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1 Introduction - sketch of an operator method

As is well-known, the closed form representation of series has been stud-
ied extensively. See, for examples, Comtet [1], Jordan [12], Egorychev
[2], Roman-Rota [14], Sofo [15], Wilf [17], Petkovšek-Wilf-Zeilberger’s
book [13], and the authors’ recent work [8]. This paper is a sequel to the
authors with Torney paper [6]. The object of this paper is to make use
of the classical operators ∆ (difference), E (shift), and D (derivative)
to construct a method for the summation of power series that appears
to have a certain wide scope of applications.

An important tool used in the Calculus of Finite Differences and in
Combinatorial Analysis are the operators E, ∆, and D defined by the
following relations.

Ef(t) = f(t+ 1), ∆f(t) = f(t+ 1)− f(t), Df(t) =
d

dt
f(t).

Powers of these operators are defined in the usual way. In particular
for any real numbers x, one may define Exf(t) = f(t + x). Also, the
number 1 is defined as an identity operator, viz. 1f(t) ≡ f(t). It is easy
to verify that these operators satisfy the formal relations (cf. [12])

E = 1 + ∆ = eD, ∆ = E − 1 = eD − 1, D = log(1 + ∆).

Note that Ekf(0) =
[
Ekf(t)

]
t=0

= f(k), so that (xE)kf(0) =

f(k)xk. This means that (xE)k with x as a parameter may be used
to generate a general term of the series

∑∞
k=0 f(k)xk. Now suppose that

Φ(t) is an analytic function of t or a formal power series in t, say

Φ(t) =
∞∑

k=0

ckt
k, ck = [tk]Φ(t), (1.1)

where ck can be either real or complex numbers. Then, formally we
have a sum of general form

Φ(xE)f(0) =
∞∑

k=0

ckf(k)xk. (1.2)

The operator Φ(xE) = Φ(x+ x∆) = Φ(xeD) can be expressed as some
power series involving operators ∆k or Dk’s. Then it may be possible to
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compute the right-hand side of (1.2) by means of operator-series in ∆k or
Dk’s. This idea could be readily applied to various elementary functions
Φ(t). Indeed, if we take Φ(t) to be any of the following functions

(i) (1 + t)α, (ii) (1− t)−α−1, (iii) et

(iv) − log(1− t), (v) sin t, (vi) cosh t,
(1.3)

etc., thus, using suitable expressions of Φ(xE) = Φ(x + x∆) = Φ(xeD)
in terms of ∆k or Dk, we can obtain various transformation formulas as
well as summation formulas for the series of the form (1.2).

Our results that will be presented in this paper are a significant
improvement of our previous work with Torney shown in [6], in which
the main result is a special case of Theorem 3.1.

Remark 1.1 Obviously, Φ(t) is not limited to the functions shown as
in (1.3). For instance, we may choose (cf. [10])

Φ(t) = (1−mzt+ ytm)−λ =
∞∑

k=0

Pk(m, z, y, λ)tk, (1.4)

the generating functions (GFs) of the so-called Gegenbauer-Humbert-
type polynomials. As specific cases of (1.4), we consider Pk(m, z, y, λ)
as follows

Pk(2, z, 1, 1) = Uk(z), Chebyshev 2nd kind polynomial,

Pk(2, z, 1, 1/2) = ψk(z), Legendre polynomial,

Pk(2, z,−1, 1) = Pk+1(z), P ell polynomial,

Pk(2, z/2,−1, 1) = Fk+1(z), F ibonacci polynomial,

Pk(2, z/2, 2, 1) = Φk+1(z), Fermat 1st kind polynomial,

where Fk+1 = Fk+1(1) is the Fibonacci number.
The expansion (1.4) is a special case of the generalized Humbert

polynomials studied by Gould in [3], in which a generalized Humbert
polynomial Pn(m,x, y, p, C) is defined by means of

(C −mxt+ ytm)p =
∞∑

n=0

tnPn(m,x, y, p, C),
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where m is an integer ≥ 1 and the other parameters are unrestricted. In
that paper, Gould first obtained some recurrences satisfied by the Pn and
then gives a formula for Dx

kPn+k that generalizes a formula of Catalan
for the kth derivative of the Legendre polynomial. He also showed that
if the function f(x, t) satisfies (tDt)f(x, t) = (x− ytm−1)Dxf(x, t), then

(tDt)
rf(x, t) =

r∑
j=1

Qj
r(m,x, y, t)Dx

jf(x, t) (r ≥ 1),

where

p!(−mt)pQp
r(m,x, y, t) =

mp∑
n=0

nrtnPn(m,x, y, p,mxt−ytm) (1 ≤ p ≤ r).

Some notations and an extension of Eulerian fractions will be given
in next section. Two lists of transformation and summation formulas
will be displayed in the latter Sections 3, and many illustrative examples
will be given in Section 4.

2 An extension of Eulerian fractions

It is well-known that the Eulerian fraction is a powerful tool in the
study of the Eulerian polynomial, Euler function and its generalization,
Jordan function (cf. [1]).

The classical Eulerian fraction, αm(x), can be expressed in the form

αm(x) =
Am(x)

(1− x)m+1
(x 6= −1), (2.1)

where Am(x) is the mth degree Eulerian polynomial of the form

Am(x) =
m∑

j=0

j!

{
m
j

}
xj(1− x)m−j, (2.2)

{
m
j

}
being Stirling numbers of the second kind, i.e., j!

{
m
j

}
=

[∆jtm]t=0 . Evidently αm(x) can be written in the form (cf. [6])
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αm(x) =
m∑

j=0

j!

{
m
j

}
xj

(1− x)j+1
.

In order to express some new formulas for certain general types of
power series, we need to introduce an extension of Euler fraction asso-
ciated with an infinitely differentiable function g(x) defined as

Am(x, g(x)) :=
m∑

j=0

{
m
j

}
g(j)(x)xj, (2.3)

where g(j)(x) is the j-th derivative of g(x). Obviously, αm(x) defined by
(2.1) can be presented as

αm(x) = Am(x, (1− x)−1).

From (2.3), two kinds of generalized Eulerian fractions in terms of g(x) =
(1 + x)α and g(x) = (1 − x)−α−1, with real number α as a parameter,
can be introduced respectively, namely

Am(x, α) ≡ Am (x, (1 + x)α) =
Am(x)α

(1 + x)m−α

=
m∑

j=0

(
α

j

)j!{ m
j

}
xj

(1 + x)j−α
, (x 6= −1), (2.4)

Ãm(x, α) ≡ Am

(
x, (1− x)−α−1

)
=

Ãm(x)α

(1− x)α+m+1

=
m∑

j=0

(
α+ j

j

) j!{ m
j

}
xj

(1− x)α+j+1
, (x 6= 1). (2.5)

These may be called, respectively, the 1st kind and 2nd kind of gener-
alized Eulerian fractions. Correspondingly Am(x, α) and Ãm(x, α) are
called the mth degree generalized Eulerian polynomials, having explicit
expressions as follows:
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Am(x, α) =
m∑

j=0

(
α

j

)
j!

{
m
j

}
xj(1 + x)m−j (2.6)

Ãm(x, α) =
m∑

j=0

(
α+ j

j

)
j!

{
m
j

}
xj(1− x)m−j. (2.7)

As easily seen, Ãm(x, 0) = αm(x) = Am(−x,−1).

3 Series-transformation formulas

All formulas presented in this section are formal identities in which we
always assume that x 6= 1 or x 6= −1 according as (1−x)−1 or (1+x)−1

appears in the formulas.

Theorem 3.1 Let {f(k)} be a given sequence of numbers (real or com-
plex), and let g(t) and h(t) be infinitely differentiable on [0,∞). Then
we have formally

∞∑
k=0

f(k)g(k)(0)
xk

k!
=

∞∑
k=0

∆kf(0)g(k)(x)
xk

k!
(3.1)

∞∑
k=0

h(k)g(k)(0)
xk

k!
=

∞∑
k=0

1

k!
h(k)(0)Ak(x, g(x)), (3.2)

where Am(x, g(x)) is an extension of Euler fraction in terms of g(x)
defined as in (2.3).

Proof. To prove (3.1), we apply the operator g(xE) to f(t) at t = 0,
where E is the shift operator.

g(xE)f(t)|t=0 =
∞∑

k=0

1

k!
g(k)(0) (xE)kf(t)

∣∣
t=0

=
∞∑

k=0

f(k)g(k)(0)
xk

k!
.

On the other hand, we have
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g(xE)f(t)|t=0 = g(x+ x∆)f(t)|t=0

=
∞∑

k=0

1

k!
g(k)(x) (x∆)kf(t)

∣∣
t=0

=
∞∑

k=0

∆kf(0)g(k)(x)
xk

k!
.

Similarly, for the infinitely differentiable function h(t), we can present

g(xE)h(t)|t=0 = g(xeD)h(t)
∣∣
t=0

=
∞∑

j=0

1

j!
g(j)(0)

(
xeD

)j
h(t)|t=0

=
∞∑

j=0

xj

j!
g(j)(0)

∞∑
k=0

jk

k!
h(k)(0) =

∞∑
k=0

(
∞∑

j=0

g(j)(0)jkx
j

j!

)
1

k!
h(k)(0).

By applying (3.1) to the inner sum of the rightmost side of the above

equation for f(t) = tk and noting

{
k
j

}
=
(
∆jtk

)
t=0

/j!, we obtain

g(xE)h(t)|t=0 =
∞∑

k=0

(
k∑

j=0

(
∆jtk

)
t=0

g(j)(x)
xj

j!

)
1

k!
h(k)(0)

=
∞∑

k=0

(
k∑

j=0

{
k
j

}
g(j)(x)xj

)
1

k!
h(k)(0)

=
∞∑

k=0

1

k!
h(k)(0)Ak(x, g(x)).

This completes the proof of the theorem.

Remark 3.1 The series transformation formulas (3.1) and (3.2) could
have numerous applications by setting different infinitely differentiable
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functions for g(x). For examples, we have

∞∑
k=0

f(k)xk =
∞∑

k=0

xk

(1− x)k+1
∆kf(0) (g(x) = (1− x)−1), (3.3)

∞∑
k=0

h(k)xk =
∞∑

k=0

αk(x)

k!
Dkh(0) (g(x) = (1− x)−1), (3.4)

∞∑
k=0

(
α

k

)
f(k)xk =

∞∑
k=0

(
α

k

)
xk

(1 + x)k−α
∆kf(0) (g(x) = (1 + x)α), (3.5)

∞∑
k=0

(
α+ k

k

)
f(k)xk =

∞∑
k=0

(
α+ k

k

)
xk

(1− x)α+k+1
∆kf(0) (g(x) = (1− x)−α−1),

(3.6)
∞∑

k=0

f(k)xk

k!
= ex

∞∑
k=0

xk

k!
∆kf(0) (g(x) = ex), (3.7)

∞∑
k=1

f(k)xk

k
= −f(0) ln(1− x) +

∞∑
k=1

1

k

(
x

1− x

)k

∆kf(0) (g(x) = − ln(1− x)),

(3.8)
∞∑

k=0

(
α

k

)
h(k)xk =

∞∑
k=0

Ak(x, α)

k!
Dkh(0) (g(x) = (1 + x)α), (3.9)

∞∑
k=0

(
α+ k

k

)
h(k)xk =

∞∑
k=0

Ãk(x, α)

k!
Dkh(0) (g(x) = (1− x)−α−1), (3.10)

∞∑
k=m

(
k

m

)
f(k)xk =

∞∑
k=0

(
k +m

m

)
xk+m

(1− x)k+m+1
∆kf(m) (g(x) = (1− x)−m−1),

(3.11)
∞∑

k=m

(
k

m

)
h(k)xk =

∞∑
k=0

Ãk(x,m)xm

k!
Dkh(m) (g(x) = (1− x)−m−1), (3.12)

∞∑
k=0

(−1)kf(2k + 1)x2k+1

(2k + 1)!
= sinx

∞∑
k=0

(−1)kx2k∆2kf(0)

(2k)!

+ cos x
∞∑

k=0

(−1)kx2k+1∆2k+1f(0)

(2k + 1)!
(g(x) = sinx),

(3.13)
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∞∑
k=0

(−1)kf(2k)x2k

(2k)!
= cos x

∞∑
k=0

(−1)kx2k∆2kf(0)

(2k)!

+ sin x
∞∑

k=0

(−1)k+1x2k+1∆2k+1f(0)

(2k + 1)!
(g(x) = cosx),

(3.14)

∞∑
k=0

f(2k)x2k

(2k)!
=
ex

2

∞∑
k=0

xk∆kf(0)

k!
+
e−x

2

∞∑
k=0

(−x)k∆kf(0)

k!
,

(3.15)

∞∑
k=0

f(2k + 1)x2k+1

(2k + 1)!
=
ex

2

∞∑
k=0

xk∆kf(0)

k!
− e−x

2

∞∑
k=0

(−x)k∆kf(0)

k!
,

(3.16)

where (3.15) and (3.16) are obtained by replacing g(x) by ex and e−x

and adding and subtracting the resulting formulas respectively.
Note that (3.3)-(3.4) are well-known and have been utilized to con-

struct summation formulas with estimable remainders. See, e.g., He-
Hsu-Shiue-Torney [6]. The particular cases of (3.5) with α = m (positive
integer) and (3.7) with f(x) denoting a rth degree polynomial of x have
been expounded in Problems (1109) and (1110) of Jolley’s book [11].
The rest of the above list appears to be not easily found in literature,
and the formulas (3.9)-(3.12) are believed to be new.

Apparently, (3.3) is implied by (3.5) (with α = −1, x 7→ −x) and
(3.6) (with α = 0). Also, (3.4) is a particular case of (3.9) (with α = −1,
x 7→ −x) and (3.10) (with α = 0). Moreover, it is easily observed that
(3.11) and (3.12) can be derived from (3.6) and (3.10), respectively, by
substituting α = m, applying operator Em, and multiplying xm on the
both sides of the former formulas.

The transformation formulas given in the list are useful for acceler-
ating convergence of power series because ∆kf(0) and Dkf(0) decreases
to zero rapidly as k → ∞; e.g., the Euler series transformation and its
extensions shown as in Proposition 3.2 of [6].

Remark 3.2 From (1.4) we can derive Gegenbauer type series trans-
formation formulas. For examples, we consider



10 T. X. He, L. C. Hsu, P. J.-S. Shiue

Φ(t) = (1− 2zt+ t2)−λ =
∞∑

k=0

C
(λ)
k (z)tk,

the GF of C
(λ)
k (z) ≡ Pk(2, z, 1, λ), where Pk(2, z, 1, λ) was shown as

in (1.4), and C
(1)
k (z) = Uk(z) and C

(1/2)
k (z) = ψk(z) are respectively

the 2nd kind Chebyshev and Legengre polynomials. Using the same
argument to derive (3.6) we obtain the following Gegenbauer type series
transformation formula

Φ(xE)f(0) =
∞∑

k=0

C
(λ)
k (z)xkf(k)

=
∞∑
i=0

∞∑
j=0

(
λ+ i− 1

i

)(
λ+ j − 1

j

)
(z + δ)i(z − δ)jxi+jf(i+ j)

= (1− 2zx+ x2)−λ

∞∑
i=0

∞∑
j=0

(
λ+ i− 1

i

)(
λ+ j − 1

j

)
× (z + δ)i(z − δ)jxi+j

(1− z + δ)x)i(1− (z − δ)x)j
∆i+jf(0). (3.17)

(3.17) can also be verified directly as follows. By denoting δ =√
z2 − 1 we can expand Φ(xE) formal power series in terms of operator

∆ as

Φ(xE) = (1− (z + δ)xE)−λ(1− (z − δ)xE)−λ

= (1− (z + δ)x− (z + δ)x∆)−λ(1− (z − δ)x− (z − δ)x∆)−λ

= [1− (z + δ)x]−λ

[
1− (z + δ)x∆

1− (z + δ)x

]−λ

[1− (z − δ)x]−λ

[
1− (z − δ)x∆

1− (z − δ)x

]−λ

= (1− 2zx+ x2)−λ

∞∑
i=0

∞∑
j=0

(
λ+ i− 1

i

)(
λ+ j − 1

j

)
× (z + δ)i(z − δ)jxi+j∆i+j

(1− z + δ)x)i(1− (z − δ)x)j
.

Thus, (3.17) is obtained.
In series transformation formula (3.17), we assume f(t) to be a rth

degree polynomial, denoted by φ(t), and obtain the generating function
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GF
{
C

(λ)φ(k)
k (z)

}
=

∞∑
k=0

(
C

(λ)
k (z)φ(k)

)
xk

= (1− 2zx+ x2)−λ

r∑
i=0

r∑
j=0

(
λ+ i− 1

i

)(
λ+ j − 1

j

)
× (z + δ)i(z − δ)jxi+j∆i+jφ(0)

(1− z + δ)x)i(1− (z − δ)x)j
. (3.18)

In particular, for λ = 1 and 1/2 we have generating functions

GF {φ(k)Uk(z)} = (1− 2zx+ x2)−1

r∑
i=0

r∑
j=0

(
λ+ i− 1

i

)(
λ+ j − 1

j

)
× (z + δ)i(z − δ)jxi+j∆i+jφ(0)

(1− z + δ)x)i(1− (z − δ)x)j
,

GF {φ(k)ψk(z)} = (1− 2zx+ x2)−1/2

r∑
i=0

r∑
j=0

(
λ+ i− 1

i

)(
λ+ j − 1

j

)
× (z + δ)i(z − δ)jxi+j∆i+jφ(0)

(1− z + δ)x)i(1− (z − δ)x)j
.

Remark 3.3 Evidently, when f(t) is a polynomial, all the formulas
in Section 3 become closed form of summation formulas with a finite
number of terms. Moreover, the Right-hand side of each formula may
also be viewed as a GF for the sequence of coefficeients contained in the
power series on the left-hand side. Thus, for the rth degree polynomial
φ(t), from (3.1) and (3.2) we obtain two type GF ’s of {φ(k)g(k)(0)}:

∞∑
k=0

φ(k)g(k)(0)
xk

k!
=

r∑
k=0

∆kφ(0)g(k)(x)
xk

k!
, (3.19)

∞∑
k=0

φ(k)g(k)(0)
xk

k!
=

r∑
k=0

1

k!
φ(k)(0)Ak(x, g(x)). (3.20)

Replacing f and h by polynomial φ in (3.3)-(3.16), we obtain the
special cases of (3.19) and (3.20). For instance,
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∞∑
k=0

φ(k)xk =
r∑

k=0

xk

(1− x)k+1
∆kφ(0) (g(x) = (1− x)−1), (3.21)

∞∑
k=0

φ(k)xk =
r∑

k=0

αk(x)

k!
Dkφ(0) (g(x) = (1− x)−1), (3.22)

∞∑
k=0

(
α

k

)
φ(k)xk =

r∑
k=0

(
α

k

)
xk

(1 + x)k−α
∆kφ(0) (g(x) = (1 + x)α), (3.23)

∞∑
k=0

(
α+ k

k

)
φ(k)xk =

r∑
k=0

(
α+ k

k

)
xk

(1− x)α+k+1
∆kφ(0) (g(x) = (1− x)−α−1),

(3.24)
∞∑

k=0

φ(k)xk

k!
= ex

r∑
k=0

xk

k!
∆kφ(0) (g(x) = ex), (3.25)

∞∑
k=1

φ(k)xk

k
= −f(0) ln(1− x) +

r∑
k=1

1

k

(
x

1− x

)k

∆kφ(0) (g(x) = − ln(1− x)),

(3.26)
∞∑

k=0

(
α

k

)
φ(k)xk =

r∑
k=0

Ak(x, α)

k!
Dkφ(0) (g(x) = (1 + x)α), (3.27)

∞∑
k=0

(
α+ k

k

)
φ(k)xk =

r∑
k=0

Ãk(x, α)

k!
Dkφ(0) (g(x) = (1− x)−α−1), (3.28)

∞∑
k=m

(
k

m

)
φ(k)xk =

r∑
k=0

(
k +m

m

)
xk+m

(1− x)k+m+1
∆kφ(m) (g(x) = (1− x)−m−1),

(3.29)
∞∑

k=m

(
k

m

)
φ(k)xk =

r∑
k=0

Ãk(x,m)xm

k!
Dkφ(m) (g(x) = (1− x)−m−1). (3.30)

4 Illustrative examples

Certainly a great variety of special examples could be given via applica-
tions of the formulas displayed in Section 3. In what follows we merely
present some selective examples for references.

Example 4.1 Taking α = −1 and x 7→ −x in (3.5), we get (3.3),
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which is a well-known formula utilized in the constrction of a summation
formula with a remainder in the recent paper by the authors [7] and the
paper by authors with Torney (cf. [6]). Putting x = −1 in (3.3) and
(3.8) we get

∞∑
k=0

(−1)kf(k) =
∞∑

k=0

(−1)k∆kf(0)

2k+1

=
∞∑

k=1

(−1)k f(k)

k
= −f(0) log 2 +

∞∑
k=1

(−1)k∆kf(0)

k2k
.

These are known as Euler’s series transform and its analogue, which may
sometimes be used to construct slowly convergent series into rapidly
convergent ones.

Example 4.2 From (3.5) and noting (2.1) and (2.2), we obtain the sum
of the Euler’s arithmetic-geometric series

∞∑
k=0

kpxk =

p∑
k=0

xk
[
∆ktp

]
t=0

(1− x)k+1
=

p∑
k=0

k!

{
p
k

}
xk

(1− x)k+1
= αp(x),

where αp(x) is known as Eulerian fraction (cf. [16]).

Example 4.3 In (3.5) taking α = n, f(t) =
(

t
j

)
, a jth degree polyno-

mial, so that f(k) =
(

k
j

)
, we get

n∑
k=0

(
n

k

)(
k

j

)
xk =

j∑
ν=0

(
n

ν

)
xν

(1 + x)ν−n
∆ν

(
t

j

)
t=0

=

j∑
ν=0

(
n

ν

)
xν

(1 + x)ν−n

(
t

j − ν

)
t=0

=

j∑
ν=0

(
n

ν

)
xν

(1 + x)ν−n
δjν

=

(
n

j

)
xj(1 + x)n−j,

where we use ∆k
(

t
r

)
t=0

=
(

t
r−k

)
t=0

=
(

0
r−k

)
= δrk, the Kronecker symbol.

This is (3.118) of Gould’s book [4].
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Example 4.4 The series transformation formulas can be applied to
construct a set of identities by substituting certain functions.

Similar to Example 4.3, taking f(t) =
(

t
r

)
so that f(k) =

(
k
r

)
in (3.6)

yields (for |x| < 1)

∞∑
k=r

(
α+ k

k

)(
k

r

)
xk =

r∑
k=0

(
α+ k

k

)
xk

(1− x)α+k+1
∆k

(
t

r

)
t=0

=

(
α+ r

r

)
xr

(1− x)α+r+1
.

Consequently,

∞∑
k=r

(
α+ k

k

)(
k

r

)
1

2k
=

(
α+ r

r

)
2α+1.

Similarly, for f(t) =
(

t
r

)
, (r ∈ N0 ≡ N ∪ {0}), from (3.7)-(3.8) and

(3.15)-(3.16) we obtain respectively

∞∑
k=0

(
k

r

)
xk

k!
= exx

r

r!
,

∞∑
k=1

(
k

r

)
xk

k
= − log(1− x) +

1

r

(
x

1− x

)r

(r ≥ 1),

∞∑
k=0

(
2k

r

)
x2k

(2k)!
=
ex

2

xr

r!
+
e−x

2

(−x)r

r!
,

∞∑
k=0

(
2k + 1

r

)
x2k+1

(2k + 1)!
=
ex

2

xr

r!
− e−x

2

(−x)r

r!
.

Example 4.5 In (3.6) taking f(t) = tr so that f(k) = kr, we get

∞∑
k=0

(
α+ k

k

)
krxk =

r∑
k=0

(
α+ k

k

)
xk

(1− x)α+k+1
k!

{
r
k

}
.

Formula (1.126) in [4] can be written as
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n∑
k=0

(
n

k

)
krxk = (1 + x)n

r∑
j=0

(
n

j

)
xj

(1 + x)j

j∑
k=0

(−1)j−k

(
j

k

)
kr

=
r∑

j=0

(
n

j

)
xj

(1 + x)j−n

[
∆jtr

]
t=0

.

This is obviously a particular case of formula (3.5) with α = n and
f(t) = tr.

Example 4.6 Series transformation (3.11) can be used to extend Gould
and Wetweerapong’s comparable finite sum formula (cf. [5, (24)]) to the
infinite sum setting, namely,

∞∑
k=0

(
k

j

)
kpxk =

∞∑
k=0

(
k + j

j

)
xk+j

(1− x)k+j+1

k∑
i=0

(−1)k−i

(
k

i

)
(i+ j)p.

Example 4.7 It is known that the GF of Bell numbers W (k) is

∞∑
k=0

W (k)
xk

k!
= eex−1.

Note that W (k) is the number of all possible partition of a set with k
distinct elements. Also, for g(x) = ex and f(k) = W (k + 1), formula
(3.9) implies

∞∑
k=0

1

k!
∆kW (1)xk = e−x

∞∑
k=0

1

k!
W (k + 1)xk

= e−x d

dx

(
∞∑

k=0

1

(k + 1)!
W (k + 1)xk+1

)
= e−x d

dx

(
eex−1 − 1

)
= eex−1 =

∞∑
k=0

1

k!
W (k)xk.

Comparing the coefficients of xk in the leftmost and the rightmost ex-
pressions, we get W (k) = ∆kW (1), which is called the Aitken identity
(cf. Theorem B in §5.4 of [1]).
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Example 4.8 Our series transformation can be used to reconstruct the
Dobinski’s formula (cf. [4a] in §5.4 of [1]). If g(t) = et and f(t) = tr

(r ∈ N), then (3.3) or (3.9) implies

∞∑
k=0

krx
k

k!
= ex

r∑
k=0

{
r
k

}
xk.

This leads to

e−1

∞∑
k=0

kr

k!
=

r∑
k=0

{
r
k

}
= W (r).

Example 4.9 In (3.7)-(3.10) and (3.15)-(3.16), we substitute f(t) = tr

and h(t) = tr and obtain respectively

∞∑
k=0

krxk

k!
= ex

r∑
k=0

{
r
k

}
xk,

∞∑
k=1

krxk

k
= −f(0) log(1− x) +

r∑
k=1

(k − 1)!

{
r
k

}(
x

1− x

)k

,

∞∑
k=0

(
α

k

)
krxk = Ar(x, α)(r ∈ N ∪ {0}),

∞∑
k=0

(
α+ k

k

)
krxk = Ãr(x, α)(r ∈ N0),

∞∑
k=0

(2k)rx2k

(2k)!
=
ex

2

r∑
k=0

{
r
k

}
xk +

e−x

2

r∑
k=0

{
r
k

}
(−x)k,

∞∑
k=0

(2k + 1)rx2k+1

(2k + 1)!
=
ex

2

r∑
k=0

{
r
k

}
xk − e−x

2

r∑
k=0

{
r
k

}
(−x)k.

Example 4.10 In (3.5) taking f(t) = rt, (r > 0, r 6= 1), so that
f(k) = rk and ∆kf(0) =

∑k
j=0

(
k
j

)
(−1)k−jrj = (r − 1)k, we get

∞∑
k=0

(
α

k

)
(rx)k =

∞∑
k=0

(
α

k

)
((r − 1)x)k

(1 + x)k−α
.

Similarly, from (3.6)-(3.10) and (3.13)-(3.16) we have respectively
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∞∑
k=0

(
α+ k

k

)
(rx)k =

∞∑
k=0

(
α+ k

k

)
((r − 1)x)k

(1− x)α+k+1
,

∞∑
k=0

(rx)k

k!
= ex

∞∑
k=0

((r − 1)x)k

k!
,

∞∑
k=1

(rx)k

k
= −f(0) log(1− x) +

∞∑
k=1

1

k

(
(r − 1)x

1− x

)k

,

∞∑
k=0

(
α

k

)
(rx)k =

∞∑
k=0

Ak(x, α)

k!
(ln r)k.

Example 4.11 Recall that Bernoulli polynomials Bn(t)’s are generated
by the expression

etx x

ex − 1
=

∞∑
n=0

Bn(t)

n!
xn

and enjoy the properties

d

dt
Bn(t) = nBn−1(t), (n = 1, 2, · · · )

with B0(t) = 1 and Bn(0) = Bn being called Bernoulli numbers. Note
thatDkBn(t) = (n)kBn−k(t) so thatDkBn(0) = (n)kBn−k(0) = (n)kBn−k,
where (n)k are kth falling factorial of n with step length 1. Now let
g(x) = Bn(x) and f(k) = kr (n and r are integers with 0 ≤ r ≤ n)

Then, g(k)(0) = B
(k)
n (0) = (n)kBn−k and f (k)(x) = (n)kBn−k(x), so that

Theorem 3.1 implies

n∑
k=0

(
n

k

)
Bn−kk

rxk =
r∑

k=0

(
n

k

)
Bn−k(x)k!

{
r
k

}
xk. (4.1)

Since

{
0
0

}
= 1 and

{
0
k

}
= 0 for all k ≥ 1, the particular case r = 0

gives the well-known expression

Bn(x) =
n∑

k=0

(
n

k

)
Bn−kx

k.
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Of course the right-hand side of (4.1) can be regarded as a GF of
{
(

n
k

)
Bn−kk

r}n
k=0.

In addition, taking f(t) = Bn(t) in (3.9) and (3.10) respectively, we
easily obtain

∞∑
k=0

(
α

k

)
Bn(k)xk =

n∑
k=0

(
n

k

)
Ak(x, α)Bn−k (4.2)

∞∑
k=0

(
α+ k

k

)
Bn(k)xk =

n∑
k=0

(
n

k

)
Ãk(x, α)Bn−k. (4.3)

Recalling that Ãk(x, 0) = αk(x) (the ordinary Eulerian fraction), we can
find the last identity implies (with α = 0)

∞∑
k=0

Bn(k)xk =
n∑

k=0

(
n

k

)
αk(x)Bn−k. (4.4)

Surely similar identities of some interest may be found for other
classical special polynomials.

Example 4.12 Let λ and θ be any real numbers. The generalized falling
factorial (t+ λ|θ)p is usually defined by

(t+ λ|θ)p = Πp−1
j=0(t+ λ− jθ), (p ≥ 1), (t+ λ|θ)0 = 1.

It is known that Howard’s degenerate weighted Stirling numbers (cf.
[9]) may be defined by the finite differences of (t+ λ|θ)p at t = 0:

S(p, k, λ|θ) :=
1

k!

[
∆k(t+ λ|θ)p

]
t=0

.

Then, using (3.23) and (3.24) with φ(t) = (t+ λ|θ)p, we get

∞∑
k=0

(
α

k

)
(k + λ|θ)px

k =

p∑
k=0

(
α

k

)
k!S(p, k, λ|θ)xk

(1 + x)k−α
, (4.5)

∞∑
k=0

(
α+ k

k

)
(k + λ|θ)px

k =

p∑
k=0

(
α+ k

k

)
k!S(p, k, λ|θ)xk

(1− x)α+k+1
. (4.6)

The particular case of (4.6) with α = 0 was considered in [10]. It is also
obvious that the classical Euler’s summation formula for the arithmetic-
geometric series (cf. for example, Lemma 2.7 in [5]) is implied by (4.5)
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with λ = θ = 0, α = −1, x 7→ −x, or by (4.6) with λ = θ = 0 and
α = 0.

Example 4.13 For any given positive integer m denote φ(t) =
(

t
m

)
. It

is easy to find that ∆kφ(m) =
(

t
m−k

)
t=m

=
(

m
k

)
. Thus an application of

(3.29) to
(

t
m

)
gives

∞∑
k=m

(
k

m

)2

xk =
m∑

k=0

(
k +m

k

)(
m

k

)
xk+m

(1− x)k+m+1
. (4.7)

This shows that the GF of the number sequence
{(

k
m

)2}
is given by

GF

{(
k

m

)2
}

=
m∑

k=0

(
k +m

k

)(
m

k

)
xk+m

(1− x)k+m+1
. (4.8)

Naturally one may ask to find GF
{(

k
m

)3}
. Actually, this can be

worked out as follows.

Let the left-hand side of (4.7) be Φ(x). Then using (4.7) we find

Φ(xE)φ(0) =
∞∑

k=m

(
k

m

)2

(xE)kφ(0) =
∞∑

k=m

(
k

m

)3

xk

=
m∑

k=0

(
k +m

k

)(
m

k

)
(xE)k+m

(1− xE)k+m+1
φ(0)

=
m∑

k=0

(
k +m

k

)(
m

k

)
xk+m

(1− x)k+m+1

(
1− x∆

1− x

)−k−m−1

Ek+mφ(0)

=
m∑

k=0

(
k +m

k

)(
m

k

)
xk+m

(1− x)k+m+1

m∑
j=0

(
k +m

j

)(
x

1− x

)j

∆jφ(k +m)

=
m∑

k=0

m∑
j=0

(
k +m

k

)(
k +m

j

)(
m

k

)(
k +m

k + j

)
xk+m+j

(1− x)k+m+j+1
.

Thus we obtain
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GF

{(
k

m

)3
}

=

m∑
k=0

m∑
j=0

(
k +m

k

)(
k +m

j

)(
m

k

)(
k +m

k + j

)
xk+m+j

(1− x)k+m+j+1
.(4.9)

A similar process can be applied to find GF
{(

k
m

)n}
for n = 4, 5, · · · .

However, we have not yet known the closed form of
∑∞

k=0

(
k
m

)`
xk for

general `.

Example 4.14 Suppose that φ(t) is an integral polynomial, namely, all
its coefficients (including the constant term) are integers. It is easily
seen that ∆kφ(0)/k! (k = 0, 1, 2, · · · ) are integers as well. In fact, each
term amt

m (m ≥ 0) of φ(t) has a difference at zero:
[
∆kamt

m
]
t=0

=

amk!

{
m
k

}
with

{
0
0

}
= 1 and

{
m
k

}
= 0 (k > m). So ∆kφ(0)/k!

is a linear combination of Stirling numbers of 2nd kind with integer
coefficients. Thus formula (3.25) implies that

∑∞
k=0 φ(k)xk/k! is equal

to ex multiplying by an integral polynomial. In particular, for x = 1,
this implies that

φ(0)

0!
+
φ(1)

1!
+
φ(2)

2!
+ · · ·+ φ(k)

k!
+ · · ·

is an integral multiple of e.

Example 4.15 Every formula in Section 3 may be used to yield a pair of
related formulas involving the trigonometric functions cos kθ and sin kθ.
For instance, setting x = ρeiθ = ρ(cos θ + sin θ) with ρ = |x| > 0 and
i2 = −1, we can obtain a pair of formulas from (3.24) as follows
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∞∑
k=0

(
α+ k

k

)
φ(k)ρk cos kθ =

r∑
k=0

(
α+ k

k

)
∆kφ(0)Re

(
(ρeiθ)k

(1− ρeiθ)α+k+1

)
(4.10)

∞∑
k=0

(
α+ k

k

)
φ(k)ρk sin kθ =

r∑
k=0

(
α+ k

k

)
∆kφ(0)Im

(
(ρeiθ)k

(1− ρeiθ)α+k+1

)
, (4.11)

where Re(z) and Im(z) denote respectively the real part and imaginary
part of the complex number z. Obviously (4.10) and (4.11) could be
specialized in various ways.

Remark 4.1 In this paper we have mostly considered the operator
method for the cases when φ(t) takes various elementary functions.
From Remarks 1.1, 3.2, and 3.4, we can see that the method also ap-
ply to the cases where φ(t) may take various suitable special functions.
However, it still remains much to be investigated.
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