; e, d) =
1− ex−

√
e2x2 − (2e+ 4d)x+ 1

2dx
.
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Proof By definition, rn(e, d) = rn,0 + drn,1 + · · · + dnrn,n. Hence, R(x; e, d) =∑∞
n=0 rn(e, d)x

n = (1 + eh(x), h(x)) 1
1−dx

= 1+eh(x)
1−dh(x)

= h(x)
x

=
1−ex−

√
e2x2−(2e+4d)x+1

2dx
.

Here we have used the fact h(x) = x · 1+eh(x)
1−dh(x)

.

Theorem 4.5. The generating function for the small weighted Schröder numbers

is given by

S(x; e, d) =
1 + ex−

√
e2x2 − (2e+ 4d)x+ 1

2(e+ d)x
, and

(1, S(x; e, d))−1 =

(
1,

x− (e+ d)x2

1− ex

)
.

Proof By definition, sn(e, d) = sn,0 + dsn,1 + · · · + dnsn,n. Hence, S(x; e, d) =∑∞
n=0 sn(e, d)x

n = (1, h(x)) 1
1−dx

= 1
1−dh(x)

=
1+ex−

√
e2x2−(2e+4d)x+1

2(e+d)x
. From the state-

ment after Theorem 3.1, we immediately know that (1, S(x; e, d))−1 =
(
1, x−(e+d)x2

1−ex

)
.

From Theorem 3.1 and Theorem 4.1, the Delannoy matrix A and Schröder matrix

R are inverse each other in the view A−1 =
(
(−1)n−krn,k

)
, and R−1 =

(
(−1)n−kan,k

)
.

Similarly, the Delannoy matrix B and Schröder matrix S are inverse each other. We

state this interesting result in the following theorem.

Theorem 4.6. Let M denote the Riordan array (1,−x), then

A−1 = MRM, R−1 = MAM,

B−1 = MSM, S−1 = MBM.

Example 4.1. If e = d = 1, then R(x; 1, 1) = 1−x−
√
1−6x+x2

2x
is the generating

function for the large Schröder numbers, and S(x; 1, 1) = 1+x−
√
1−6x+x2

4x
is the gen-

erating function for the small Schröder numbers. Some entries of R and S are as

follows:

R =



1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 3 1 0 0 0 · · ·
6 10 5 1 0 0 · · ·
22 38 22 7 1 0 · · ·
90 158 98 38 9 1 · · ·
...

...
...

...
...

...
. . .


, S =



1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 2 1 0 0 0 · · ·
0 6 4 1 0 0 · · ·
0 22 16 6 1 0 · · ·
0 90 68 30 8 1 · · ·
...

...
...

...
...

...
. . .


.
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These are Schröder triangles discussed in [11,14].

Example 4.2. If e = 0, d ̸= 0, then R(x; 0, d) = S(x; 0, d) = 1−
√
1−4dx
2dx

= C(dx),

where C(x) is the generating function for the numbers. Some entries of R = S are

as follows:

R = S =



1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 d 1 0 0 0 0 · · ·
0 2d2 2d 1 0 0 0 · · ·
0 5d3 5d2 3d 1 0 0 · · ·
0 14d4 14d3 9d2 4d 1 0 · · ·
0 42d5 42d4 28d3 14d2 5d 1 · · ·
...

...
...

...
...

...
...

. . .


.

This is the Catalan triangle discussed in [18].

Example 4.3. If e = 1 and d = 2, then R(x; 1, 2) = 1−x−
√
1−10x+x2

4x
, and

S(x; 1, 2) = 1+x−
√
1−10x+x2

6x
. Some entries of R and S are as follows:

R =



1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
3 4 1 0 0 0 · · ·
15 21 7 1 0 0 · · ·
93 132 48 10 1 0 · · ·
645 921 348 84 13 1 · · ·
...

...
...

...
...

...
. . .


, S =



1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 15 6 1 0 0 · · ·
0 93 39 9 1 0 · · ·
0 645 276 72 12 1 · · ·
...

...
...

...
...

...
. . .


.

A =



1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 4 1 0 0 0 · · ·
1 7 7 1 0 0 · · ·
1 10 22 10 1 0 · · ·
1 13 46 46 13 1 · · ·
...

...
...

...
...

...
. . .


, B =



1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 3 6 1 0 0 · · ·
0 3 15 9 1 0 · · ·
0 3 24 36 12 1 · · ·
...

...
...

...
...

...
. . .


.

Example 4.4. If e = 2 and d = 1, then R(x; 2, 1) = 1−2x−
√
1−8x+4x2

2x
, and
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S(x; 2, 1) = 1+2x−
√
1−8x+4x2

6x
. Some entries of R and S are as follows:

R =



1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
6 5 1 0 0 0 · · ·
24 24 8 1 0 0 · · ·
114 123 51 11 1 0 · · ·
600 672 312 87 14 1 · · ·
...

...
...

...
...

...
. . .


, S =



1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 12 6 1 0 0 · · ·
0 57 33 9 1 0 · · ·
0 300 186 63 12 1 · · ·
...

...
...

...
...

...
. . .


.

A =



1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
4 5 1 0 0 0 · · ·
8 16 8 1 0 0 · · ·
16 44 37 11 1 0 · · ·
32 112 134 67 14 1 · · ·
...

...
...

...
...

...
. . .


, B =



1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 6 6 1 0 0 · · ·
0 12 21 9 1 0 · · ·
0 24 60 45 12 1 · · ·
...

...
...

...
...

...
. . .


.

5 Half of the Delannoy matrix

Denote by H(n, k) the set of all weighted lattice paths ending at the point (n− k, n)

and using steps E = (1, 0), D = (1, 1), and N = (0, 1) with weights d, e, and

1, respectively. Let hn,k be the sum of all w(P ) with P in H(n, k). Recall that

A(n, k) is the set of all weighted lattice paths ending at the point (n − k, k) and

the generalized Delannoy numbers an,k are the sum of all w(P ) with P in A(n, k).

Hence, hn,k = a2n−k,n, and the matrix H = (hn,k)n,k≥0 is the right-hand side of the

generalized Delannoy matrix A =
(

1
1−dx

, x+ex2

1−dx

)
:

H =



h0,0 0 0 0 0 0 · · ·
h1,0 h1,1 0 0 0 0 · · ·
h2,0 h2,1 h2,2 0 0 0 · · ·
h3,0 h3,1 h3,2 h3,3 0 0 · · ·
h4,0 h4,1 h4,2 h4,3 h4,4 0 · · ·
h5,0 h5,1 h5,2 h5,3 h5,4 h5,5 · · ·
...

...
...

...
...

...
. . .


=



a0,0 0 0 0 0 0 · · ·
a2,1 a1,1 0 0 0 0 · · ·
a4,2 a3,2 a2,2 0 0 0 · · ·
a6,3 a5,3 a4,3 a3,3 0 0 · · ·
a8,4 a7,4 a6,4 a5,4 a4,4 0 · · ·
a10,5 a9,5 a8,5 a7,5 a6,5 a5,5 · · ·
...

...
...

...
...

...
. . .


.
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If d = 0, then A = (1, x+ ex2). Therefore, an,k = [xn](x+ ex2)k =
(

k
n−k

)
en−k, and

hn,k = a2n−k,n =
(

n
n−k

)
en−k. Consequently H =

(
1

1−ex
, x
1−ex

)
. In general, we have the

following results.

Theorem 5.1. The inverse of the triangle H is given by the Riordan array

H−1 =

(
1− 2dx− dex2

1 + ex
,
x− dx2

1 + ex

)
.

Proof By considering the positions preceding to the last step of a lattice path in

H(n, k), we have h0,0 = 1, h0,k = 0 for k > 0 and

hn+1,k+1 = hn,k+(d+e)hn,k+1+(d+e)d hn,k+2+· · ·+(d+e)dn−k−1hn,n, n, k ≥ 0, (18)

hn+1,0 = (2d+e)hn,0+2(d+e)dhn,1+2(d+e)d2hn,2+· · ·+2(d+e)dnhn,n, n ≥ 0. (19)

Therefore, H = (hn,k)n,k≥0 is a Riordan array whose A- and Z-sequences are are

A = (1, d+ e, (d+ e)d, (d+ e)d2, (d+ e)d3, · · · ),

Z = (2d+ e, 2(d+ e)d, 2(d+ e)d2, 2(d+ e)d3, · · · ).

Thus, the generating function of the A- and Z-sequences are A(x) = 1+ex
1−dx

and Z(x) =

2d+e+dex
1−dx

. By Lemma 2.2, H−1 =
(

1−2dx−dex2

1+ex
, x−dx2

1+ex

)
.

Corollary 5.2. If d ̸= 0, then the triangle H is given by the Riordan array

H =

(
1√

e2x2 − (2e+ 4d)x+ 1
,
1− ex−

√
e2x2 − (2e+ 4d)x+ 1

2d

)
.

Example 5.1. If e = 0 and d = 1, then H =
(

1√
1−4x

, 1−
√
1−4x
2

)
, H−1 =

(1− 2x, x− x2), and A =
(

1
1−x

, x
1−x

)
.

Example 5.2. If e = 1 and d = 1, then H =
(

1√
1−6x+x2 ,

1−x−
√
1−6x+x2

2

)
, H−1 =(

1−2x−x2

1+x
, x−x2

1+x

)
, and A =

(
1

1−x
, x+x2

1−x

)
.

Example 5.3. If e = 1 and d = 2, then H =
(

1√
1−10x+x2 ,

1−x−
√
1−10x+x2

4

)
,

H−1 =
(

1−4x−2x2

1+x
, x−2x2

1+x

)
, and A =

(
1

1−2x
, x+x2

1−2x

)
.

Example 5.4. If e = 2 and d = 1, then H =
(

1√
1−8x+4x2 ,

1−2x−
√
1−8x+4x2

2

)
,

H−1 =
(

1−2x−2x2

1+2x
, x−x2

1+2x

)
, and A =

(
1

1−x
, x+2x2

1−x

)
.
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