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Abstract

In this short paper, we establish a family of rapidly converging series
expansions for ζ(2n + 1) by discretizing an integral representation
given by D. Cvijović and J. Klinowski in [2]. The proofs are ele-
mentary, using basic properties of the Bernoulli polynomials.
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1 Introduction

In [1], Apéry proved the irrationality of ζ(3) by using a rapidly converging
infinite series. No one has yet discovered a similar expression for ζ(2n+1)
when n ≥ 2, but there have appeared several recent papers (for exam-
ple, [3], [4], and [5]) devoted to finding other types of series expansions
for the zeta function at odd-integer arguments. The typical result is an
exponentially convergent series, and thus insufficient to prove irrationality.

We establish a new series expansion of ζ(2n + 1) by discretizing the
integral representations given in [2]. Our results similiar in quality to the
references cited previously, but our method has the advantage of being
completely elementary. It may also be possible to use our methods in
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evaluating other Dirichlet series, and we intend to return to this problem
in the future.

Throughout this paper, log t denotes the natural logarithm of t, and
Bm(t) is the mth Bernoulli polynomial. We henceforth assume that n is a
fixed positive integer, and note that implied constants may depend on n.
Our main result is:

Theorem 1.1 For any positive integer n, there is a rational number An

such that

ζ(2n + 1) = αn

[
An −

2n + 1

2

(
log

3

2
+ 2−2n log

1

2

)
+ Zn

]
, (1.1)

where

αn =
(−1)n+122n+2π2n

(1− 2−2n)(2n + 1)!
(1.2)

Zn =
∞∑

r=1

[(
ζ(2r)− 1

)(
22r − 1

) 1/2∫
0

B2n+1(t)t
2r−1dt

]
. (1.3)

Specifically, if ∆k denotes the kth iterate of the ordinary forward difference
operator, and

fn(x) =
1− (3/2)x+1

(x + 1)2
− 1− 2x+1

22n(x + 1)2
, (1.4)

then

An =

1/2∫
−1/2

B2n+1(t)

1− 2t
dt +

1

2

3/2∫
1/2

B2n+1(t)

t
dt + n(n + 1)

[
∆2n−1fn

]
(0). (1.5)

In light of this result, we may approximate ζ(2n + 1) in terms of Zn.
We have the following result regarding the rate of convergence:

Theorem 1.2 Let Zn(k) denote the kth partial sum of the series in (1.3).
Then Zn = Zn(k) + O(k−12−2k).
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2 Proofs of the Main Results

From the identity tan x = cot x + 2 cot 2x and the well-known formula

π cot(πz) = z−1 − 2
∞∑

r=1

ζ(2r)z2r−1, z /∈ Z, (2.1)

one readily obtains, for 0 < t < 1
2
,

tan(πt) =
2

π

∞∑
n=1

(22n − 1)ζ(2n)t2n−1, (2.2)

and this remains valid when t = 0. From Section 4 of [1] , we have

ζ(2n + 1) = (−1)n+1 (2π)2n+1

(1− 2−2n)(2n + 1)!

1/2∫
0

B2n+1(t) tan(πt)dt, (2.3)

and inserting (2.2) gives

ζ(2n + 1) = αn lim
δ→1/2−

δ∫
0

∞∑
r=1

(22r − 1)ζ(2r)B2n+1(t)t
2r−1dt. (2.4)

Since δ < 1
2
, the series converges uniformly on 0 ≤ t ≤ δ. Thus

ζ(2n + 1) = αn lim
δ→1/2−

∞∑
r=1

(22r − 1)ζ(2r)

δ∫
0

B2n+1(t)t
2r−1dt. (2.5)

Let Jr(δ) be the integral in (2.5), and write

∞∑
r=1

(22r − 1)ζ(2r)Jr(δ) (2.6)

=
∞∑

r=1

22rJr(δ)−
∞∑

r=1

Jr(δ) +
∞∑

r=1

[
ζ(2r)− 1

]
(22r − 1)Jr(δ) (2.7)

= Wn(δ)−Xn(δ) + Yn(δ). (2.8)
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When 0 ≤ δ ≤ 1
2
, Jr(δ) = O(r−12−2r), and hence the series for Xn

converges uniformly on this interval. The rth term of Yn is dominated by
ζ(2r)− 1, hence this series converges uniformly on the same interval.

As we remarked previously, the infinite series Zn = Yn(1/2) is the chief
ingredient in our approximation of ζ(2n + 1). The next two lemmas are
devoted to evaluating Wn and Xn.

Lemma 2.1 With Wn and Xn defined as above,

lim
δ→1/2−

Wn(δ) =
2n + 1

2

1/2∫
0

B2n(t) log(1− 4t2)dt (2.9)

Xn(1/2) =
2n + 1

2

1/2∫
0

B2n(t) log(1− t2)dt. (2.10)

Proof. Integrating Jr(δ) by parts, we have

Wn(δ) =
1

2
B2n+1(δ)

∞∑
r=1

(2δ)2r

r
− 2n + 1

2

∞∑
r=1

δ∫
0

(2t)2r

r
B2n(t)dt (2.11)

= −1

2
B2n+1(δ) log(1− 4δ2)− 2n + 1

2

∞∑
r=1

δ∫
0

(2t)2r

r
B2n(t)dt. (2.12)

The odd Bernoulli polynomials have 1/2 as a root, hence the first term
tends to zero as δ → 1/2−. The series

∞∑
r=1

(2t)2r

r
B2n(t)

converges uniformly when 0 ≤ t ≤ δ < 1/2. We thus have

lim
δ→1/2−

Wn(δ) = −2n + 1

2
lim

δ→1/2−

δ∫
0

B2n(t)
∞∑

r=1

(2t)2r

r
dt,

and this establishes (2.9). The proof of (2.10) is similar.
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The domain of Wn can thus be extended so that Wn is left-continuous
at 1

2
. With this in mind, we now simplify the above integrals.

Lemma 2.2 There exist rational numbers pn and qn such that

Wn(1/2) =

1/2∫
−1/2

B2n+1(t)

1− 2t
dt− pn −

2n + 1

22n+1
log

1

2
. (2.13)

Xn(1/2) = −1

2

3/2∫
1/2

B2n+1(t)

t
dt− qn +

2n + 1

2
log

3

2
. (2.14)

Proof. From (2.9), we have

Wn(1/2) =
2n + 1

2

1/2∫
0

B2n(t) log(1− 2t)dt +
2n + 1

2

1/2∫
0

B2n(t) log(1 + 2t)dt.

(2.15)
Again integrating by parts, the first term becomes

1/2∫
0

B2n+1(t)

1− 2t
dt, (2.16)

and the second term is

−
1/2∫
0

B2n+1(t)

1 + 2t
dt = −

0∫
−1/2

B2n+1(−x)

1− 2x
dx (2.17)

=

0∫
−1/2

B2n+1(x) + (2n + 1)x2n

1− 2x
dx. (2.18)

Hence

Wn(1/2) =

1/2∫
−1/2

B2n+1(t)

1− 2t
dt + (2n + 1)

0∫
−1/2

x2n

1− 2x
dx. (2.19)
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(2.13) follows upon letting x = 1
2
− y and evaluating the resulting integral.

We can write

pn =
n(2n + 1)

22n
∆2n−1 1− 2x+1

(x + 1)2

∣∣∣∣
x=0

, (2.20)

where ∆ is the forward difference operator: (∆f)(x) = f(x + 1) − f(x).
The proof of (2.14) is similar, with

qn = n(2n + 1) ∆2n−1 1− (3/2)x+1

(x + 1)2

∣∣∣∣
x=0

. (2.21)

Theorem 1.1 follows immediately upon inserting the results of this
lemma, along with the given expressions for pn and qn, into equation (2.8).

Turning to Theorem 1.2, we have already seen that the integral appear-
ing in (1.3) is O(r−12−2r). To estimate ζ(2r)− 1, we use the represenation

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
, (2.22)

which is valid when <(s) > 0. The alternating series is 1 + O(2−2r), and
from this we can deduce that ζ(2r)− 1 = O(2−2r). Hence

Zn = Zn(k) + O
( ∞∑

r=k+1

r−12−2r
)

(2.23)

and this establishes Theorem 1.2
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