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Abstract

A boundary type quadrature formula (BTQF) is an approximate integration
formula with all its of evaluation points lying on the boundary of the integra-
tion domain. This type formulas are particularly useful for the cases when
the values of the integrand functions and their derivatives inside the domain
are not given or are not easily determined. In this paper, we will establish
the BTQFs over some axially symmetric regions. We will discuss the follow-
ing three questions in the construction of BTQFs: (i) What is the highest
possible degree of algebraic precision of the BTQF if it exists? (ii) What is
the fewest number of the evaluation points needed to construct a BTQF with
the highest possible degree of algebraic precision? (iii) How to construct the
BTQF with the fewest evaluation points and the highest possible degree of
algebraic precision?

1 Introduction

Although numerical multivariate integration is an old subject, it has never been
applied as widely as it is now. We can find its applications everywhere in math,
science, and economics. A good example might be the collateralized mortgage
obligation (CMO), which can be formulated as a multivariate integral over the 180-
dimensional unit cube ([2]). A boundary quadrature formula is an approximate
integration formula with all its evaluation points lying on the boundary of the
domain of integration. Such a formula may be particularly useful for the cases
when the values of the integrand function and its derivatives inside the domain are
not given or are not easily determined.

Indeed, boundary quadrature formulas are not really new. From the viewpoint
of numerical analysis, the classical Euler-Maclaurin summation formula and the
Hermite two-end multiple nodes quadrature formulas may be regarded as one-
dimensional boundary quadrature formulas since they make use of only the inte-
grand function values and their derivatives at the limits of integration. The earliest
example of a boundary quadrature formula with some algebraic precision for mul-
tivariate integration is possibly the formula of algebraic precision (or degree) 5 for
a triple integral over a cube given by Sadowsky [30] in 1940. He used 42 points
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on the surface of a cube to construct the quadrature, which has been modified by
the author with a quadrature of 32 points, the fewest possible boundary points
(see [9] and [10]). Some 20 years later after Sadowsky’s work, Levin [26] and [27],
Federenko [6], and Ionescu [21] investigated individually certain optimal boundary
quadrature formulas for double integration over a square using partial derivatives
at some boundary points of the region. Despite these advances, however, both the
general principle and the general technique for construction remained lacking for
many years.

During 1978-87, based on the ideas of the dimension-reducing expansions (DRE)
of multivariate integration shown in Hsu 1962 and 1963, Hsu, Wang, Zhou, Yang,
and the author developed a general process for the construction of BTQFs in [17]-
[20] and [9]-[15].

The analytic approach for constructing BTQFs is based on the dimension-
reducing expansions (DRE), which reduces a higher dimensional integral to lower
dimensional integrals with or without a remainder. Hence, a type of boundary
quadratures can be constructed by using the expansions.

The DRE without remainder is also called an exact DRE. Obviously, a DRE can
be used to reduce the computation load of many very high dimensional numerical
integration’s, such as the CMO problem mentioned above. Most DRE’s are based
on Green’s Theorem in real or complex field. In 1963, using the theorem, Hsu [17]
devised a way to construct a DRE with algebraic precision (degree of accuracy)
for multivariate integrations. From 1978 to 1986, Hsu, Zhou, and the author (see
[18], [19], [20], and [?]) developed a more general method to construct a DRE with
algebraic precision and estimate its remainder. In 1972, with the aid of Green’s
Theorem and the Schwarz function, P.J. Davis [4] gave an exact DRE for a double
integral over a complex field. In 1979, also by using Green’s Theorem, Kratz [24]
constructed an exact DRE for a function that satisfied a type of partial differen-
tial equations. Lastly, if we want this introduction to be complete, we must not
overlook Burrows’ DRE for measurable functions. His DRE can reduce a multi-
variate integration into an one dimensional integral. Some important applications
of DRE include the construction of BTQFs and asymptotic formulas for oscillatory
integrals, for instance, the integrals on spheres, Sd = {x ∈ Rd : |x| = 1} and balls,
Bd = {x ∈ Rd : |x| ≤ 1}, presented by Kalnins, Miller, Jr., and Tratnik [22],
Lebedev and Skorokhodov [25], Mhaskar, Narcowich, and Ward [28], Xu [35], etc.

In this paper, we will discuss the algebraic approach to constructing BTQFs for
a multiple integral over a bounded closed region Ω in Rn, which is of the form∫

Ω

w(X)f(X)dX.

In this expression, w(X) and f(X) are continuous on Ω, and w(X) is the weight
function. (w(X) can be 1 particularly.) We are seeking the BTQF of the integral
with the form∫

Ω

w(X)f(X)dX ≈
∑

0≤m1+···+mn≤m

∑
i∈I

am1,··· ,mn

i Dm1,··· ,mnf(Xi), (1)

where dX is the volume measure; am1,··· ,mn

i (i ∈ I and 0 ≤ m1 + · · ·+mn ≤ m) are
real or complex quadrature coefficients; Dm1,··· ,mn = ∂m1+···+mn/ ∂xm1

1 · · ·xmn
n ;
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and Xi = (xi,1, xi,2, · · · , xi,n) (i ∈ I) are evaluation points (or nodes) of f on ∂Ω,
the boundary of Ω. In particular, when m = 0 we write am1,··· ,mn

i = ai and formula
(1) can be rewritten as ∫

Ω

w(X)f(X)dX ≈
∑
i∈I

aif(Xi). (2)

(2) is called a BTQF without derivative terms. When m 6= 0, (1) is called a BTQF
with derivative terms. The corresponding error functionals of approximations (1)
and (2) are defined respectively by

E(f) ≡ E(f ; Ω) =
∫

Ω

w(X)f(X)dX

−
∑

0≤m1+···+mn≤m

∑
i∈I

am1,··· ,mn

i Dm1,··· ,mnf(Xi) (3)

and
E(f) ≡ E(f ; Ω) =

∫
Ω

w(X)f(X)dX −
∑
i∈I

aif(Xi). (4)

Suppose that ∂Ω can be described by a system of parametric equations. In
particular, the points X = (x1, · · · , xn) on ∂Ω satisfy the equation

Φ(X) = 0, (5)

where Φ has continuous partial derivatives. In addition, Φ(X) ≤ 0 for all points in
Ω.

Let S be another region in Rn, and let J : Y = JX, X ∈ Ω, be a transform
from Ω to S with positive Jacobian

|J | =
∣∣∣∣ ∂(Y )
∂(X)

∣∣∣∣ > 0,

X ∈ Ω. J is one-to-one and has the inverse J−1 : X = J−1Y , Y ∈ S. Denote
w1(Y ) = w1(JX) = w(X). Then for any continuous function g(X)∫

S

w1(Y )g(Y )dY =
∫

Ω

w1(Y )g(Y )|J |dX.

Denoting Yi = JXi (i ∈ I), |Ji| = |J |X=Xi
, and taking f(X) = |J |g(Y ) = |J |g(JX)

in equation (4), we obtain

E(|J |g; Ω) =
∫

Ω

w(X)|J |g(Y )dX −
∑
i∈I

ai|Ji|g(Yi) =
∫
S

w1(Y )g(Y )dY −
∑
i∈I

big(Yi),

where bi = ai|Ji| (i ∈ I). Obviously, if Y, the boundary points of S, satisfy
Φ1(Y ) = Φ1(JX) = Φ(X) = 0, then J maps the boundary evaluation points Xi

(i ∈ I) on Ω onto the boundary evaluation points Yi = JXi on S. Consequently,
we have the following result.
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Theorem 1 Let the error functional of the quadrature formula∫
S

w1(Y )g(Y )dY ≈
∑
i∈I

big(Yi) (6)

be E(g;S) =
∫
S
w1(Y )g(Y )dY −

∑
i∈I big(Yi). Then E(g;S) = E(|J |g; Ω). In par-

ticular, if |J | is a constant, then E(g;S) = |J |E(g; Ω). In this case, E(g; Ω) = 0
implies E(g;S) = 0.

In addition, if the boundary of S is defined by Φ1(Y ) = Φ1(JX) = Φ(X) = 0
and Φ(X) = 0 defines the boundary of Ω, then quadrature formula (6) is also a
BTQF.

In this paper, we will establish the BTQFs over some axially symmetric regions
or fully symmetric regions (see the definitions below). Theorem 1 tells us that we
can construct the BTQFs over many more regions from the obtained BTQFs over
the special regions by using certain transforms. In addition, if the transform is
linear, then the new BTQF is of the same algebraic precision degree as the old
BTQF.

2 BTQFs without derivatives

Three questions arise during the construction of BTQFs (1):
(i) What is the highest possible degree of algebraic precision of the BTQF if it

exists?
(ii) What is the fewest number of the evaluation points needed to construct a

BTQF with the highest possible degree of algebraic precision?
(iii) How to construct the BTQF with the fewest evaluation points with the

fewest evaluation points and the highest possible degree of algebraic precision?
We now answer the first question. In most cases, BTQF (1) has an inherent

highest degree of algebraic precision. For instance, if Φ(X) is a polynomial of degree
m, then the highest possible degree of algebraic precision of the BTQF without
derivative terms (i.e., formula (2)) cannot exceed m− 1 because the summation on
the right-hand side of (2) becomes zero and the integral value on the left-hand side
is negative when f = Φ. Hence, when the boundary function Φ is a polynomial of
a low degree, to raise the degrees of algebraic precision of the quadrature formulas,
we must construct BTQFs with derivative terms (i.e., formula (1) with m 6= 0).

In the following, we are going to find the solutions to questions (ii) and (iii). To
simplify our discussion, we limit the region in question, Ω, to be axially symmetric
or fully symmetric. An axially symmetric region is a region that for any point
X = (x1, · · · , xn) in it, must contain all points with the form (±x1, · · · ,±xn). The
set of axially symmetric points associated with X forms a reflection group. If a
region containing a point X = (x1, · · · , xn) also contains all points (±a1, · · · ,±an),
where (a1, · · · , an) is a permutation of (x1, · · · , xn), then the region is called a
fully symmetric region. Throughout, we will denote all fully symmetric points,
(±a1, · · · ,±an), associated with X by XFS and call X the generator of the fully
symmetric point set. The cardinal number of the set of fully symmetric points
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associated with a generator X ∈ Rn is 2n(n!). Obviously, a fully symmetric region
is an axially symmetric region, but the converse is not true.

A quadrature formula is called a fully symmetric quadrature formula if the
quadrature sum can be divided into several subsums such that in each of the sub-
sums, the evaluation points are fully symmetric and the corresponding quadrature
coefficients are the same. In addition, if the fully symmetric evaluation points are
on the boundary of the integral region, then the corresponding quadrature formula
is called a fully symmetric BTQF.

Denote a monomial in terms of X by Xα (α ∈ Zn0 ), which can be written in the
form Xα = xα1

1 , · · · , xαn
n , where (α1, · · · , αn) is called the exponent of Xα.

From the definition of the fully symmetric region, we immediately have the
following results.

Theorem 2 The value of a multiple integral of a monomial Xα over an axially
symmetric region is zero if α contains an odd component. The value of a multiple
integral of Xα over a fully symmetric region depends on α, but is independent of
the order of αi (i = 1, · · · , n).

Theorem 3 Denote by πnr (X) the set of all polynomials of degree no greater than
r. Let Ω be a fully symmetric region,∫

Ω

f(X)dX ≈
∑
i∈I

aif(Xi) (7)

be a fully symmetric BTQF, and E : f → R be the error operator defined by

E(f) ≡ E(f ; Ω) =
∫

Ω

f(X)dX −
∑
i∈I

aif(Xi).

(The above expression is a special form of (4) with w(X) = 1.) Then πn2k+1 ⊂ N(E),
the null space of E, if and only if

x2k1
1 · · ·x2kn

n ∈ N(E) 0 ≤ k1 ≤ · · · ≤ kn, k1 + · · ·+ kn ≤ k. (8)

Theorem 3 can be considered as the general principle for constructing fully
symmetric BTQFs. First, we set one or more sets of fully symmetric evaluation
points, with possibly some unknown points {Xi}, on the boundary ∂Ω and assume
the quadrature coefficients ai corresponding to each set to be the same. Then
substituting all f(X) = x2k1

1 · · ·x2kn
n (0 ≤ k1 ≤ · · · ≤ kn and k1 + · · · + kn ≤ k)

into E(f) = 0, we obtain a system about Xi and ai. Finally, we solve the system
for Xi and ai and a quadrature formula is constructed. However, a fully symmetric
quadrature formula usually has too many evaluation points. (Remember that for
a point X ∈ Rn there are, in general, 2n(n!) fully symmetric points.) In order to
reduce the number of evaluation points in the quadrature formula, we can use an
alternative form of Theorem 3 to construct a different type of symmetric quadrature
formulas. We will use the following example to illustrate the idea.

Example 1. Consider a triple integral over the region C3 =
[−1, 1]3. Obviously, the inherent highest degree of algebraic precision of the BTQF
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is 5. To construct a fully symmetric BTQF, we make use of the following fully
symmetric evaluation points.

(1, 0, 0)FS , (1, 1, 0)FS , and(1, x0, x0)FS ,

where x0 (0 < x0 < 1) is undetermined. The three sets of fully symmetric points
contain a total of 42 points (6, 12, and 24 points for the first, second, and third
set respectively). Let the respective quadrature coefficients for each set of fully
symmetric points be L, M , and N , all of which can be found using the general
principle for constructing fully symmetric BTQFs. Substitute f = 1, x2, x4, and
x2y2 into ∫

C3

f(x, y, z)dxdydz = a1

∑
f6 + a2

∑
f12 + a3

∑
f24,

where
∑
f6,
∑
f12, and

∑
f24 are the sums of the function values of f over the first,

second, and third set of symmetric points, respectively. Solving the above system
yields

x0 =

√
5
8
, a1 =

364
225

, a2 = −160
225

, a3 =
64
225

,

giving the following BTQF of algebraic precision order 5.∫
C3

f(x, y, z)dxdydz ≈ 4
225

[
91
∑

f6 − 40
∑

f12 + 16
∑

f24

]
. (9)

Quadrature formula (9), given by Sadowsky [30], uses too many evaluation
points. Carefully considering Theorem 3, we find that the principle of construct-
ing fully symmetric BTQFs shown in the theorem can be used to construct some
“partial” symmetric BTQFs with fewer evaluation points.

A set of points Xi ∈ Rn (i ∈ I) is called a symmetric point set of degree k if it
possesses the following two properties.

(a)
∑
i∈I f(Xi) = 0 for all f(X) = Xα, where α contains an odd component.

(b)
∑
i∈I f(Xi) are the same for all f(X) = x2k1

1 · · ·x2kn
n , 2(k1 + · · · + kn) = r.

Here, r ≤ k.
Obviously, a set of fully symmetric points must be a set of symmetric points of

any degree, but the converse is not true. For instance, a symmetric point set of de-
gree 5 may not be a fully symmetric point set. We now list all symmetric point sets of
degree 5 on the boundary of C3 as follows. I = {(±1,±x0, 0), (±x0, 0,±1), (0,±1,
±x0), 0 < x0 < 1}, II = {(±y0,±1, 0), (±1, 0,±y0), (0,±y0,±1), 0 < y0 < 1},
III = {(±1,±1, 0), (±1, 0,±1), (0,±1,±1)}, IV = {(±1,±1,±1)}, V = {(1, 0, 0)FS},
V I = {(1, x1, x2)FS , 0 < x1, x2 < 1}, V II = {(1, 1, x3)FS , 0 < x3 < 1}, where sets
V , V I, and V II are fully symmetric, but others are not.

If a BTQF constructed by using symmetric point set of degree k satisfies condi-
tion (8), then it is called a symmetric BTQF of degree k.

Example 2. As an example, we now use the sets I, III, and IV to construct a
symmetric BTQF of degree 5 with 32 evaluation points over C3. Denote the quadra-
ture coefficients corresponding to I, III, and IV as a1, a2, and a3 respectively.
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Following the procedure shown in Example 1, we obtain a symmetric BTQF of
degree 5 as follows∫

C3

f(x, y, z)dxdydz

≈ 1
63

[
80
∑

f12(I)− 52
∑

f12(III) + 21
∑

f8(IV )
]
, (10)∑

f12(I),
∑
f12(III), and

∑
f8(IV ) are the sums of the function values of f over

the symmetric point sets I, III, and IV , respectively; the numbers in the sub-
indices are the cardinal numbers of the corresponding set.

Similarly, we can use sets II, III, and IV to construct another symmetric BTQF
of degree 5. ∫

C3

f(x, y, z)dxdydz

≈ 1
63

[
80
∑

f12(II)− 52
∑

f12(III) + 21
∑

f8(IV )
]
, (11)

where y0 =
√

3
10 in set II.

Quadratures (10) and (11) can be considered as two special cases of the following
symmetric BTQF of degree 5, which is constructed by using I, II, and IV .∫

C3

f(x, y, z)dxdydz ≈ 4(1 + y2
0)

9(y2
0 − x2

0)

∑
f12(I)

+
4(1 + x2

0)
9(x2

0 − y2
0)

∑
f12(II) +

1
3

∑
f8(IV ), (12)

where √
3
10
≤ y ≤ 1, y0 6=

√√
13
5
− 1, and x0 =

√
8− 5y2

0

5(1 + y2
0)
.

When y0 = 1 and y0 =
√

3
10 we obtain formulas (10) and (11), respectively.

It can be proved that the minimum number of evaluation points of symmetric
BTQFs is 32. Since the quadrature formula is symmetric, on each boundary plane
we must have the same number of evaluation points. Let the number of evaluation
points on each boundary plane be k = 2 (Obviously, k cannot be 1). The sym-
metric point set has to be I or II. It is easy to check that the sets cannot yield a
symmetric BTQF of degree 5. Similarly, for the cases of k = 3, · · · , 9, no matter
which symmetric point sets are chosen from {I, · · · , V II}, we find that there does
not exist any symmetric BTQFs of degree 5 with evaluation points less than 32.
For k ≥ 10, every symmetric BTQF of degree 5, if it exists, must have more than
32 evaluation points. Thus, we obtain the following proposition.

Proposition 4 There exist infinitely many symmetric BTQFs of degree 5 with 32
evaluation points. In addition, the number of evaluation points of a symmetric
BTQFs of degree 5 can not be less than 32.
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For BTQFS of degree 3, the minimum number of the evaluation points is reduced
to 6. As an example, we give the following formula.

∫
C3

f(x, y, z)dxdydz ≈ 4
3

[f(1, 0, 0) + f(−1, 0, 0)

+f(0, 1, 0) + f(0,−1, 0) + f(0, 0, 1) + f(0, 0,−1)] .

Example 3. We will use a double layered spherical shell as an example to
demonstrate the techniques of regrouping evaluation points to obtain the symmetric
BTQF with the fewest evaluation points. A double layered spherical shell in Rn,
denoted by Shn, is defined by

Shn = {X ∈ Rn : a2 ≤ |X| ≤ b2}.

It is easy to find that the largest degree of algebraic precision of BTQFs over Shn
without derivatives is 3. We choose the following point sets as evaluation points:
V III = {(±b, 0, · · · , 0), (0,±b, 0, · · · , 0), · · · , (0, · · · , 0,±b, 0)}, IX = {(0, · · · , 0,
±b)}, X = {(0, · · · , 0,±a)}.

Obviously, these sets are neither fully symmetric point sets nor symmetric point
sets of degree 3, but by using these sets, we can construct a BTQF of degree 3
over Shn with the fewest evaluation points. Denote the quadrature coefficients
corresponding to V III, IX, and X by a1, a2, and a3, respectively. The BTQF
generated,∫

Shn

f(X)dX ≈ a1

∑
f2(n−1)(V III) + a2

∑
f2(IX) + a3

∑
f2(X), (13)

is of algebraic precision of degree 3 if it holds exactly for f = 1, x2
1, and x2

n; i.e.,
coefficients ai (i = 1, 2, 3) have to be

a1 = α(b2 − a2)
(
bn+2 − an+2

)
a2 = α

(
bn+4 + (n+ 1)an+2b2 − 3bn+2a2 − (n− 1)an+4

)
a3 = αb2

(
2bn+2 − (n+ 2)anb2 + nan+2

)
,

where

α =
πn/2

2b2Γ
(
n
2 + 1

)
(n+ 2)(b2 − a2)

.

When n = 2 and 3, formula (13) gives BTQFs over a ring domain and a 3-
dimensional double layered spherical shell respectively as follows.∫

Sh2

f(x, y)dxdy

≈ π(b2 − a2)
8b2

{
(b2 + a2)[f(b, 0) + f(−b, 0)] + 2b2[f(0, a) + f(0,−a)]

+(b2 − a2)[f(0, b) + f(0,−b)]
}
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∫
Sh3

f(x, y, z)dxdydz

≈ 2π
15b2(b2 − a2)

{
(b2 − a2)(b5 − a5)[f(b, 0, 0) + f(−b, 0, 0) + f(0, b, 0)

+f(0,−b, 0)] + b2(2b5 − 5a3b2 + 3a5)[f(0, 0, a) + f(0, 0,−a)]
+(b7 − 3a2b5 + 4a5b2 − 2a7)[f(0, 0, b) + f(0, 0,−b)]

}
.

Taking the limit a → 0, from quadrature formula (13) we obtain the following
quadrature formula over the sphere S3, which has the algebraic precision of degree
3. ∫

S3

f(x, y, z)dxdydz ≈ πn/2bn

2(n+ 2)Γ
(
n
2 + 1

)
×
(∑

f2(n−1)(V III) +
∑

f2(IX) + 4f(0, · · · , 0)
)
.

We now prove that BTQF (13) is a formula with the fewest evaluation points.

Theorem 5 The minimum number of evaluation points of BTQFs over an n-
dimensional double layered spherical shell Shn is 2(n + 1). In particular, the
minimum number of evaluation points for BTQFs over a ring domain and a 3-
dimensional double layered spherical shell are respectively 6 and 8.

Proof. For a BTQF over Shn with precision degree 3, we will first prove that the
minimum number of evaluation points on the outside layer of Shn cannot be less
than 2n. Without a loss of generality, we assume that the number of evaluation
points on the outside layer is 2n − 1. (The cases when the minimums are less
than 2n − 1 can be proved similarly.) We will see that a contradiction from this
assumption. If the assumption is valid, we take the limit a → 0 to the BTQF and
obtain a quadrature formula over an n-dimensional sphere with 2n − 1 evaluation
points as follows. ∫

Sn

f(X)dX ≈ a0f(0, · · · , 0) +
2n−1∑
i=1

aif(Xi), (14)

where Xi (i = 1, · · · , 2n − 1) lie on the sphere surface and ai 6= 0 (i = 1, · · · , n).
We will prove it cannot be of algebraic precision degree 3.

Let us consider the following 2n complex vectors

AX1, · · · , AXn, Ax
2
1, AX

2
2 , · · · , AX2

n, (15)

where
AXi = (

√
a1x1,i,

√
a2x2,i, · · · ,

√
a2n−1x2n−1,i)

and
AX2

i = (
√
a1x

2
1,i,
√
a2x

2
2,i, · · · ,

√
a2n−1x

2
2n−1,i).

Assume that there exist constants bi (i = 1, · · · , 2n) such that

b1AX1 + · · ·+ bnAXn

+bn+1Ax
2
1 + bn+2AX

2
2 + · · ·+ b2nAX

2
n = 0. (16)
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Taking dot product with AXi (i = 1, · · · , n) on both sides of (16) and noting that
the quadrature sums in (14) are vanishing for all f = Xα if α has an odd component
and |α| ≤ 3, we obtain

biAXi ·AXi = bi

2n−1∑
i=1

aix
2
i = 0, i = 1, · · · , n.

Since the sums in the above equation are the quadrature sums of BTQF (14) for
f(X) = Xα with α = 2ei ({e1, e2, · · · , en} being the standard basis of Rn), which
are not be zero, we obtain bi = 0 for all i = 1, · · · , n. Consequently, equation (16)
is reduced to

bn+1Ax
2
1 + bn+2AX

2
2 + · · ·+ b2nAX

2
n = 0. (17)

Taking the dot product with A = (
√
a1, · · · ,

√
a2n−1) on both sides of equation (17)

and noting that the quadrature sums in (14) are vanishing for all f = Xα if α = 3,
we obtain

‖
n∑
i=1

√
bn+iAXi‖2`2 = 0.

Hence, √
bn+1AX1 + · · ·+

√
b2nAXn = 0.

Similarly, we have bn+i = 0 for all n = 1, · · · , n. Thus, vectors (15) are linearly
independent, but this is impossible because all of them have 2n − 1 components.
This contradiction means that the number of evaluation points on the outside layer
for any BTQFs over Shn with algebraic precision degree 3 must be more than 2n−1.

We now prove that the number of evaluation points on the inside layer for any
BTQFs over Shn with precision degree 3 cannot be less than 2. Otherwise, if there
is none or there is only one evaluation point, X0 = (x0,1, x0,2, · · · , x0,n), on the
inside layer of Shn, then a BTQF over Shn with algebraic precision degree 3 is not
exact for quadratic polynomial f(X) =

∑n
i=1 x

2
i − b2 or for a cubic polynomial

f(X) =

(
n∑
i=1

x2
i − b2

)
(xj − x0,j) ,

where x0,j 6= 0. This completes the proof of theorem. 2

A similar argument of the proof of Theorem 5 can be applied to solve other
minimum evaluation point problem. For instance, we have the following result.

Theorem 6 The minimum number of the evaluation points needed for constructing
a quadrature formula over an axially symmetric region in Rn with algebraic precision
degree 3 is 2n.

The construction of a quadrature formula of this type can be found in Section
3.9 of Stroud [33].

The minimum number of the evaluation points needed for constructing a quadra-
ture formula over an axially symmetric region in Rn with certain algebraic precision
degree is topologically invariant under a reflection group action.



Boundary type quadrature formulas 11

3 BTQFs with derivatives

To improve the algebraic precision degrees of BTQR’s, we use the derivatives of the
integrands. As examples, we will construct symmetric quadrature formulas over the
surfaces of the regions C2 = [−1, 1]2, C3 = [−1, 1]3, and the n-dimensional sphere
Sn.

Example 4. Denote the sets of fully symmetric points XI = {(1, 1)FS} and
XII = {(1, 0)FS}. We construct a symmetric BTQF with precision degree 5 over
C2 = [−1, 1] as follows.∫

C2

f(x, y)dxdy ≈ a1

∑
f4(XI) + a2

∑
f4(XII)

+a3[f ′x(1, 1)− f ′x(−1,−1) + f ′x(1,−1)− f ′x(−1, 1)
+f ′y(1, 1)− f ′y(−1,−1) + f ′y(−1, 1)− f ′y(1,−1)]
+a4[f ′x(1, 0)− f ′x(−1, 0) + f ′y(0, 1)− f ′y(0,−1)].

Obviously, the above quadrature formula is of precision degree 5 if it is exact for
f(x, y) = 1, x2, x4, and x2y2. Therefore, we obtain

a1 = − 1
15
, a2 =

16
15
, a3 =

2
45
, a4 = −2

9
.

We use the following numerical example to show the good accuracy of the above
BTQF. Considering function f(x, y) = e−x

2−y2
and applying the last quadrature

to the integral of f(x, y) over [0, 2]2, we obtain∫
[0,2]2

f(x, y)dxdy =
1
4

∫
C2

e−((x+1)2+(y+1)2)/4dxdy

≈ − 1
60
(
e−2 + 2e−1 + 1

)
+

4
15

(
2e−5/4 + 2e−1/4

)
− 1

90
(
2e−2 + 2e−1

)
+

1
9
e−5/4 = 0.5576,

while the actual integral value is 0.5577.
Similarly, we can construct a BTQF over C3 = [−1, 1]3 with precision de-

gree 7 and 50 fully symmetric evaluation points XIII = {(1, 1, 1)FS}, XIV =
{(1, 0, 0)FS}, XV = {(1, 1

2 , 0)FS}, and XV I = {(1, 1, 0)FS} as follows.∫
C3

f(x, y, z)dxdydz ≈ a1

∑
f8(XIII) + a2

∑
f6(XIV )

+a3

∑
f24(XV ) + a4

∑
f12(XV I) + a5M1 + a6M2 + a7M3,

where a1 = 1
5 , a2 = − 16

105 , a3 = 512
945 , a4 = − 64

135 , a5 = − 11
405 , a6 = − 16

81 , a7 = 172
2835 ,

M1 = f ′x(1, 1, 1)− f ′x(−1,−1,−1) + f ′x(1, 1,−1)− f ′x(−1,−1, 1)
+f ′x(1,−1,−1)− f ′x(−1, 1, 1) + f ′x(1,−1, 1)− f ′x(−1, 1,−1)
+f ′y(−1, 1,−1)− f ′y(1,−1, 1) + f ′y(−1, 1, 1)− f ′y(1,−1,−1)
+f ′y(1, 1,−1)− f ′y(−1,−1, 1) + f ′y(1, 1, 1)− f ′y(−1,−1,−1)
+f ′z(−1, 1, 1)− f ′z(1,−1,−1) + f ′z(1,−1, 1)− f ′z(−1, 1,−1)
+f ′z(1, 1, 1)− f ′z(−1,−1,−1) + f ′z(−1,−1, 1)− f ′z(1, 1,−1),
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M2 = f ′x(1, 0, 0)− f ′x(−1, 0, 0) + f ′y(0, 1, 0)− f ′y(0,−1, 0) + f ′z(0, 0, 1)− f ′z(0, 0,−1),

and

M3 = f ′x(1, 1, 0)− f ′x(−1,−1, 0) + f ′x(1,−1, 0)− f ′x(−1, 1, 0)
+f ′x(1, 0, 1)− f ′x(−1, 0,−1) + f ′x(1, 0,−1)− f ′x(−1, 0, 1)
+f ′y(0, 1, 1)− f ′y(0,−1,−1) + f ′y(0, 1,−1)− f ′y(0,−1, 1)
+f ′y(1, 1, 0)− f ′y(−1,−1, 0) + f ′y(−1, 1, 0)− f ′y(1,−1, 0)
+f ′z(1, 0, 1)− f ′z(−1, 0,−1) + f ′z(−1, 0, 1)− f ′z(1, 0,−1)
+f ′z(0, 1, 1)− f ′z(0,−1,−1) + f ′z(0,−1, 1)− f ′z(0, 1,−1).

Example 5. Choose 2n fully symmetric evaluation pointsXV II = {(r, 0, · · · , 0)FS}.
We can obtain a BTQF over Sn(

∑n
i=1 x

2
i ≤ r2) with the precision degree 3 as fol-

lows.∫
Sn

f(X)dX ≈ πn/2rn+1

2n(n+ 2)Γ
(
n
2 + 1

) [n+ 2
r

∑
f2n(XV II)

−f ′x1
(r, 0, · · · , 0) + f ′x1

(−r, 0, · · · , 0)− · · · −f ′xn
(0, · · · , 0, r) + f ′xn

(0, · · · , 0,−r)
]
.

At the end of this section, we discuss the construction of the numerical quadra-
ture formulas over S̄n = {X ∈ Rn|X| = 1} using some recent results in [35],
where S̄n is the surface of the unit sphere Bn = Bn(1) = {X ∈ Rn|X| ≤ 1} in
Rn. Let H be a function defined on Rn that is symmetric with respect to xn; i.e.,
H(X,xn) = H(X,−xn), X ∈ Rn−1. Then for any continuous function f defined on
S̄n, ∫

S̄n

f(Y )H(Y )dµn

=
∫
Bn−1

[
f
(
X,
√

1− |X|2
)

+ f
(
X,−

√
1− |X|2

)]
×H(X,

√
1− |X|2)

dX√
1− |X|2

, (18)

where Y ∈ S̄n, X ∈ Rn−1, −1 ≤ t ≤ 1, and dωn is the surface measure on S̄n.
The volume of S̄n is ωn =

∫
S̄n
dµn = 2πn/2/Γ

(
n
2

)
. Formula (18), shown in Xu [35],

can be proved straightforwardly by substituting dµn = (1− t2)(n−3)/2dtdµn−1 and
Y = (

√
1− t2X, t) into the left-hand integral of the equation.

(18) changes a boundary integral into an integral over the interior of the bound-
ary. Hence it can be used to derive a BTQF over Bn from a quadrature formula of
an integral over Bn−1. Following [35], suppose that there is a quadrature formula
of precision degree m on Bn−1∫

Bn−1

g(X)H
(
X,
√

1− |X|2
) dX√

1− |X|2
≈

N∑
i=1

aig(Xi);

that is, the quadrature formula is exact for all polynomials in πn−1
m , which denotes

the set of all polynomials defined in Rn−1 with a total degree not more than m.
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Then there is a quadrature formula of homogeneous precision degree m on S̄n:∫
S̄n

f(Y )H(Y )dµn

≈
N∑
i=1

ai

[
f
(
Xi,

√
1− |Xi|2

)
+ f

(
Xi,−

√
1− |Xi|2

)]
. (19)

Recently, Mhaskar, Narcowich, and Ward (see[28]) developed a new method
for obtaining quadrature formulas on S̄n, which can be applied to the right-hand
integrals of equation (20) in the following theorem, so that the BTQFs over Bn can
be constructed.

Theorem 7 Suppose that F (X) is a continuous function defined on the sphere
Bn(x2

1 + · · ·+ x2
n ≤ 1) that has 2m order continuous partial derivative with respect

to xn. Then there exists the following expansion that has m terms and possesses
degree 2m− 1 of algebraic precision.∫

Bn

F (X)dV =
m−1∑
k=0

(−1)k

m!

∫
Sn−1

Lk (F (X), Um(X)) dS + ρm, (20)

where Lk(·, ·) is defined by

Lk(F,G) ≡
(
∂kF

∂xkn

)(
∂m−k−1G

∂xm−k−1
n

)(
∂xn
∂ν

)
and ρm has estimate

|ρm| ≤
π

n
2 ·m!

Γ
(
m+ n

2 + 1
)

(2m)!

∥∥∥∥∂2mF

∂x2m
n

∥∥∥∥
C

(21)

or

|ρm| ≤

(
π

n
2 ·m!

Γ
(
m+ n

2 + 1
)

(2m)!

) 1
2 ∥∥∥∥∂2mF

∂x2m
n

∥∥∥∥
L2

. (22)

Formula (20) can be proved using the Green’s formula successively, and it is
omitted here.
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