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Abstract. to construct a class of identities for number sequences generated by linear recur-
rence relations. An alternative method based on the generating functions of the sequences is
given. The equivalence between two methods for linear recurring sequences are also shown.
However, the second method is not limited to the linear recurring sequences, which can be
used for a wide class of sequences possessing rational generating functions. As examples,
Many new and known identities of Stirling numbers of the second kind, Pell numbers, Jacob-
sthal numbers, etc., are constructed by using our approach. Finally, we discuss the hyperbolic
expression of the identities of linear recurring sequences.

1. Introduction

Many number and polynomial sequences can be defined, characterized, evaluated, and clas-
sified by linear recurrence relations with certain orders. A number sequence {an}n≥0 is called
sequence of order r if it satisfies a linear recurrence relation of order r

an =

r∑
j=1

pjan−j , n ≥ r, (1.1)

for some constants pj (j = 1, 2, . . . , r), pr 6= 0, and initial conditions aj (j = 0, 1, . . . , r −
1). Linear recurrence relations with constant coefficients are important in subjects including
pseudo-random number generation, circuit design, and cryptography, and they have been
studied extensively. To construct an explicit formula of the general term of a number sequence
of order r, one may use generating function, characteristic equation, or a matrix method (See
Comtet [6], Hsu [12], Strang [16], Wilf [17], etc.). In [10], He and Shiue presented a method
for the sequences of order 2 using the reduction of order, which can be considered as a class of
how to make difficult an easy thing. In next section, the method shown in [10] will be modified
to give a unified approach to construct a class of identities of linear recurring sequences with
any orders. An alternative method will be given in Section 3 by using the generating functions
of the recursive sequences discussed in Section 2. The equivalence between these two methods
for linear recurring sequences will be shown. However, the second method can be applied for
all the sequences with rational generating functions. Inspired by Askey’s and Ismail’s works
shown in [1], [4], and [13], respectively, we discuss the hyperbolic expression of the identities
constructed by using our approach, which and another extension will be presented in Section
4.
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2. Identities of linear recurring sequences

We now modify the method applied in [10] and extend it to the higher order setting. More
precisely, we will give a unify approach to derive identities of linear recurring sequences of
arbitrary order r. The key idea can be described in the following theorem.

Theorem 2.1. Let sequence {an}n≥0 be defined by the linear recurrence relation (1.1) of
order r, and let its characteristic polynomial Pr(t) = tr −

∑r
j=1 pjt

r−j have r roots αj (j =

1, 2, . . . , r), where the root set may be multiset. Denote a
(j)
n := a

(j−1)
n −αj−1a(j−1)n−1 (2 ≤ j ≤ r)

and a
(1)
n := an. Then

a(r)n = αn−r+1
r a

(r)
r−1, (2.1)

where

a(r)n = an − an−1
r−1∑
i=1

αi + an−2
∑

1≤i<j≤r−1
αiαj

−an−3
∑

1≤i<j<k≤r−1
αiαjαk + · · ·+ (−1)r−1an−r+1Π

r−1
i=1αi (2.2)

for n ≥ r − 1.

Remark 2.1 a
(r)
n shown in (2.2) can be written as

a(r)n =
r−1∑
i=0

(−1)nan−i
∑

1≤k1<···<ki≤r−1
αk1 · · ·αki .

Proof. Denote a
(2)
n := an − α1an−1. Then the recurrence relation (1.1) can be reduced to

a(2)n = a
(2)
n−1

r∑
k=2

αk − a
(2)
n−2

∑
2≤i<j≤r

αiαj + a
(2)
n−3

∑
2≤i<j<k≤r

αiαjαk − · · ·

+(−1)ra
(2)
n−r+1Π

r
k=2αk, (2.3)

a linear recurrence relation of order r− 1 for sequence {a(2)n }n≥0. Similarly, we denote a
(3)
n :=

a
(2)
n − α2a

(2)
n . Hence, from (2.3), we obtain

a(3)n = a
(3)
n−1

r∑
k=3

αk − a
(3)
n−2

∑
3≤i<j≤r

αiαj + a
(3)
n−3

∑
3≤i<j<k≤r

αiαjαk − · · ·

+(−1)r−1a
(3)
n−r+2Π

r
k=3αk.

The above expression is a linear recurrence relation of order r − 2 for sequence {a(3)n }n≥0.
Repeating this process and denoting a

(r)
n := a

(r−1)
n − αr−1a(r−1)n−1 , we finally obtain

a(r)n = αra
(r)
n−1, (2.4)
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which implies (2.1). In (2.1), for n ≥ r − 1,

a(r)n = a(r−1)n − αr−1a(r−1)n−1

= a(r−2)n − (αr−1 + αr−2)a
(r−2)
n−1 + αr−1αr−2a

(r−2)
n−2

= a(r−3)n − a(r−3)n−1

r−1∑
i=r−3

αi + a
(r−3)
n−2

∑
r−3≤i<j≤r−1

αiαj − a(r−3)n−3 αr−3αr−2αr−1,

which yields (2.2) by using mathematical induction. �

As an example, for r = 2, if the characteristic polynomial P2(t) = t2 − p1t− p2 of (1.1) has

roots α1 and α2, then we denote a
(2)
n := an − α1an−1 and obtain

a(2)n := an − α1an−1 = α2(an−1 − α1an−2) = α2a
(2)
n−1 = αn−12 a

(n)
1 .

Similarly, for r = 3, we denote the roots of the characteristic polynomial P3(t) = t3 − p1t2 −
p2t− p3 of (1.1) by αj (j = 1, 2, 3). Then,

a(2)n := an − α1an−1 = (α2 + α3)an−1 − α1(α2 + α3)an−2 − α2α3(an−2 − α1an−3)

= (α2 + α3)a
(2)
n−1 − α2α3a

(2)
n−2,

which implies

a(3)n := a(2)n − α2a
(2)
n−1 = α3(a

(2)
n−1 − α2a

(2)
n−2) = α3a

(3)
n−1 = αn−23 a

(3)
2 .

Remark 2.2 If αr = 1, then (2.1) becomes

a(r)n = a
(r)
r−1, (2.5)

where a
(r)
n is shown in (2.2). In particular, for r = 2, we have

a(2)n = a
(2)
1 ,

or equivalently,

an = α1an−1 + a1 − α1a0.

Thus, we have shown that the last non-homogenous recurrence relation of order 1 is equivalent
to the homogeneous recurrence relation of order 2, an = (α1 + 1)an−1 − α1an−2, for the same
sequence {an}n≥0. Similarly, we have the equivalence of the homogenous recurrence relation of
order 3, an = (p+ 1)an−1− (p− q)an−2 + qan−3, and the non-homogenous recurrence relation
of order 2, an = pan−1 + qan−2 + d for uniquely determined constant d = a2 − pa1 − qa0.

We now consider three special cases r = 2, 3, and 4 for some particular cases of Theorem
2.1.

Corollary 2.2. Let {an}n≥0 be a sequence satisfying the linear recurrence relation of order 2:

an = p1an−1 + p2an−2, n ≥ 2,

with initial conditions a0 and a1, and let the characteristic polynomial P2(t) = t2 − p1t − p2
have roots α and β. Then the sequence {an}n≥0 satisfies the identity

a(2)n = βn−1a
(2)
1 ,
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where a
(2)
n = an − αan−1 for n ≥ 1

As an example, we consider Pell number sequence {Pn}n≥0 generated by the recurrence
relation

Pn = 2Pn−1 + Pn−2

with initial conditions P0 = 0 and P1 = 1. The roots of the characteristic polynomial t2−2t−1
are α = 1 +

√
2 and β = 1−

√
2. Hence, Corollary 2.2 gives identity for n ≥ 1:

Pn − (1 +
√

2)Pn−1 = (1−
√

2)n−1,

or equivalently,

(1−
√

2)Pn + Pn−1 = (1−
√

2)n.

Similarly, we have

(1 +
√

2)Pn + Pn−1 = (1 +
√

2)n

for n ≥ 1.
Jacobsthal number sequence {Jn}n≥0 is generated by

Jn = Jn−1 + 2Jn−2

with initial conditions J0 = 0 and J1 = 1. The characteristic polynomial t2 − t − 2 has two
roots α = 2 and β = −1. Hence, from Corollary 2.2, we obtain

Jn − 2Jn−1 = (−1)n−1

and

Jn + Jn−1 = 2n−1.

For Fibonacci number sequence {Fn}n≥0 and Lucas number sequence {Ln}n≥0, we may use
the same argument shown above to construct the well-known identities as follows (see also [14]
and [10]) .

1−
√

5

2
Fn + Fn−1 =

(
1−
√

5

2

)n
,

1 +
√

5

2
Fn + Fn−1 =

(
1 +
√

5

2

)n
,

√
5− 1

2
Ln − Ln−1 =

√
5

(
1−
√

5

2

)n
,

−
√

5 + 1

2
Ln − Ln−1 = −

√
5

(
1 +
√

5

2

)n
.

Corollary 2.3. Let {an}n≥0 be a sequence satisfying the linear recurrence relation of order 3:

an = p1an−1 + p2an−2 + p3an−3, n ≥ 3,

with initial conditions a0 a1, and a2, and let the characteristic polynomial P3(t) = t3 − p1t2 −
p2t− p3 have roots α, β, and γ. Then the sequence {an}n≥0 satisfies the identity

a(3)n = γn−2a
(3)
2 ,

where a
(3)
n = an − (α+ β)an−1 + αβan−2 for n ≥ 2.
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Corollary 2.4. Let {an}n≥0 be a sequence satisfying the linear recurrence relation of order 4:

an = p1an−1 + p2an−2 + p3an−3 + p4an−4, n ≥ 4,

with initial conditions a0 a1, a2, and a3, and let the characteristic polynomial P4(t) = t4 −
p1t

3−p2t2−p3t−p4 have roots α, β, γ, and δ. Then the sequence {an}n≥0 satisfies the identity

a(4)n = δn−3a
(4)
2 ,

where a
(4)
n = an − (α+ β + γ)an−1 + (αβ + αγ + βγ)an−2 + αβγan−3 for n ≥ 3.

Examples related to some famous linear recurring sequences in combinatorics are presented
below for the applications of Corollaries 2.2, 2.3, and 2.4.

Example 1. We now construct identities for sequences shown in Table 6 of [9] (see also
in http://www.research.att.com/ njas/sequences/). Sequence A001047, an = 3n − 2n =

2

{
n+ 1

3

}
+

{
n+ 1

2

}
satisfies recurrence relation an = 5an−1 − 6an−2, where

{
n
k

}
denote Stirling numbers of the second kind. Thus, from Corollary 2.2, we have

an = 2an−1 + 3n−1, and an = 3an−1 + 2n−1,

which implies the following identities of Stirling numbers of the second kind:

2

{
n+ 1

3

}
+

{
n+ 1

2

}
− 4

{
n
3

}
− 2

{
n
2

}
= 3n−1,

2

{
n+ 1

3

}
+

{
n+ 1

2

}
− 6

{
n
3

}
− 3

{
n
2

}
= 2n−1.

The above identities imply 2

{
n+ 1

3

}
+

{
n+ 1

2

}
= 3n − 2n, but the converse implication

is not obvious.
Similarly, for Sequence A003462, an = (3n− 1)/2 satisfying an = 4an−1− 3an−2, there hold{

n+ 1
3

}
+

{
n+ 1

2

}
−
{
n
3

}
−
{
n
2

}
= 3n−1,{

n+ 1
3

}
+

{
n+ 1

2

}
− 3

{
n
3

}
− 3

{
n
2

}
= 1.

Mersenne number sequence an = 2n− 1 (A000225) satisfying an = 3an−1− 2an−2 generates

an = an−1 + 2n−1, and an = 2an−1 + 1,

or equivalently, {
n+ 1

2

}
−
{
n
2

}
= 2n−1,{

n+ 1
2

}
− 2

{
n
2

}
= 1

due to an =

{
n+ 1

2

}
.
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We now consider examples of sequences of order 3. If the sequence {an}n≥0 satisfies a linear
recurrence relation of order 3:

an = 3kan−1 − (3k2 − 1)an−2 + k(k2 − 1)an−3

for some positive integer k, then solutions of the equation t3−3kt2 +(3k2−1)t−k(k2−1) = 0
are k ± 1 and k. Thus, Corollary 2.3 shows that the sequence satisfies identities

an − 2kan−1 + (k2 − 1)an−2 = kn−2(a2 − 2ka1 + (k2 − 1)a0), (k > 0),

(2.6)

an − (2k + 1)an−1 + k(k + 1)an−2

= (k − 1)n−2(a2 − (2k + 1)a1 + k(k + 1)a0), (k > 1), (2.7)

an − (2k − 1)an−1 + k(k − 1)an−2

= (k + 1)n−2(a2 − (2k − 1)a1 + k(k − 1)a0), (k > 1). (2.8)

In particular, if a0 = a1 = 1 and a2 = 2, then (2.6)-(2.8) can be written as

an − 2kan−1 + (k2 − 1)an−2 = (k − 1)2kn−2, (k > 0), (2.9)

an − (2k + 1)an−1 + k(k + 1)an−2 = (k2 − k + 1)(k − 1)n−2, (k > 1),

(2.10)

an − (2k − 1)an−1 + k(k − 1)an−2 = (k2 − 3k + 3)(k + 1)n−2, (k > 1),

(2.11)

respectively.

Example 2. Sequence A129652, {an}n≥0 = {1, 1, 2, 7, 26, 91, . . .}, is defined by the linear
recurrence relation of order 3:

an = 6an−1 − 11an−2 + 6an−3

with initial conditions a0 = a1 = 1 and a2 = 2. It is easy to see the three roots of the
characteristic polynomial equation t3 − 6t2 + 11t − 6 = 0 are 1, 2, and 3. Thus, using (2.9)-
(2.11) for k = 2, we obtain identities

an − 4an−1 + 3an−2 = 2n−2,

an − 5an−1 + 6an−2 = 3,

an − 3an−1 + 2an−2 = 3n−2,

respectively. Let P(A) be the power set of an n-element set A. Then an−1 is the number of
pairs of elements x,y of P(A) for which either (1) x and y are disjoint and for which x is not
a subset of y and y is not a subset of x, or (2) x and y are intersecting and for which either
x is a proper subset of y or y is a proper subset of x, or (3) x = y. Hence, the general term

of {an}n≥0 = {1, 1, 2, 7, 26, 91, . . .} is an =

{
n+ 1

3

}
+ 1 (See Haye [9]). From the above
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identities, we obtain identities of Stirling numbers of the second kind as follows:{
n+ 1

3

}
− 4

{
n
3

}
+ 3

{
n− 1

3

}
= 2n−2,{

n+ 1
3

}
− 5

{
n
3

}
+ 6

{
n− 1

3

}
= 1,{

n+ 1
3

}
− 3

{
n
3

}
+ 2

{
n− 1

3

}
= 3n−2.

Sequence A162723, {an}n≥0 = {1, 1, 2, 16, 116, 676, . . .} is defined by an = 9an−1−26an−2+
24an−3 with initial conditions a0 = a1 = 1 and a2 = 2. Its characteristic polynomial p(t) =
t3 + 9t2− 26t+ 24 has roots 2, 3, and 4. Thus, we apply (2.9)-(2.11) for k = 3 to the sequence
and obtain

an − 6an−1 + 8an−2 = 4 · 3n−2,
an − 7an−1 + 12an−2 = 7 · 2n−2,
an − 5an−1 + 6an−2 = 3 · 4n−2,

respectively.

If a sequence {an}n≥0 satisfies the linear recurrence relation of order 3:

an = 2(k + 1)an−1 − (k2 + 3k + 1)an−2 + k(k + 1)an−3

for some positive integer k ≥ 1, then roots of the characteristic polynomial P3(t) = t3 − 2(k+
1)t2 + (k2 + 3k+ 1)t−k(k+ 1) are 1, k and k+ 1. Thus, Corollary 2.3 shows that the sequence
satisfies identities

an − (2k + 1)an−1 + k(k + 1)an−2 = a2 − (2k + 1)a1 + k(k + 1)a0, (2.12)

an − (k + 2)an−1 + (k + 1)an−2 = kn−2(a2 − (k + 2)a1 + (k + 1)a0), (2.13)

an − (k + 1)an−1 + kan−2 = (k + 1)n−2(a2 − (k + 1)a1 + ka0). (2.14)

In particular, if a0 = a1 = 1 and a2 = 2, then (2.12)-(2.14) can be written as

an − (2k + 1)an−1 + k(k + 1)an−2 = k2 − k + 1, (2.15)

an − (k + 2)an−1 + (k + 1)an−2 = kn−2, (2.16)

an − (k + 1)an−1 + kan−2 = (k + 1)n−2, (2.17)

respectively.

Example 3. Consider Sequence A000325, {an}n≥0 = {1, 1, 2, 5, 12, 27, 58, . . .}, which is de-
fined by an = 2n − n and satisfies the recurrence relation

an = 4an−1 − 5an−2 + 2an−3, n ≥ 3,

with initial conditions a0 = a1 = 1 and a2 = 2. DeSario and Wenstrom [8] have shown that
an is the number of different permutations of a deck of n cards that can be produced by a
single shuffle. From Lascoux and Schutzenberger [15], one may see that an is also the number
of permutations of degree n with at most one fall, called Grassmannian permutations. Since
the corresponding characteristic polynomial equation t3 − 4t3 + 5t2 − 2 = 0 has solutions 1,
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1, and 2, we may use (2.16)-(2.17) (Note (2.15) and (2.16) are identical for k = 1) and obtain
identities

an − 3an−1 + 2an−2 = 1,

an − 2an−1 + an−2 = 2n−2,

respectively.
For k = 2, we obtain Sequence A129652, {an}n≥0 = {1, 1, 2, 7, 26, 91, . . .} from (2.15)-(2.17).

This sequence and its three identities have been presented in Example 2. Similarly, if k = 3,
we get Sequence A162725, {an}n≥0 = {1, 1, 2, 9, 46, 221, . . .}, which is defined by

an = 8an−1 − 19an−2 + 12an−2.

Hence, there hold

an − 7an−1 + 12an−2 = 7,

an − 5an−1 + 4an−2 = 3n−2,

an − 4an−1 + 3an−2 = 4n−2.

3. An alternative method using the generating functions

Let {an}n≥0 be the linear recurring sequence defined by (1.1). Then its generating function
P (t) can be written as

P (t) = {a0 +

r−1∑
n=1

an − n∑
j=1

pjan−j

 tn}/{1−
r∑
j=1

pjt
j}. (3.1)

Hence, we have the following result.

Proposition 3.1. Let the characteristic polynomial of the linear recurring sequence {an}n≥0
defined by (1.1) be p(t) = Πr

i=1(t−αi). Then the denominator of the generating function P (t)
of {an}n≥0 equals Πr

i=1(1− αit).

The proof is straightforward and omitted. Based on this fact, we may give the following
method, which is an alternative method of that presented in Section 2. The equivalence of
two methods will be shown later.

Proposition 3.2. Let {an}n≥0 be a sequence with the generating function P (t) = A(t)/B(t),
in which A(t) can be expressed as a formal power series and B(t) is a non-null polynomial.
Suppose that B(t) can be factored as B(t) = q1(t)q2(t) with

q1(t) = g0 + g1t+ g2t
2 + · · ·+ grt

r,

then

[tn]P (t) = [tn]
A(t)

q1(t)q2(t)

implies

[tn]q1(t)P (t) = [tn]
A(t)

q2(t)
,

or equivalently,
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g0an + g1an−1 + · · ·+ gran−r = [tn]
A(t)

q2(t)
. (3.2)

Observe that no formal proof is necessary, since everything depends on the “rules of the
generating function” and the “coefficient of operators”, which are immediate. If we are able
to extract the coefficient of tn from A(t)/q2(t) then we have obtained a (non homogeneous)
recurrence relation of order r by using Proposition 3.2.

First, let {an}n≥0 be the linear recurring sequence defined by (1.1) and let P (t) be the
generating function. From equation (3.1) and Proposition 3.1, we have

P (t) =
a0 +

∑r−1
i=1

(
ai −

∑i
j=1 pjai−j

)
ti

Πr
i=1(1− αit)

,

and so

P (t)Πr−1
i=1 (1− αit) =

a0 +
∑r−1

i=1

(
ai −

∑i
j=1 pjai−j

)
ti

1− αrt
. (3.3)

Multiplying out the left hand side of (3.3), we have

[tn]P (t)Πr−1
i=1 (1− αit) = an − an−1

r−1∑
i=1

αi + · · ·+ (−1)r−1an−r+1Π
r−1
i=1αi = a(r)n (3.4)

for all n ≥ r − 1. Multiplying out the right hand side of (3.3), we have

a0α
n
r +

r−1∑
i=1

ai − i∑
j=1

pjai−j

αn−ir

=

r−1∑
i=0

aiα
n−i
r −

r−1∑
i=1

i∑
j=1

pjai−jα
n−i
r

=

r−1∑
i=0

aiα
n−i
r −

r−1∑
i=0

ai

r−1−i∑
j=1

pjα
n−i−j
r

= αn−r+1
r

r−1∑
i=0

ai

αr−1−ir +

r−1−i∑
j=1

(−1)j

 ∑
1≤k1<···<kj≤r

αk1 · · ·αkj

αr−1−i−jr


= αn−r+1

r

r−1∑
i=0

ai

(−1)r−1−i
∑

1≤k1<···<kr−1−i≤r−1
αk1 · · ·αkr−1−i


= αn−r+1

r a
(r)
r−1 (3.5)

with the convention that (−1)r−1−i
∑

1≤k1<···<kr−1−i<r
αk1 · · ·αkr−1−i

= 1 for i = r − 1. From

(3.3), (3.4) and (??), we have a
(r)
n = αn−r+1

r a
(r)
r−1 for all n ≥ r, which is the same as the result

in Theorem 2.1. So, the method in Proposition 3.2 is indeed an alternative method of that
presented in Section 2 for linear recurring sequences.

Let P (t) = A(t)/B(t) be the generating function of sequence {an}n≥0, in which B(t) is
a non-null polynomial of degree r. Then, B(t) can be factoring into a product of r linear
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factors defined in C, which implies that 2r identities can be constructed by using the method
shown in Proposition 3.2. In other words, there are 2r identities in C can be found from the
linear recurring sequences defined by the homogeneous recurrence relation (1.1) of order r,
because the generating function of {an}n≥0 is A(t)/B(t) with B(t) = 1−

∑r
j=1 pjt

j . The more
important is that this method can be applied to any sequence possessing a rational generating
function, or even the numerator is a formal power series. The latest case is the most interesting
case in this section. We demonstrate it with some examples as follows.

Example 4. For each nonnegative integer n, the Fine number fn is considered to be the
number of rooted trees of order n with root of even degree. In [7], the generating function of
Fine number sequence {fn}n≥0 is presented as

F (t) =
1 + 2t−

√
1− 4t

2t(t+ 2)
. (3.6)

Using Faà di Bruno’s formula, Chou, Hsu and Shiue [5] give the expressions

F (t) =
4t+ 2t2 +

∑
n≥3

2
n

(
2(n−1)
n−1

)
tn

2t(t+ 2)
(3.7)

and

fn =
1

2

n∑
k=2

(−1)n−k

(k + 1)2n−k

(
2k

k

)
, n ≥ 2,

with f0 = 1 and f1 = 0. Using Preposition 3.2 and equations (3.6) and (3.7), we may obtain
an identity of Fine number fn for n ≥ 1 as follows

fn−1 + 2fn =
1

n+ 1

(
2n

n

)
= Cn, (3.8)

where Cn is the nth Catalan number.
For any non-negative integer n, the Riordan number rn can be viewed as the number of tall

bushes with n+ 1 edges (see Bernhart [3]). Let R(t) =
∑∞

n=0 rnt
n be the generating function

of Riordan numbers. As shown in [5],

R(t) =
1 + t−

√
1− 2t− 3t2

2t(1 + t)
(3.9)

with

√
1− 2t− 3t2 = 1−

∞∑
n=1

tn

2n−1

[n
2
]∑

k=0

(2n− 2k − 2)!3k

(n− k − 1)!(n− 2k)!k!
. (3.10)

[3] also gives that

rn =
1

n+ 1

n∑
m=0

(−1)m
(
n+ 1

m

)(
2n− 2m
n−m

)
.
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Using Preposition 3.2 and equations (3.9) and (3.10), we obtain an identity of Riordan number
rn for n ≥ 1 as follows

rn + rn−1 =
1

2n

[n+1
2

]∑
k=0

(2n− 2k)!3k

(n− k)!(n− 2k + 1)!k!
. (3.11)

For any non-negatitive integer n, the central Delannoy number dn is defined by the number
of lattice paths on the plane from (0, 0) to (n, n) with steps (1, 0), (0, 1), and (1, 1). Let
D(t) =

∑∞
n=0 dnt

n be the generating function of central Delannoy numbers. Then we have
(see Banderier and Schwer [2])

D(t) =
1√

1− 6t+ t2
=

√
1− 6t+ t2

1− 6t+ t2
(3.12)

and

dn =
n∑
i=0

(
n
i

)2

2i.

Using the same method in [5], we have

√
1− 6t+ t2 = 1 +

∞∑
n=1

3ntn

2n−1

[n
2
]∑

i=0

(−1)i

32i(n− i− 1)!(n− 2i)!i!
. (3.13)

From Preposition 3.2 and equations (3.12) and (3.13), we obtain an identity of the central
Delannoy number dn for n ≥ 2 as

dn − 6dn−1 + dn−2 =
3n

2n−1

[n
2
]∑

i=0

(−1)i

32i(n− i− 1)!(n− 2i)!i!
. (3.14)

Note that the roots of 1− 6t+ t2 are 3±
√

2. So, one can obtain other two identities for the
central Delannoy numbers using Preposition 3.2 and equations (3.12) and (3.13) similarly.

4. Extensions

In the last section, we will apply the following two techniques to derive more identities or
to give hyperbolic expressions of identities from the results obtained in Sections 2 and 3.

Proposition 4.1. Let sequence {an}n≥0 be defined by the linear recurrence relation (1.1)
of order r and let the characteristic polynomial P (t) = tr −

∑r
j=1 pjt

r−j have r roots αj
(j = 1, 2, . . . , r), where the root set may be multiset. Denote

a(j)n := a(j−1)n − αj−1a(j−1)n (2 ≤ j ≤ r)

and a
(1)
n := an. Then there hold identities

a(r)n ±

an+k − r∑
j=1

pjan+k−j

 = αn−r+1
r a

(r)
r−1 (4.1)

for any integer k satisfying n+ k ≥ r, where
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a(r)n = an − an−1
r−1∑
i=1

αi + an−2
∑

1≤i<j≤r−1
αiαj − an−3

∑
1≤i<j<k≤r−1

αiαjαk

+ · · ·+ (−1)r−1an−r+1Π
r−1
i=1αi (4.2)

for n ≥ r − 1.

Example 5. In Section 2 (see the paragraphs after Corollary 2.2), we obtain two identities
for Pell number sequence {Pn}n≥0, which has the characteristic polynomial t2 − 2t− 1. From
Proposition 4.1, for k = 1, we immediately have identities:

Pn+1 − Pn − (2 +
√

2)Pn−1 = (1−
√

2)n−1,

Pn+1 − Pn − (2−
√

2)Pn−1 = (1 +
√

2)n−1.

Similarly, for Jacobsthal number sequence {Jn}n≥0 and Fibonacci number sequence {Fn}n≥0,
there hold identities:

Jn+1 − 4Jn−1 = (−1)n−1,

Jn+1 − Jn−1 = 2n−1,

Fn+1 −
3 +
√

5

2
Fn−1 =

(
1−
√

5

2

)n−1
,

Fn+1 −
3−
√

5

2
Fn−1 =

(
1 +
√

5

2

)n−1
.

From [10], let a {an}n≥0 be linear recurring sequence of order 2 satisfying the linear recur-
rence relation,

an = pan−1 + qan−2. (4.3)

and denote by α and β the two roots of the characteristic polynomial p(t) = t2 − pt− q, then

an =

{ (
a1−βa0
α−β

)
αn −

(
a1−αa0
α−β

)
βn, if α 6= β;

na1α
n−1 − (n− 1)a0α

n, if α = β.
(4.4)

Inspired by [1, 4, 11, 13], denote

α(θ) =
√
qeθ, β(θ) = −√qe−θ (4.5)

for some real or complex number θ, where q > 0. For the case of q < 0, we denote

(α(θ), β(θ)) =

{
(
√
−beθ,

√
−be−θ) for p > 0,

(−
√
−beθ,−

√
−be−θ) for p < 0,

for some real or complex number θ, and the remaining process is similar, which we leave for
the interested readers. From (4.5) we may have

p(θ) = 2
√
q sinh(θ) (4.6)

and define a parametric expression of {an}n≥0 as
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an(θ) = 2
√
q sinh(θ)an−1(θ) + qan−2(θ), a0(θ) = a0, a1(θ) =

2a1
√
q

p
sinh θ. (4.7)

Obviously, if

θ = sinh−1
(

p

2
√
q

)
, (4.8)

{an(θ)}n≥0 is reduced to {an}n≥0.
Substituting expressions (4.5) into (4.4), we obtain

an(θ)

= q(n−1)/2
a1(e

nθ − (−1)ne−nθ) +
√
qa0(e

(n−1)θ + (−1)ne−(n−1)θ)

eθ + e−θ

=

{
q(n−1)/2

cosh θ

(
a1 sinhnθ +

√
qa0 cosh(n− 1)θ

)
, if n is even;

q(n−1)/2

cosh θ

(
a1 coshnθ +

√
qa0 sinh(n− 1)θ

)
, if n is odd.

(4.9)

Some properties and extensions of {an(θ)}n≥0 can be derived from (4.9). For instance, from
the first equation of (4.9) and using r = −e−2θ, we have

an(θ) = q(n−1)/2
(
a1e

(n−1)θ 1− rn

1− r
+
√
qa0e

(n−2)θ 1− rn−1

1− r

)
,

which enables us to extend the definition of an(θ) to nonpositive values of n.
Since α(θ) and β(θ) shown in (4.5) are two roots of the characteristic polynomial equation

x2 − p(θ)x− q = 0, we may write (4.3) as

an(θ) = (α(θ) + β(θ))an−1(θ)− α(θ)β(θ)an−2(θ), (4.10)

where α(θ) and β(θ) satisfy α(θ) + β(θ) = p(θ) and α(θ)β(θ) = −q. Therefore, from (4.10),
we have

an(θ)− α(θ)an−1(θ) = β(θ)(an−1(θ)− α(θ)an−2(θ)), (4.11)

which implies

Proposition 4.2. A sequence {an(θ)}n≥0 of order 2 satisfies the linear recurrence relation
(4.3) if and only if it satisfies the non-homogeneous linear recurrence relation of order 1 with
the form

an(θ) = α(θ)an−1(θ) + d(θ)βn−1(θ), (4.12)

where d(θ) is uniquely determined.

Proof. The necessity is clearly from (4.11). We now prove sufficiency. If the sequence {an(θ)}n≥0
satisfies the non-homogeneous recurrence relation of order 1 shown in (4.12), then by substi-
tuting n = 1 into the above equation we obtain d(θ) = a1(θ) − α(θ)a0. Thus, (4.12) can be
written as

an(θ)− α(θ)an−1(θ) = (a1(θ)− α(θ)a0(θ))β
n−1(θ), (4.13)

which yields
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an−1(θ)− α(θ)an−2(θ) = (a1(θ)− α(θ)a0(θ))β
n−2(θ). (4.14)

Multiplying the both sides of (4.14) by β(θ) and evaluating the difference of the resulting
equation and (4.13), one immediately knows that {an(θ)}n≥0 satisfies the linear recurrence
relation of order 2: an(θ) = p(θ)an−1(θ)+qan−2(θ) with p(θ) = α(θ)+β(θ) and q = −α(θ)β(θ).

�

Example 6. As an example, we may consider the parametric Fibonacci numbers defined by

Fn(θ) = 2 sinh(θ)Fn−1(θ) + Fn−2(θ), F0 = 0, F1 = 2 sinh(θ).

Here α(θ) = eθ and β(θ) = −e−θ. From (4.12) there holds an identity for the parametric
Fibonacci numbers

Fn(θ) = eθFn−1(θ) + 2(−1)n−1 sinh(θ)e−(n−1)θ,

or equivalently,

−e−θFn(θ) + Fn−1(θ) = 2(−1)ne−nθ sinh(θ).

Similarly, we have

eθFn(θ) + Fn−1(θ) = 2enθ sinh(θ).
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