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Abstract

We provide a wide class of Mobius inversion formulas in terms
of the generalized Mobius functions and its application to the
setting of the Selberg multiplicative functions.
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1 Introduction

This paper is concerned with the problem of construction for a general
type of Mobius inversion formulas for the set of the generalized Mobius
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function u,. For other types of generalized Mobius inversion formulas
can be seen in the recent article by Sdndor and Bege [7]. In addition,
an application of the Mobius inversion formulas in the physics can be
found in [3].

For any z € C, a generalized Fleck-type Mébius function (cf. [4]) is
defined by

pt) = -1 ( ) ()

for any t € C, where [|t|] is the integer part of |t|, p runs through all
the prime divisors of [|t|], and e,([|t|]) = ord,([|t|]) denotes the highest
power k of p such that p* divides [|t|]]. Obviously, u1(n) = p(n), n € N,
is the classical Mobius function.

[1] shows that u. (2 € C) is a multiplicative function, i.e., if m
and n are relatively prime, then p,(mn) = p.(m)p,(n). In addition,
to(n) = 01, (n € N), the Kronecker symbol, i.e., puo(n) equals to 1 if
n = 1 and 0 otherwise. It can be easily verified that, for each complex
number z, u, is not a completely multiplicative function except for uq,
which is completely multiplicative.

Let E denote an arbitrary arithmetical semigroup. The set of all
complex-valued arithmetical functions on F will be denoted by A(FE).
Note that the definition of an arithmetical semigroup E implies that E
is countable. For the sake of definiteness, one could if desired express E
in the form E = {a; = 1,a9,as, ...}, where |a;| < |a;1].

Let h € A(E) be a nonzero completely multiplicative function. We
now give generalized Mobius inversion formulas for the set My, = {1, ), =
w.h : z € C} with respect to the the generalized Dirichlet convolution x*
defined as follows.

Definition 1.1 Let h € A(E) be a nonzero completely multiplicative
function. Given two functions f,g € A(FE), the generalized Dirichlet
convolution, denoted by (f % g)n, is also in A(E) which is defined by
(f*g)n = (fh) * (gh), where % is the Dirichlet convolution; i.e.,

(fxg)n(n) = ((fh) * (gh))(n)

= S um@ion (5) =S 0m () b)) (12)

din dln

for n = [|t|] witht € E.
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Next we recall a fairly more general notation of multiplicativity, in-
troduced first by Selberg [8], which apparently did not prevail in the
literature.

Definition 1.2 A number-theoretical function F is said to be Selberg-
multiplicative if, for each prime p, there ezists f, : Ng — C with f,(0) =
1 for all but finitely many p such that

F(n) =1, f,(ep(n)) (1.3)

holds for every n € N. The class of all Selberg-multiplicative functions
1s denoted by G.

Definition 1.3 A Dirichlet formal series f(s) (s € C) of the sequence
{F(n)} is defined by

f(s)=> Fn)n™ (s#0).

One of the main advantages of this more general notation of multi-
plicativity is that it can be used without change to define multiplicative
functions of several variables.

In next section, we will show that (M, *) is a group with the identity
element po, = poh (po(n) = d,1) and establish a kind of Mobius type
inversion. We shall also apply these results to the setting of Selberg-
multiplicative functions class (G5,%) = {Fh : F' € G} in Section §3,
where h € A(F) is a nonzero completely multiplicative function with
h(0) = 1. Hence, h(n) = I, h,(e,(n)) with h,(e,(n)) := h(p=™) and
h,(0) = 1. The application is based on the following lemmas.

Lemma 1.4 Let G be the Selberg class of multiplicative functions de-
fined in Definition 1.2. If F' € G, then for s € C we have the fomal
identity

Z F(n)n™ = Z n°IL, f,(ep(n)) = 1, Z fo(r)p™", (1.4)

in which the product on the rightmost extends over all prime numbers.
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Proof. We can denote n = IL,p»(™. Clearly we have

[e.o]

I, f (e fole
LHS Of (14) - Z ?[I;?sei Z D sep(n

n=1

and

RHS of (1.4) — p{fp( )+fp(1>+fp(2)+fp(3)+...}'

pO s pl-s p2-s p3-s

In addition, on the LHS of (1.4), for every n = pi'py*ps®---, where
r; > 0and 2 < p; < py <--- are primes, the term

fp1 <r1>fp2 (TQ)fps (7”3) e

P1 P2 D3

occurs exactly once in the expansion of the RHS of (1.4).

On the other hand, in the RHS expansion, every term with the form
(1.5), corresponds to a term with n = pi'py?ps® - - -. Hence, the lemma
holds.

(1.5)

]
Lemma 1.4 has its own importance, which can be seen from its spe-
cial case shown as in Theorem 2.6.1 in [9].
From Definition 1.3 and product of series, we immediately have the
following lemma.

Lemma 1.5 Given formal series f(s) = Yo F(n)n™ and §(s) =

S G(n)n* (s #0). Then f(s)-g(s) generates the sequence {2 F (2)
G(d)}.

2 A Generalized Mobius Inversion Formula

Theorem 2.1 The generalized Dirichlet convolution is commutative and
satisfies the associative law. In addition, (f*g)n is also a multiplicative
function whenever f and g are multiplicative functions.

Proof. Evidently, the generalized Dirichlet convolution is commutative.
The associativity can be established from the following statement.
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((F gl s wn(n) = D2 (F + (@) (wh) ()

= S (7) o (;)

_ Z;(fh)(c)(gh) () (uh) () “:Czl)
_ czm:( f;L)(c) ;@h) (€) (uh) (C%)

_ %(fh)(c)(gc*u)h (%)

= (g un().

We now prove that (f * g); is also multiplicative whenever f and g
are multiplicative functions. If (a,b) = 1, then

(f * g)n(ab) = 3" (Fh)(d)(gh) (%b) .

dlab

Let u = (a,d) and v = (b,d). Then uv = d, (u,v) = 1, and

(f * gnlab) = 3 3 (Fh)(uv)(gh) (“b)

ula v|b

= Y mien (2) St (1)

ula v|b

= (f*@n(a)(f x g)n(b).
This completes the proof of the theorem.
u
Theorem 2.2 Let h € A(E) be a nonzero completely multiplicative

function, and let x be the Dirichlet convolution. Then (My,*) is an
Abelian group with the identity element pon = poh.
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Proof. First, the set M), is closed with respect to *: for all pon, psn €
M]‘u

(Han * pon)(n) = Z”O‘(d)h(dﬂw (%) h (%)
dn

= 0 Y s (5)

d|n
= N’a—i—,@,h(n)? (21>

where the last step is due to Lemma 2 in [1].

Secondly, the convolution * is commutative and associative in M),
from Theorem 2.1. Finally, from (2.1) the identity element of (M}, *) is
o = poh and the inverse of 11,5 1S fi—q,n. This completes the proof of
Theorem 2.2.

]
By using Theorem 2.2, we immediately obtain a generalized Mobius
inversion formula as follows.

Theorem 2.3 Let h € A(F) be any nonzero completely multiplicative
function with h(—1) =1, and let U, V' denote complex-valued functions
of a positive real variable t. Then

V()= > p(k)U/|k)h(k) (2:2)

keE;|k|<t

for allt > 0, iof and only if

Ut)= > n-=(K)V{t/k)hk) (2.3)

ke E;|k|<t
for allt > 0.

Proof. (2.2) and (2.3) are equivalent to the statemen

V=Uxpp<=U=Vxpu_,p,

which follows from

V=Usxpp<=Vrp_,p=Usxpp)*xp_op=Uxpop="U.
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Remark 1. Various consequences including some classical inversion
formulas can be deduced from Theorem 2.3 by special choices of F, z,
and h(-). In particular, the classical M6bius inversion pair is a particular
case of (2.2) and (2.3) shown in Theorem 2.3 with £ = N, z = 1, and
h(-) =1 (cf. [6] for a different approach).

Corollary 2.4 Let tg > 1, and let h(k) be a nonzero completely mul-
tiplicative function. Then for all t, 1 < t < tg, and complex-valued
functions F and G,

Gty = S p(h)F(t/k)h(k) (2.4)
if and only if
= 3 (WG RhE). (25)

1<k<t

In Corollary 2.4, we may take

ro={4" gz c0=10" 5z

Hence, for n € N we write (2.4) as

gin) = G(n)= Y p.(k)F(n/k)h(k)

1<k<n

= Z,uz f(n/k)h Zuz n/d)f(d)h(n/d).

kln dln

Similarly, from (2.5),

Fo) = Fm) = p.(k)g(n/k)h(k)

k|n

= Y/ d)g(@h(n/a)

din

Therefore, we obtain the following corollary.
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Corollary 2.5 Let h be any nonzero completely multiplicative function,
and let f and g be complex-valued functions. Then for all n € N,

=" pa(k) f(n/k)h(k) (2.6)

k|n

of and only iof

= > i (B)g(n/R)h(k), (27)

k|n

Remark 2. Corollary 2.5 can be derived by using a similar argument
as that in [1] with the consideration of the Abelian group My = {ju. ) =
w.h : z € C} with respect to the addition * defined by

(Han * pgn) Z pro (k)W (k) pg(n/k)h(n/k) = piatsn(n),

kln

where h is a nonzero completely multiplicative function.

In Theorem 2.3, after substituting F'(t) = f(1/t) and G(t) = g(1/t)
into (2.2) and (2.3) and replacing 1/t by ¢ afterwards, we can obtain the
following results.

Theorem 2.6 Let h € A(E) be any nonzero completely multiplicative
function, and let f and g be complex-valued functions of positive real
variable t < 1,

gty = Y pa (k) (K[t (E) (2.8)
kEE;|k|<1/t
for all 0 <t <1, if and only if
F6y=">" nlk)g(lk[t)h(k) (2.9)
kEE;|k|<1/t

forall 0 <t < 1.

Remark 3. (2.8) and (2.9) can be proved directly as follows.
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Proof. 1f (2.8) holds, then

> pa(k)g(|k[t)h (k)

kI<1/t
= S w®ht) ST e m)f(mkle)h(m).
|k|<1/t Im|<1/(Ik[t)

By setting mk = r on the right-hand side of the above equation and
noting that p, «p_, =" . p.(m)u_.(k) = po(r), we can write it as
follows.

Y e(R)pa(m)h(mk) f(|mk|t)

|mk|<1/t
Ir<1/t mk=r

= h()f(t) = f(D).

Similarly, from (2.9) we can derive (2.8).
If we choose E = N, then we have

Corollary 2.7 Let 0 < ng < nq, and let h(k) be any nonzero completely
multiplicative function. For every ng < t < ny and complex-valued
functions f and g,

gty = Y p(k)f(kt)h(k) (2.10)
1<k<ny/t
if and only if
f= S ue(k)g(kt)h(k). (2.11)
1<k<ni/t

Remark 4. A special case of h = 1 and z = 1 can be found in Theorems
268 and 270 of Section §16.5 in [5].
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3 A Mobius Inversion Formula for the Set-
ting of the Selberg Multiplicative Func-
tions

We now give an application of Theorem 2.2 to the setting of Selberg-
multiplicative functions. Similar to Theorems 2.1 and 2.2, for a nonzero
completely multiplicative function h with h(0) = 1, A(E), := {fh :
f € A(E) — {0}} forms an Abelian group with respect to the Dirichlet
convolution defined in Definition 1.1. We will show that (G, *) is a
subgroup of (A(E)p, *).

Let F,G € G; i.e., for any n € N, F(n) =11, f,(ey(n)) and G(n) =
I1,9,(ep(n)), where for each prime p f,, g, : Ng = NU {0} — C with
f»(0) = g,(0) = 1. For each prime p and a fixed nonzero completely
multiplicative function h, with h,(0) = 1, we define

ap(r) = hyp(r) > fo(p)gp(r — p) (r € No). (3.1)

Thus ¢,(0) = 1. Furthermore, since Q) := (F * G), € A(E)p, where
h(n) = Ihy(ep(n)) and hy(ey(n)) == h(pr™), we have

ep(n)
Q(n) = HpQ(pep(n)) — Hp Z F(pP)G(pep(n)fp)h(pep(n))
p=0
ep(n)

= 10, Y fu(P)gnlep(n) = phhylen(n)) = Tygp(ey(n),

where the last two equalities are derived from the expressions of F', G,
and H and (3.1). Consequently, (F'« G), € G if Fh,Gh € G,.

To prove that F'h € G, implies its inverse F~1h € G, for each prime
p we define

5(0)=1, > folp)gp(r —p) =0 (3.2)
p=0
for r = 1,2,--- . Since f,(0) = 1 this is uniquely possible. From (F' x

F~1), = ¢, the identity of (A(E), *), we have
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T T

0=e(p)=h(p")Yy FE)F '@ ") =rp")> fp)F (")

p=0 p=0

for each prime p and » € N. Then from (3.2), we immediately obtain
F7'(1) =1 = ¢,(0) and F~*(p") = g,(r) for each prime p and r € N.
Consequently,

F~l(n) = HpF_l(pEP(n)) = I,gp(ep(n)), (3.3)

where F~! € G. Hence, constructed F'~'h is the inverse of Fh in G,.
(3.2) also give an algorithm to find F'~.
We now use Lemmas 1.4 and 1.5 to derive the Mobius inversion
formulas over (G, *) as follows.

Theorem 3.1 Let either sequence of {a(n)} and {B(n)} be given ar-
bitrarily. For F € G, its inverse G € (Gp, *) exists so that the general
type of Mobius inversion formulas

Bn) = Y- F(d)a (5) hd) <= aln) = >G5 (5) h(d)  (34)
dln din

hold for any nonzero completely multiplicative function h with h(0) = 1
and for a, 3 : N+ C.

Proof. For given F € G, F(n) =11,f,(ey(n)), from Lemma 1.4 we have

fh(s) = Z EF(n)h(n)n™" = sz foep(n))hp(ep(n)), (3.5)

where f,,(s) is the Dirichlet formal series of the sequence {F(n)h(n)}
(see Definition 1.3). Solving system (3.2) or its equivalent form

<Z fp(r)hp(r)x’") =D gp(r)hy(r)a” (3.6)

for each prime p and r = 1,2,---. From (3.3), the inverse of F'(n)h(n)
in G, *) can be written as G(n)h(n), where
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G(n) =1L,g,(ep(n)) (g,(0) = 1). (3.7)

Denote by gp(s) the Dirichlet formal series of the sequence {G(n)h(n)}.
From Lemma 1.4, we obtain

an(s) = _Gn)h(n)n™ =11, Y gy(ey(n))hy(ey(n)). (3.8)

Since (3.6) implies

an(s) = 1/ fu(s), (3.9)

for the Dirichlet formal series, &(s) : N +— C, of any given sequence

{a(n)} we have ((s) := fu(s)a(s) implies &(s) = gn(s)B(s), and the

last expression implies the previous one if ((s) is indicated, namely

B(s) = fu(s)a(s) <= a(s) = gn(s)B(s). (3.10)

)
Obviously, from Lemma 1.5, inversion relation (3.10) is equivalent to
(3.4). This completes the proof of the theorem.

[
Remark 5. A special case of (3.4) for h = 1 and a subgroup of § = G,
can be found in [2].
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