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Abstract

We provide a wide class of Möbius inversion formulas in terms
of the generalized Möbius functions and its application to the
setting of the Selberg multiplicative functions.
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1 Introduction

This paper is concerned with the problem of construction for a general
type of Möbius inversion formulas for the set of the generalized Möbius
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function µα. For other types of generalized Möbius inversion formulas
can be seen in the recent article by Sándor and Bege [7]. In addition,
an application of the Möbius inversion formulas in the physics can be
found in [3].

For any z ∈ C, a generalized Fleck-type Möbius function (cf. [4]) is
defined by

µz(t) := Πp(−1)ep([|t|])
(

z

ep([|t|])

)
(1.1)

for any t ∈ C, where [|t|] is the integer part of |t|, p runs through all
the prime divisors of [|t|], and ep([|t|]) = ordp([|t|]) denotes the highest
power k of p such that pk divides [|t|]. Obviously, µ1(n) = µ(n), n ∈ N,
is the classical Möbius function.

[1] shows that µz (z ∈ C) is a multiplicative function, i.e., if m
and n are relatively prime, then µz(mn) = µz(m)µz(n). In addition,
µ0(n) = δ1n (n ∈ N), the Kronecker symbol, i.e., µ0(n) equals to 1 if
n = 1 and 0 otherwise. It can be easily verified that, for each complex
number z, µz is not a completely multiplicative function except for µ0,
which is completely multiplicative.

Let E denote an arbitrary arithmetical semigroup. The set of all
complex-valued arithmetical functions on E will be denoted by A(E).
Note that the definition of an arithmetical semigroup E implies that E
is countable. For the sake of definiteness, one could if desired express E
in the form E = {a1 = 1, a2, a3, . . .}, where |ai| ≤ |ai+1|.

Let h ∈ A(E) be a nonzero completely multiplicative function. We
now give generalized Möbius inversion formulas for the set Mh = {µz,h =
µzh : z ∈ C} with respect to the the generalized Dirichlet convolution ∗
defined as follows.

Definition 1.1 Let h ∈ A(E) be a nonzero completely multiplicative
function. Given two functions f, g ∈ A(E), the generalized Dirichlet
convolution, denoted by (f ∗ g)h, is also in A(E) which is defined by
(f ∗ g)h = (fh) ∗ (gh), where ∗ is the Dirichlet convolution; i.e.,

(f ∗ g)h(n) := ((fh) ∗ (gh))(n)

=
∑
d|n

(fh)(d)(gh)
(n

d

)
=
∑
d|n

(fh)
(n

d

)
(gh)(d) (1.2)

for n = [|t|] with t ∈ E.
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Next we recall a fairly more general notation of multiplicativity, in-
troduced first by Selberg [8], which apparently did not prevail in the
literature.

Definition 1.2 A number-theoretical function F is said to be Selberg-
multiplicative if, for each prime p, there exists fp : N0 7→ C with fp(0) =
1 for all but finitely many p such that

F (n) = Πpfp(ep(n)) (1.3)

holds for every n ∈ N. The class of all Selberg-multiplicative functions
is denoted by G.

Definition 1.3 A Dirichlet formal series f̂(s) (s ∈ C) of the sequence
{F (n)} is defined by

f̂(s) =
∞∑

n=1

F (n)n−s (s 6= 0).

One of the main advantages of this more general notation of multi-
plicativity is that it can be used without change to define multiplicative
functions of several variables.

In next section, we will show that (Mh, ∗) is a group with the identity
element µ0,h = µ0h (µ0(n) = δn1) and establish a kind of Möbius type
inversion. We shall also apply these results to the setting of Selberg-
multiplicative functions class (Gh, ∗) = {Fh : F ∈ G} in Section §3,
where h ∈ A(E) is a nonzero completely multiplicative function with
h(0) = 1. Hence, h(n) = Πphp(ep(n)) with hp(ep(n)) := h(pep(n)) and
hp(0) = 1. The application is based on the following lemmas.

Lemma 1.4 Let G be the Selberg class of multiplicative functions de-
fined in Definition 1.2. If F ∈ G, then for s ∈ C we have the fomal
identity

∞∑
n=1

F (n)n−s ≡
∞∑

n=1

n−sΠpfp(ep(n)) = Πp

∞∑
r=0

fp(r)p
−rs, (1.4)

in which the product on the rightmost extends over all prime numbers.
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Proof. We can denote n = Πpp
ep(n). Clearly we have

LHS of (1.4) =
∞∑

n=1

Πpfp(ep(n))

Πppsep(n)
=

∞∑
n=1

Πp
fp(ep(n))

psep(n)

and

RHS of (1.4) = Πp

{
fp(0)

p0·s +
fp(1)

p1·s +
fp(2)

p2·s +
fp(3)

p3·s + · · ·
}

.

In addition, on the LHS of (1.4), for every n = pr1
1 pr2

2 pr3
3 · · · , where

rj ≥ 0 and 2 ≤ p1 < p2 < · · · are primes, the term

fp1(r1)fp2(r2)fp3(r3) · · ·
psr1

1 psr2
2 psr3

3 · · ·
(1.5)

occurs exactly once in the expansion of the RHS of (1.4).
On the other hand, in the RHS expansion, every term with the form

(1.5), corresponds to a term with n = pr1
1 pr2

2 pr3
3 · · · . Hence, the lemma

holds.

Lemma 1.4 has its own importance, which can be seen from its spe-
cial case shown as in Theorem 2.6.1 in [9].

From Definition 1.3 and product of series, we immediately have the
following lemma.

Lemma 1.5 Given formal series f̂(s) =
∑∞

n=1 F (n)n−s and ĝ(s) =∑∞
n=1 G(n)n−s (s 6= 0). Then f̂(s)·ĝ(s) generates the sequence {

∑
d|n F

(
n
d

)
G(d)}.

2 A Generalized Möbius Inversion Formula

Theorem 2.1 The generalized Dirichlet convolution is commutative and
satisfies the associative law. In addition, (f ∗ g)h is also a multiplicative
function whenever f and g are multiplicative functions.

Proof. Evidently, the generalized Dirichlet convolution is commutative.
The associativity can be established from the following statement.
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((f ∗ g)h ∗ u)h(n) =
∑
d|n

(f ∗ g)h(d)(uh)
(n

d

)
=

∑
d|n

∑
c|d

(fh)(c)(gh)

(
d

c

)
(uh)

(n

d

)
=

∑
c|n

∑
`|n

c

(fh)(c)(gh) (`) (uh)
( n

c`

)
(` =

d

c
)

=
∑
c|n

(fh)(c)
∑
`|n

c

(gh) (`) (uh)
( n

c`

)
=

∑
c|n

(fh)(c)(g ∗ u)h

(n

c

)
= (f ∗ (g ∗ u)h)h(n).

We now prove that (f ∗ g)h is also multiplicative whenever f and g
are multiplicative functions. If (a, b) = 1, then

(f ∗ g)h(ab) =
∑
d|ab

(fh)(d)(gh)

(
ab

d

)
.

Let u = (a, d) and v = (b, d). Then uv = d, (u, v) = 1, and

(f ∗ g)h(ab) =
∑
u|a

∑
v|b

(fh)(uv)(gh)

(
ab

uv

)

=
∑
u|a

(fh)(u)(gh)
(a

u

)∑
v|b

(fh)(v)(gh)

(
b

v

)
= (f ∗ g)h(a)(f ∗ g)h(b).

This completes the proof of the theorem.

Theorem 2.2 Let h ∈ A(E) be a nonzero completely multiplicative
function, and let ∗ be the Dirichlet convolution. Then (Mh, ∗) is an
Abelian group with the identity element µ0,h = µ0h.
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Proof. First, the set Mh is closed with respect to ∗: for all µα,h, µβ,h ∈
Mh,

(µα,h ∗ µβ,h)(n) =
∑
d|n

µα(d)h(d)µβ

(n

d

)
h
(n

d

)
= h(n)

∑
d|n

µα(d)µβ

(n

d

)
= µα+β,h(n), (2.1)

where the last step is due to Lemma 2 in [1].
Secondly, the convolution ∗ is commutative and associative in Mh

from Theorem 2.1. Finally, from (2.1) the identity element of (Mh, ∗) is
µ0,h = µ0h and the inverse of µα,h is µ−α,h. This completes the proof of
Theorem 2.2.

By using Theorem 2.2, we immediately obtain a generalized Möbius
inversion formula as follows.

Theorem 2.3 Let h ∈ A(E) be any nonzero completely multiplicative
function with h(−1) = 1, and let U , V denote complex-valued functions
of a positive real variable t. Then

V (t) =
∑

k∈E;|k|≤t

µz(k)U(t/|k|)h(k) (2.2)

for all t > 0, if and only if

U(t) =
∑

k∈E;|k|≤t

µ−z(k)V (t/|k|)h(k) (2.3)

for all t > 0.

Proof. (2.2) and (2.3) are equivalent to the statemen

V = U ∗ µz,h ⇐⇒ U = V ∗ µ−z,h,

which follows from

V = U ∗ µz,h ⇐⇒ V ∗ µ−z,h = (U ∗ µz,h) ∗ µ−z,h = U ∗ µ0,h = U.



Generalized Möbius Inversion 7

Remark 1. Various consequences including some classical inversion
formulas can be deduced from Theorem 2.3 by special choices of E, z,
and h(·). In particular, the classical Möbius inversion pair is a particular
case of (2.2) and (2.3) shown in Theorem 2.3 with E = N, z = 1, and
h(·) ≡ 1 (cf. [6] for a different approach).

Corollary 2.4 Let t0 ≥ 1, and let h(k) be a nonzero completely mul-
tiplicative function. Then for all t, 1 ≤ t ≤ t0, and complex-valued
functions F and G,

G(t) =
∑

1≤k≤t

µz(k)F (t/k)h(k) (2.4)

if and only if

F (t) =
∑

1≤k≤t

µ−z(k)G(t/k)h(k). (2.5)

In Corollary 2.4, we may take

F (t) =

{
f(t) if t ∈ Z,
0 if t /∈ Z,

G(t) =

{
g(t) if t ∈ Z,
0 if t /∈ Z.

Hence, for n ∈ N we write (2.4) as

g(n) = G(n) =
∑

1≤k≤n

µz(k)F (n/k)h(k)

=
∑
k|n

µz(k)f(n/k)h(k) =
∑
d|n

µz(n/d)f(d)h(n/d).

Similarly, from (2.5),

f(n) = F (n) =
∑
k|n

µ−z(k)g(n/k)h(k)

=
∑
d|n

µ−z(n/d)g(d)h(n/d).

Therefore, we obtain the following corollary.
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Corollary 2.5 Let h be any nonzero completely multiplicative function,
and let f and g be complex-valued functions. Then for all n ∈ N,

g(n) =
∑
k|n

µz(k)f(n/k)h(k) (2.6)

if and only if

f(n) =
∑
k|n

µ−z(k)g(n/k)h(k). (2.7)

Remark 2. Corollary 2.5 can be derived by using a similar argument
as that in [1] with the consideration of the Abelian group Mh = {µz,h =
µzh : z ∈ C} with respect to the addition ∗ defined by

(µα,h ∗ µβ,h)(n) :=
∑
k|n

µα(k)h(k)µβ(n/k)h(n/k) = µα+β,h(n),

where h is a nonzero completely multiplicative function.

In Theorem 2.3, after substituting F (t) = f(1/t) and G(t) = g(1/t)
into (2.2) and (2.3) and replacing 1/t by t afterwards, we can obtain the
following results.

Theorem 2.6 Let h ∈ A(E) be any nonzero completely multiplicative
function, and let f and g be complex-valued functions of positive real
variable t < 1,

g(t) =
∑

k∈E;|k|≤1/t

µ−z(k)f(|k|t)h(k) (2.8)

for all 0 < t < 1, if and only if

f(t) =
∑

k∈E;|k|≤1/t

µz(k)g(|k|t)h(k) (2.9)

for all 0 < t < 1.

Remark 3. (2.8) and (2.9) can be proved directly as follows.
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Proof. If (2.8) holds, then

∑
|k|≤1/t

µz(k)g(|k|t)h(k)

=
∑
|k|≤1/t

µz(k)h(k)
∑

|m|≤1/(|k|t)

µ−z(m)f(|mk|t)h(m).

By setting mk = r on the right-hand side of the above equation and
noting that µz ∗ µ−z :=

∑
mk=r µz(m)µ−z(k) = µ0(r), we can write it as

follows.

∑
|mk|≤1/t

µz(k)µ−z(m)h(mk)f(|mk|t)

=
∑
|r|≤1/t

h(mk)f(|mk|t)
∑

mk=r

µz(k)µ−z(m)

= h(1)f(t) = f(t).

Similarly, from (2.9) we can derive (2.8).

If we choose E = N, then we have

Corollary 2.7 Let 0 < n0 ≤ n1, and let h(k) be any nonzero completely
multiplicative function. For every n0 ≤ t ≤ n1 and complex-valued
functions f and g,

g(t) =
∑

1≤k≤n1/t

µ−z(k)f(kt)h(k) (2.10)

if and only if

f(t) =
∑

1≤k≤n1/t

µz(k)g(kt)h(k). (2.11)

Remark 4. A special case of h ≡ 1 and z = 1 can be found in Theorems
268 and 270 of Section §16.5 in [5].
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3 A Möbius Inversion Formula for the Set-

ting of the Selberg Multiplicative Func-

tions

We now give an application of Theorem 2.2 to the setting of Selberg-
multiplicative functions. Similar to Theorems 2.1 and 2.2, for a nonzero
completely multiplicative function h with h(0) = 1, A(E)h := {fh :
f ∈ A(E)− {0}} forms an Abelian group with respect to the Dirichlet
convolution defined in Definition 1.1. We will show that (Gh, ∗) is a
subgroup of (A(E)h, ∗).

Let F, G ∈ G; i.e., for any n ∈ N, F (n) = Πpfp(ep(n)) and G(n) =
Πpgp(ep(n)), where for each prime p fp, gp : N0 = N ∪ {0} 7→ C with
fp(0) = gp(0) = 1. For each prime p and a fixed nonzero completely
multiplicative function hp with hp(0) = 1, we define

qp(r) := hp(r)
r∑

ρ=0

fp(ρ)gp(r − ρ) (r ∈ N0). (3.1)

Thus qp(0) = 1. Furthermore, since Q := (F ∗ G)h ∈ A(E)h, where
h(n) = Πphp(ep(n)) and hp(ep(n)) := h(pep(n)), we have

Q(n) = ΠpQ(pep(n)) = Πp

ep(n)∑
ρ=0

F (pρ)G(pep(n)−ρ)h(pep(n))

= Πp

ep(n)∑
ρ=0

fp(ρ)gp(ep(n)− ρ)hp(ep(n)) = Πpqp(ep(n)),

where the last two equalities are derived from the expressions of F , G,
and H and (3.1). Consequently, (F ∗G)h ∈ G if Fh,Gh ∈ Gh.

To prove that Fh ∈ Gh implies its inverse F−1h ∈ Gh, for each prime
p we define

gp(0) = 1,
r∑

ρ=0

fp(ρ)gp(r − ρ) = 0 (3.2)

for r = 1, 2, · · · . Since fp(0) = 1 this is uniquely possible. From (F ∗
F−1)h = ε, the identity of (A(E)h, ∗), we have



Generalized Möbius Inversion 11

0 = ε(pr) = h(pr)
r∑

ρ=0

F (pρ)F−1(pr−ρ) = h(pr)
r∑

ρ=0

f(ρ)F−1(pr−ρ)

for each prime p and r ∈ N. Then from (3.2), we immediately obtain
F−1(1) = 1 = gp(0) and F−1(pr) = gp(r) for each prime p and r ∈ N.
Consequently,

F−1(n) = ΠpF
−1(pep(n)) = Πpgp(ep(n)), (3.3)

where F−1 ∈ G. Hence, constructed F−1h is the inverse of Fh in Gh.
(3.2) also give an algorithm to find F−1.
We now use Lemmas 1.4 and 1.5 to derive the Möbius inversion

formulas over (Gh, ∗) as follows.

Theorem 3.1 Let either sequence of {α(n)} and {β(n)} be given ar-
bitrarily. For F ∈ G, its inverse G ∈ (Gh, ∗) exists so that the general
type of Möbius inversion formulas

β(n) =
∑
d|n

F (d)α
(n

d

)
h(d) ⇐⇒ α(n) =

∑
d|n

G(d)β
(n

d

)
h(d) (3.4)

hold for any nonzero completely multiplicative function h with h(0) = 1
and for α, β : N 7→ C.

Proof. For given F ∈ G, F (n) = Πpfp(ep(n)), from Lemma 1.4 we have

f̂h(s) :=
∞∑

n=1

F (n)h(n)n−s = Πp

∞∑
p

fp(ep(n))hp(ep(n)), (3.5)

where f̂h(s) is the Dirichlet formal series of the sequence {F (n)h(n)}
(see Definition 1.3). Solving system (3.2) or its equivalent form(

∞∑
r=1

fp(r)hp(r)x
r

)−1

=
∞∑

r=1

gp(r)hp(r)x
r (3.6)

for each prime p and r = 1, 2, · · · . From (3.3), the inverse of F (n)h(n)
in Gh, ∗) can be written as G(n)h(n), where



12 T. X. He, L. C. Hsu and P. J. S. Shiue

G(n) = Πpgp(ep(n)) (gp(0) = 1). (3.7)

Denote by ĝh(s) the Dirichlet formal series of the sequence {G(n)h(n)}.
From Lemma 1.4, we obtain

ĝh(s) :=
∞∑

n=1

G(n)h(n)n−s = Πp

∞∑
p

gp(ep(n))hp(ep(n)). (3.8)

Since (3.6) implies

ĝh(s) = 1/f̂h(s), (3.9)

for the Dirichlet formal series, α̂(s) : N 7→ C, of any given sequence
{α(n)} we have β̂(s) := f̂h(s)α̂(s) implies α̂(s) = ĝh(s)β̂(s), and the
last expression implies the previous one if β̂(s) is indicated, namely

β̂(s) = f̂h(s)α̂(s) ⇐⇒ α̂(s) = ĝh(s)β̂(s). (3.10)

Obviously, from Lemma 1.5, inversion relation (3.10) is equivalent to
(3.4). This completes the proof of the theorem.

Remark 5. A special case of (3.4) for h ≡ 1 and a subgroup of G ≡ G1

can be found in [2].
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