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Abstract

We consider the congruence x1+x2+ · · ·+xr ≡ c mod m, where
m and r are positive integers and c ∈ Zm := {0, 1, ...,m − 1}
(m ≥ 2). [3] deals with enumeration problems of this con-
gruence, namely, the number of solutions with the restriction
x1 ≤ x2 ≤ · · · ≤ xr. Some properties and a neat formula of
the solutions are presented in [3]. Due to the lack of a simple
computational method for calculating the number of the solu-
tion of the congruence, we provide an algebraic and a recursive
algorithms for those numbers. The former one can also give a
new and simple approach to derive some properties of solution
numbers.
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1 Introduction

Consider the congruence equation x1 + x2 + · · · + xn ≡ 0 mod n + 1,
where n is a positive integer. It is well-known that the number of un-
ordered solutions x1, x2, . . . , xn in Zn+1 = {0, 1, . . . , n} with repetition
allowed is 1

n+1

(
2n
n

)
= Cn, the nth Catalan number (see Guy [5] and

Stanley [9]). In [3], Chou and the authors studied an extension of the
above problem, the enumeration problems for a linear equation of con-
gruence modulo m, which has been found relates the restricted integer
partition. More precisely, they consider the congruence solutions of
equation

x1 + x2 + · · ·+ xr ≡ c mod m, (1)

where m and r are positive integers and c ∈ Zm = {0, 1, . . . ,m − 1}
(m ≥ 2). Namely, [3] considers the solution x1 = a1, . . . , xr = ar of con-
gruence (1) with a1, . . . , ar ∈ Zm. If x1 = a1, . . . , xr = ar is a solution
of congruence equation (1), we form a multiset {a1, . . . , ar} and call it
a multiset solution of congruence equation (1). Note that each multiset
solution of (1) represents several solutions of (1) because all coefficients
of (1) are the same. It is trivial that different multiset solutions repre-
sent different solutions. Two enumeration problems of the congruence
solutions of (1) are dealt with in [3], namely, the numbers of solutions
with the restrictions x1 ≤ x2 ≤ · · · ≤ xr and x1 < x2 < · · · < xr,
respectively. Let m, r ∈ N. Denote the number of the congruence so-
lutions of Equation (1) with arbitrarily fixed m, r ∈ N by |Mm,r(c)|
(c = 0, 1, . . . ,m− 1 (mod m)), which is used in [3]. If gcd(m, r) = 1, it
is easy to see (also see [3])

|Mm,r(c)| =
1

m

(
m+ r − 1

r

)
. (2)

The lower bound and upper bound of |Mm,r(c)| are also given for general
(m, r) in [3]. In particular, for positive integers m ≥ r > 1 and any
integer c with 0 ≤ c < m, a neat formula of |Mm,r(c)| is given. Since
the quantities |Mm,r(c)| and |Mm,k(c− r)| are difficult to compute, we
present two algorithms for evaluating |Mm,r(c)| recursively. This is a
motivation of this paper. Another motivation is based on the following
consideration, which will be discussed in our forthcoming work.
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The problem of solving the congruence equation (1) with the re-
strictions x1 ≤ x2 ≤ · · · ≤ xr is equivalent to the following partition
problem

x1 + x2 + · · ·+ xr = km+ c, 0 ≤ k < r

with the constraint 0 ≤ x1 ≤ x2 ≤ · · · ≤ xr ≤ m− 1, (3)

i.e., the problem of the restricted partition of km + c (0 ≤ k ≤ r − 1)
into at most r parts with each part ≤ m−1. Furthermore, [3] found the
above problem and the two partition problems (4) and (5) shown below
are equivalent. In fact, by using the linear and non-singular transform
yr = x1, yr−1 = x2 − x1, . . ., y1 = xr − xr−1, we may change problem
(3) to

y1 + 2y2 + · · ·+ ryr = km+ c, 0 ≤ k < r

with the constraints y1, . . . , yr ≥ 0 and

y1 + y2 + · · ·+ yr ≤ m− 1,

(4)

the problem of the restricted partition of km + c (0 ≤ k ≤ r − 1) into
at most m− 1 parts with each part ≤ r.

By using the linear and non-singular transform yr+1 = x1, yr =
x2 − x1, yr−1 = x3 − x2, . . ., y1 = m− 1− xr, we may change Problem
(3) to

y1 + 2y2 + · · ·+ (r + 1)yr+1 = km+ c− 1, 1 ≤ k < r + 1

with the constraints y1, . . . , yr+1 ≥ 0 and

y1 + y2 + · · ·+ yr+1 = m− 1,

(5)

the problem of the restricted partition of km + c− 1 (1 ≤ k ≤ r) into
at most m− 1 parts with each part ≤ r + 1.

In [3], the restricted partition numbers as the solutions of Problem
(4), denoted by pr,≤m−1(km + c), is given by (see also Theorem 3.1 in
[1])

pr,≤m−1(km+ c) =
[
xkm+c

] (1− xm+r−1) · · · (1− xm)

(1− xr) · · · (1− x)
, (6)
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which gives a presentation of |Mm,r(c)| as

|Mm,r(c)| =
r−1∑
k=0

pr,≤m−1(km+ c). (7)

Following [3], the restricted partition numbers as the solutions of Prob-
lem (3), denoted by pm−1,≤r(km+ c), is given by

pm−1,≤r(km+ c) =
[
xkm+c

] (1− xm+r−1) · · · (1− xr+1)

(1− xm−1) · · · (1− x)
, (8)

which is equivalent to (6), hence, gives an alternative presentation of
|Mm,r(c)| as

|Mm,r(c)| =
r−1∑
k=0

pm−1,≤r(km+ c). (9)

[3] also presents another way to evaluate |Mm,r(c)| using the number
of solutions of Problem (5), denoted by qr+1(m, km+c−1) (1 ≤ k ≤ r),
which can be found as (also see (2.1.1) in [1])

qr+1(m, km+ c− 1) =
[
ym−1zkm+c−1]Πr+1

i=1

1

1− yzi
. (10)

Hence,

|Mm,r(c)| =
r∑

k=1

qr+1(m, km+ c− 1). (11)

We can convert Problem (5) to Problem (4) by deleting part y1 and
subtracting 1 from each part. The resulting partitions of km+ c− 1−
(m − 1) = (k − 1)m + c have at most m − 1 parts and each part is
less than or equal to r + 1 − 1 = r. The revise process can convert
Problem (4) to Problem (5). Hence, there holds a bijection between
the partitions enumerated by p≤m−1,r(km + c) for each 0 ≤ k ≤ r − 1
and those enumerated by qr+1(m, km + c − 1) for the corresponding
1 ≤ k ≤ r, i.e.,

qr+1(m, km+ c− 1) = pr,≤m−1((k − 1)m+ c)), 1 ≤ k ≤ r.
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Thus, we see the equivalence between (9) and (11)

|Mm,r(c)| =
r∑

k=1

qr+1(m, km+ c− 1) =
r−1∑
k=0

pr,≤m−1(km+ c).

Since it seems that there is no computationally closed form for
pr,≤m−1((k − 1)m + c) or equivalent qr+1(m, km + c − 1) (1 ≤ k ≤ r),
[3] suggests to consider the algorithms shown in [6] and [8].

In next section, we will present an algorithm for the enumeration
problem of linear congruence modulo m based on the nth root of unity,
which can be applied to calculate |Mm,r(c)| defined in (9) for individual
parameter triple (m, r, c). We will also give recursive algorithms for the
enumeration problem in Section 3, which can be applied to calculate
|Mm,r(c)| recursively that is typically suitable for coding.

In our forthcoming research, we will study how to use those algo-
rithms to evaluate pr,≤m−1((k−1)m+ c), or equivalently, qr+1(m, km+
c − 1) (1 ≤ k ≤ r) based on an extension of the relationship shown
in [3] between the restricted partitions of km + c and the solutions of
linear congruence modulo m.

2 An algebraic algorithm for the enumer-

ation problem of linear congruence mod-

ulo m

ξm is said to be an mth root of unity of order m if ξmm = 1. It is well
known that for an mth root of unity, there holds

m−1∑
k=0

ξtkm =

{
m, if m|t;
0, otherwise.

(12)

Denote by f(x) the rational function on the right-hand side of (8),
namely,

f(x) :=
(1− xm+r−1) · · · (1− xr+1)

(1− xm−1) · · · (1− x)
. (13)

Note that f(x) is the Gaussian polynomial (see [7]) and has nonnegative
coefficients. From (7) and (8) and using (12), we obtain
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m−1∑
k=0

f(ξkm) = m|Mm,r(0)|,

where

f(ξkm) := lim
x→ξkm

f(x).

Similarly,

m−1∑
k=0

ξ−ckm f(ξkm) = m|Mm,r(c)|

for 0 ≤ c ≤ m− 1. Hence, there holds

|Mm,r(c)| =
1

m

m−1∑
k=0

ξ−ckm f(ξkm), (14)

with

f(ξkm) := lim
x→ξkm

f(x),

where 0 ≤ c ≤ m− 1. Formula (14) provides an efficient calculation of
the number of the congruence solutions of equation (1). For example,
when m = 6 and r = 3, we have

f(x) =
(1− x8) · · · (1− x4)
(1− x5) · · · (1− x)

=
(1− x8)(1− x7)(1− x6)
(1− x2)(1− x)(1− x3)

.

Noticing that for 0 ≤ k ≤ m− 1,

lim
x→ξkm

(1− xm+s)

(1− xs)
=

{
m+s
s
, if ks ≡ 0 (modm);

1, if ks 6≡ 0 (modm).
(15)

We obtain for 0 ≤ c ≤ 5 (mod 6),
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|M6,3(c)| =
1

6

5∑
k=0

ξ−ck6 f(ξk6 )

=
1

6

5∑
k=0

lim
x→ξk6

(
x−c

1− x8

1− x2
1− x7

1− x
(1 + x3)

)

=
1

6

(
lim
x→1

1− x8

1− x2
1− x7

1− x
(1 + x3) +

5∑
k=1

lim
x→ξk6

(
x−c

1− x8

1− x2
1− x7

1− x

)
5∑

k=1

+ lim
x→ξk6

(
x3−c

1− x8

1− x2
1− x7

1− x

))

=
1

6

(
8

2

7

1
(2) +

5∑
k=1

ξ−ck6 +
5∑

k=1

ξ
(3−c)k
6

)

=
1

6

(
56 +

5∑
k=0

ξ−ck6 + (−1) +
5∑

k=0

ξ
(3−c)k
6 − 1

)

=

{
10, if c ≡ 0 or 3 (mod 6);

9, if c ≡ 1, 2, 4, or 5 (mod 6).
.

Here, we use formula (12) to find

m−1∑
k=0

ξtkm =

{
6, if t ≡ 0 (mod 6);

0, if t 6≡ 0 (mod 6).

Similarly, we may establish the following general result for calculat-
ing |Mm,r(c)| for either m or r is a prime number. More precisely, we
have

Theorem 2.1 Suppose m = p is a prime number. Then for any posi-
tive number r, there holds

|Mm,r(c)| =


1
m

(
m+r−1

r

)
, if gcd(m, r) = 1;

1
p

((
(t+1)p−1
p−1

)
+ p− 1

)
, if m = p, r = tp, and c ≡ 0 (mod p);

1
p

((
(t+1)p−1
p−1

)
− 1
)
, if m = p, r = tp, and c 6≡ 0 (mod p).

(16)
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Proof. First, if r < m or t > m with gcd(m, r) = 1, then |Mm,r(c)| is
given in Theorem 4 of [3] as

|Mm,r(c)| =
1

m

(
m+ r − 1

r

)
.

Hence, we only need to consider the case r = tm,where t are positive
integers. From (14) with r = tp and p is a prime,

|Mp,tp(c)| =
1

p

p−1∑
k=0

ξ−ckp f(ξkp )

=
1

p

p−1∑
k=0

lim
x→ξkp

(
x−c

1− x(t+1)p−1

1− xp−1
1− x(t+1)p−2

1− xp−2
· · · 1− x

tp+1

1− x

)

=
1

p

((
(t+ 1)p− 1

p− 1

)
+

p−1∑
k=1

ξ−ckp

)

=


1
p

((
(t+1)p−1
p−1

)
+ p− 1

)
, if c ≡ 0 (mod p);

1
p

((
(t+1)p−1
p−1

)
− 1
)
, if c 6≡ 0 (mod p),

where the last step is due to 0 ≤ c ≤ m− 1 (mod m) and m is a prime.
Lucas in his Theorie des Nombres proved that (

(
(t+1)p−1
p−1

)
− 1)/p is a

positive integer, i.e.,
(
(t+1)p−1
p−1

)
≡ 1 (mod p) when p is a prime number.

The proof was simplified by Fine in [4] (also see in Cameron [2]).

Theorem 2.2 Suppose r = p is a prime number. Then for any positive
number m, there holds

|Mm,r(c)| =


1
m

(
m+r−1

r

)
, if gcd(m, r) = 1;

1
p

((
(t+1)p−1
p−1

)
+ p− 1

)
, if m = tp, r = p, and c ≡ `p (mod tp);

1
p

((
(t+1)p−1
p−1

)
− 1
)
, if m = tp, r = p, and c 6≡ `p (mod tp),

(17)
where ` = 0, 1, . . . , t− 1.
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Proof. The case of gcd(m, r) = 1 is treated as the same as Theorem 2.1.
For r = p, a prime number, since gcd(m, r) = gcd(m, p) 6= 1 implies
gcd(m, p) = p. Hence, we only need to consider the cases of m = tp for
t = 1, 2, . . .. From (14) and noting

(1− xm+r−1) · · · (1− xr+1)

(1− xm−1) · · · (1− x)
=

(1− xm+r−1) · · · (1− xm)

(1− xr) · · · (1− x)
,

there holds

|Mtp,p(c)| =
1

tp

tp−1∑
k=0

ξ−cktp f(ξktp)

=
1

tp

tp−1∑
k=0

lim
x→ξktp

(
x−c

1− x(t+1)p−1

1− xp−1
1− x(t+1)p−2

1− xp−2
· · · 1− x

tp+1

1− x
1− xtp

1− xp

)

=
1

tp

(
t

(
(t+ 1)p− 1

p− 1

)
+

tp−1∑
k=1

ξ−cktp (1 + ξkptp + ξ2kptp + · · ·+ ξ
(t−1)kp
tp )

)

=


1
tp

(
t
(
(t+1)p−1
p−1

)
+ tp− t

)
, if c ≡ 0, p, . . . , (t− 1)p (mod tp);

1
tp

(
t
(
(t+1)p−1
p−1

)
− t
)
, if c 6≡ 0, p, . . . , (t− 1)p (mod tp),

which implies (17)

Remark 2.1 The numbers |Mm,r(c)| in Theorems 2.1 and 2.2 were
found in Theorems 7 and 8 with different forms by using different ap-
proach.

Our method is still applicable for other cases provided the limits

lim
x→ξkm

(1− xn+s)
(1− xs)

, that are similar to the ones shown in (15), could be

well-treated in the case of gcd(m, s) 6= 1. As an example, we now
calculate |M4,6(c)|. From (14),
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|M4.6(c)| =
1

4

3∑
k=0

ξ−ck4 lim
x→ξk4

(
1− x9

1− x3
1− x8

1− x2
1− x7

1− x

)

=
1

4

(
9 · 8 · 7
3 · 2 · 1

+
3∑

k=0

ξ−ck4 (1 + ξ2k4 + ξ4k4 + ξ6k4 )

)

=

{
1
4
(84 + 2(4− 1)− 2) = 22, if c ≡ 0 or 2 (mod 4);

1
4
(84− 4) = 20, if c ≡ 1 or 3 (mod 4).

Remark 2.2 To extend widely the application scope of our method,
we modify formula (14) circumspectly by using primitive roots of unity.
ξm is called a primitive mth root of unity if ξnm 6= 1 for all 0 < n < m.
For instance, if m is a prime, then ξm is a primitive mth root of unity.
By means of primitive mth roots of unity, we may split the formula
(14) into the following form:

|Mm,r(c)| =
1

m

∑
d|m

 ∑
o(ξm)=d

ξ−cm f(ξm)

 , (18)

where the inner summation is taken over all primitive dth roots of unity,
and f(ξkm) := lim

x→ξkm
f(x).

3 Recursive algorithms for the enumera-

tion problem of linear congruence mod-

ulo m

We now try to find a recurrence formula to calculate |Mm,r|. There
are three ways to enumerate |Mm,r|, namely, fixed arbitrarily m, r, and
c, respectively. Let us consider the first case of fixing m. Since the
sub-cases of m = 2 and 3 have been considered in [3], we start from the
case of (m, r) = (4, r). If r = 2k + 1 (k = 0, 1, . . .), then from (2) we
have

|M4,2k+1| =
1

4

(
2k + 4

2k + 1

)
=

1

4

(
2k + 4

3

)
. (19)
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For k ∈ N, denote

Ek = {j : j = 6k − 2 (mod 4)}, (20)

and denote the characteristic function of Ek by fk = χEk
, i.e., fk(i) = 1

if i ∈ Ek and 0 otherwise. Thus, for k ∈ N, k ≥ 2, we have

|M4,2k+2(0)| =
3

4

(
2k + 4

3

)
+

1

4

(
2k + 2

3

)
− (|M4,2k(1)|+ |M4,2k(2)|+ |M4,2k(3)|) + fk(0),

|M4,2k+2(1)| =
3

4

(
2k + 4

3

)
+

1

4

(
2k + 2

3

)
− (|M4,2k(2)|+ |M4,2k(3)|+ |M4,2k(0)|) + fk(1),

|M4,2k+2(2)| =
3

4

(
2k + 4

3

)
+

1

4

(
2k + 2

3

)
− (|M4,2k(3)|+ |M4,2k(0)|+ |M4,2k(1)|) + fk(2),

|M4,2k+2(3)| =
3

4

(
2k + 4

3

)
+

1

4

(
2k + 2

3

)
− (|M4,2k(0)|+ |M4,2k(1)|+ |M4,2k(2)|) + fk(3).(21)

Here, the initial conditions of the above recursive formula are

|M4,2(0)| = |M4,2(2)| = 3, |M4,2(1)| = |M4,2(3)| = 2.

Noting |M4,r(i)| = |M4,r(j)| when i = j (mod 4), we may re-write for-
mula (21) as the following unified form.

Proposition 3.1 (19) and the following (22) give a method to count
the numbers of mutiset congruence solutions of linear equations (1) for
m = 4.

|M4,2k+2(i)| =
3

4

(
2k + 4

3

)
+

1

4

(
2k + 2

3

)
+fk(i)−

i+3∑
j=i+1

|M4,2k(j)|, (22)

where k ≥ 1, i = 0, 1, 2, and 3, and |M4,2(0)| = |M4,2(2)| = 3, |M4,2(1)| =
|M4,2(3)| = 2.

Proof. It is easy to check that x1 + x2 ≡ 0 (mod 4) has only the
congruence solutions {0, 0}, {1, 3}, and {2, 2}, x1 +x2 ≡ 2 (mod 4) the
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solutions {0, 2}, {1, 1}, and {3, 3}, x1 + x2 ≡ 1 (mod 4) the solutions
{0, 1}, {2, 3}, and x1 + x2 ≡ 3 (mod 4) the solutions {0, 3} and {1, 2}.
Thus, we have |M4,2(0)| = |M4,2(2)| = 3, and |M4,2(1)| = |M4,2(3)| = 2.

Denote by (i, j)` the multiset of congruence solutions of (1) with
m = 4 which satisfy x1 ≡ i (mod 4) and x2 + · · ·+x` ≡ j (mod 4), and
i ≤ x2, where i, j ∈ Zm. The cardinal number of set (i, j)` is denoted
by |(i, j)`|. Note that the set (i, j)` may be empty and, thus, |(i, j)`|
may be zero.

Using the notation defined, the set of congruence solutions of equa-
tion (1) for m = 4, r = 2k + 2, and c = 0 consists of disjoint subsets
(0, 0)2k+2, (1, 3)2k+2, (2, 2)2k+2, and (3, 1)2k+2. Therefore, the cardinal
number of the set is the summation of the cardinal numbers of its four
disjoint subsets. Obviously, for k ≥ 1, the cardinal number of (0, 0)2k+2

is equal to the cardinal number of the congruence solution set of equa-
tion (1) for m = 4, r = 2k + 1, and c = 0. Thus,

|(0, 0)2k+2| = |M4,2k+1(0)| = 1

4

(
2k + 4

3

)
. (23)

Noting that the cardinal number of solution set of x2 + · · · + x2k+2 ≡
3 (mod 4) (satisfying x2 ≥ 0) is equal to the cardinal number of the
solution set of x2 + · · · + x2k+2 ≡ 3 (mod 4) satisfying x2 ≥ 1 plus the
cardinal number of the solution set of x3 + · · ·+x2k+2 ≡ 3 (mod 4) and
x2 ≡ 0 (mod 4) (with x3 ≥ 0), i.e., the cardinal number of (0, 3)2k+2

is equal to the summation of the cardinal number of multiset (1, 3)2k+2

and the cardinal number of the multiset (0, 3)2k+1. Thus, we have

|(1, 3)2k+2| = |(0, 3)2k+2|− |(0, 3)2k+1| = |M4,2k+1(3)|− |M4,2k(3)|. (24)

To enumerate the cardinal number of the set (2, 2)2k+2, we find this
number plus the cardinal number of solution set (1, 1)2k+1 is equal to the
cardinal number of the solution set (1, 2)2k+2, which can be verified as
follows. First, we notice the fact that any element in the set (1, 2)2k+2

satisfies x1 ≡ 1 (mod 4), x2 + · · · + x2k+2 ≡ 2 (mod 4), and x2 ≥ 1
belongs either the case of (mod 4) x1 ≡ 1 ≡ x2 ≤ x3 ≤ · · ·x2k+2 or the
case x1 ≡ 1 (mod 4), (mod 4) 2 ≡ x2 ≤ x3 ≤ · · · ≤ x2k+2. Secondly,
a solution satisfying the first case is also a solution of x2 ≡ 1 (mod 4),
x3 + · · · + x2k+2 ≡ 1 (mod 4), and therefore it is an element of set
(1, 1)2k+1. Thirdly, the number of solutions in (1, 2)2k+2 that belong
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to the second case is equal to the number of the solutions satisfying
x1 ≡ 2 (mod 4), x2 + · · · + x2k+2 ≡ 2 (mod 4), and x2 ≥ 2, i.e., the
cardinal number of the solution set (2, 2)2k+2. Thus, by using the above
fact and a similar proof as we carried off (24), there hold

|(2, 2)2k+2| = |(1, 2)2k+2| − |(1, 1)2k+1|
= |(0, 2)2k+2| − |(0, 2)2k+1| − [|(0, 1)2k+1| − |(0, 1)2k|]
= |M4,2k+1(2)|+ |M4,2k−1(1)| − [|M4,2k(1)|+ |M4,2k(2)|] .(25)

We may use a similar process to count the cardinal number of set
(3, 1)2k+2. However, by noting the fact that an element in (3, 1)2k+2

must be of the form (mod 4) 3 ≡ x1 = x2 = · · · = x2k+2 if the set
(3.1)2k+2 6= φ. Therefore, x2+· · ·+x2k+2 = 6k+3. If 6k+3 ≡ 1 (mod 4),
then |(3, 1)2k+2| = 1, otherwise, |(3, 1)2k+2| = 0, or equivalently, the
characteristic function fk = χEk

of the set Ek (k ∈ N) defined by (20)
takes value 1 at 0, i.e., 0 ≡ 6k− 2 (mod 4) or 1 ≡ 6k+ 3 (mod 4), then
|(3, 1)2k+2| = 1, otherwise, |(3, 1)2k+1| = 0. Therefore, we have proved
the first recursive formula of (21). Similarly, we obtain the other three
formulas of (21). The equivalence between (21) and (22) is obvious,
which completes the proof of the proposition.

Example 1 Using (21) or (22) for k = 1, we may obtain

|M4,4(0)| = 10, |M4,4(1)| = 8, |M4,4(2)| = 9, and |M4,4(3)| = 8.

For k = 2, we have

|M4,6(0)| = 22, |M4,6(1)| = 20, |M4,6(2)| = 22, and |M4,6(3)| = 20.

From Proposition 3.1, we may present an algorithm based on the
following two propositions.

Proposition 3.2 Denote by (i, j)m,` the multiset of congruence solu-
tions of x1 ≡ i (mod m) and x2 + · · ·+ x` ≡ j (mod m), which satisfy
x2 ≥ x1, where i, j ∈ Zm. The cardinal number of set (i, j)m,` is de-
noted by |(i, j)m,`|. Then the cardinal number of the congruence solution
multiset of (1) with m ∈ N and r = `+ 1 can be written as
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|Mm,`| =
∑

i+j≡c (mod m)

|(i, j)m,`|, (26)

where i runs all distinct values in Zm.

Proof. Denote the set of congruence solutions of (1) with m ∈ N, r = `,
and c ∈ Zm by Sm,`(c), which cardinal number is |Mm,`(c)|. Since an
element of Sm,`(c), i.e., a congruence solution of (1) with m ∈ N, r = `,
and c ∈ Zm must be a solution of x1 ≡ i (mod m) and x2 + · · ·+ x` ≡
c− i (mod m) that satisfies x2 ≥ x1 for some i ∈ Zm, we have

Sm,`(c) ⊂ ∪i+j≡c (mod m)(i, j)m,`.

It is easy to see every element in (i, j)` (i+j ≡ c (mod m)) is in Sm,`(c),
we have

∪i+j≡c (mod m)(i, j)m,` ⊂ Sm,`(c).

Noting {(i, j)m,` : i, j ∈ Zm, i + j ≡ c (mod m)} is a pair disjoint set,
i.e., (i, j)m,`∩(u, v)m,` = φ when i 6= u, with i+j and u+v ≡ c (mod m),
we immediately obtain (26).

Proposition 3.3 Let (i, j)m,` and |(i, j)m,`| be defined as in Proposi-
tion 3.2. Then we have recursive relation formula

|(i, j)m,`| = |(i− 1, j)m,`| − |(i− 1, j − i+ 1)m,`−1| (27)

for any m ∈ N, ` ≥ 1, and i, j ∈ Zm, with initial conditions |(i, j)m,2| =
1 if i ≤ j and 0 otherwise, where (i− 1, j − i+ 1)m,k = (i− 1,m+ j −
i+ 1)m,k if j − i+ 1 becomes negative.

Proof. The initial conditions are clearly true due to the definition of
(i, j)m,`. Using the notation defined, any element in the set (i− 1, j)m,`
satisfies either the case of x1 ≡ i−1 (mod m), x2+· · ·+x` ≡ j (mod m),
and x2 ≡ i − 1 (mod m) or the case of x1 ≡ i − 1 (mod m), x2 +
· · · + x` ≡ j (mod m), and x2 ≥ i. The number of the solutions in
the set (i − 1, j)m,` satisfying the first case is obviously equal to the
number of solutions of the equations x2 ≡ i − 1 (mod m) and x3 +
· · ·+ x` ≡ j − i+ 1 (mod m) with x3 ≥ i− 1, which can be written as
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|(i−1, j−i+1)m,`−1|. The number of the solutions in the set (i−1, j)m,`
satisfying the second case is equal to the number of the solutions of
equations x2 ≡ i (mod m) and x2 + · · ·x` ≡ j (mod m) with codition
x2 ≥ x1, which can be written as |(i, j)m,`| from the definition. Thus we
obtain |(i− 1, j)m,`| = |(i− 1, j− i+ 1)m,`−1|+ |(i, j)m,`|, which implies
(27).

Proposition 3.4 Let |Mm,`(c)| and (i, j)m,` be defined as before. There
hold some initial cardinal numbers of congruence solution sets of equa-
tions with form (1): For m, ` ∈ N and c ∈ Zm,

|Mm,`(c)| = |(0, c)m,`+1|, (28)

|Mm,1(c)| = 1, (29)

and

|M2k−1,2(c)| = k (30)

and

|M2k,2(c)| =
{
k + 1 if c = 0, 2, . . . , 2k − 2
k if c = 1, 3, . . . , 2k − 1,

(31)

for all k ≥ 1.

Algorithm 1 To evaluate |Mm,`+1(c)|, we use Proposition 3.2 to write

|Mm,`+1(c)| =
c−1∑
i=0

|(i, c− i)m,`+1|

and use Proposition 3.3 to reduce i on the right-hand side of the above
equation one-by-one till i = 0, which generates each |(i, j)`+1| to be
a linear combination of |(0, u)`+1−v| for some u ∈ Zm and v ≤ ` + 1.
Then, we apply (28) to converse |(0, u)`+1−v| to |Mm,`−v(u)| and use
initial cardinal numbers (29)-(31) to find the values of |Mm,`−v(u)| and
|Mm,`+1(c)| eventually. The example for the case of m = 4 was shown
in Proposition 3.1.
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Example 2 As another example, we now see the case of m = 6, ` = 3,
and c = 0. From Proposition 3.2, we have

|M6,3(0)| = |(0, 0)6,3|+|(1, 5)6,3|+|(2, 4)6,3|+|(3, 3)6,3|+|(4, 2)6,3|+|(5, 1)6,3|,

where each term on the right-hand side can be calculated by using
Propositions 3.3 and 3.4 as follows.

|(0, 0)6,3| = |M6,2(0)| = 4,

|(1, 5)6,3| = |(0, 5)6,3| − |(0, 5)6,2| = |M6,2(5)| − 1 = 2,

|(2, 4)6,3| = |(0, 4)6,3| − |(0, 4)6,2| − |(1, 3)6,2| = |M6,2(4)| − 1− 1 = 2,

|(3, 3)6,3| = |(0, 3)6,3| − |(0, 3)6,2| − |(1, 2)6,2| − |(2, 1)6,2|
= |M6,2(3)| − 1− 1− 0 = 1,

|(4, 2)6,3| = |(0, 2)6,3| − |(0, 2)6,2| − |(1, 1)6,2| − |(2, 0)6,2| − |(3, 5)6,2|
= |M6,2(2)| − 3 = 1,

|(5, 1)6,3| = |(0, 1)6,3| − |(0, 1)6,2| − |(1, 0)6,2| − |(2, 5)6,2| − |(3, 4)6,2|
−|(4, 3)6,2| = |M6,2(1)| − 3 = 0.

Thus, |M6.3(0)| = 4 + 2 + 2 + 1 + 1 = 10.
Similarly, using Propositions 3.3 and 3.4 we have

|(0, 1)6,3| = 3, |(1, 0)6,3| = 3, |(2, 5)6.3| = 1,

|(3, 4)6,3| = 1, |(4, 3)6,3| = 1, |(5, 2)6,3| = 0, (32)

|(0, 2)6,3| = 4, |(1, 1)6,3| = 2, |(2, 0)6.3| = 2,

|(3, 5)6,3| = 0, |(4, 4)6,3| = 1, |(5, 3)6,3| = 0, (33)

|(0, 3)6,3| = 3, |(1, 2)6,3| = 3, |(2, 1)6.3| = 2,

|(3, 0)6,3| = 1, |(4, 5)6,3| = 0, |(5, 4)6,3| = 1, (34)

|(0, 4)6,3| = 4, |(1, 3)6,3| = 2, |(2, 2)6.3| = 2,

|(3, 1)6,3| = 1, |(4, 0)6,3| = 0, |(5, 5)6,3| = 0, (35)

|(0, 5)6,3| = 3, |(1, 4)6,3| = 3, |(2, 3)6.3| = 1,

|(3, 2)6,3| = 2, |(4, 1)6,3| = 0, |(5, 0)6,3| = 0, (36)

which yield
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|M6,3(1)|
= |(0, 1)6,3|+ |(1, 0)6,3|+ |(2, 5)6.3|+ |(3, 4)6,3|+ |(4, 3)6,3|+ |(5, 2)6,3|
= 9; (37)

|M6,3(2)|
= |(0, 2)6,3|+ |(1, 1)6,3|+ |(2, 0)6.3|+ |(3, 5)6,3|+ |(4, 4)6,3|+ |(5, 3)6,3|
= 9; (38)

|M6,3(3)|
= |(0, 3)6,3|+ |(1, 2)6,3|+ |(2, 1)6.3|+ |(3, 0)6,3|+ |(4, 5)6,3|+ |(5, 4)6,3|
= 10; (39)

|M6,3(4)|
= |(0, 4)6,3|+ |(1, 3)6,3|+ |(2, 2)6.3|+ |(3, 1)6,3|+ |(4, 0)6,3|+ |(5, 5)6,3|
= 9; (40)

and

|M6,3(5)|
= |(0, 5)6,3|+ |(1, 4)6,3|+ |(2, 3)6.3|+ |(3, 2)6,3|+ |(4, 1)6,3|+ |(5, 0)6,3|
= 9, (41)

respectively, by using Proposition 3.2.

Example 3 Using Propositions 3.2-3.4 and the values of |(i, j)6,3| and
the values of |M6,(i)|, i = 0, 1, 2, . . . , 5, we can find |M6,4(i)|, i =
0, 1, 2, . . . , 5, recursively. For instance, using the values |(i, j)6,3| shown
in (32)-(36) and the values of |M6,3(i)| shown in (37)-(41) and |M6,3(0)| =
10, we obtain

|(0, 0)6,4| = |M6,3(0)| = 10,

|(1, 5)6,4| = |(0, 5)6,4| − |(0, 5)6,3| = |M6,3(5)| − |M6,2(5)| = 9− 3 = 6,

|(2, 4)6,4| = |(1, 4)6,4| − |(1, 3)6,3| = |(0, 4)6,4| − |(0, 4)6,3| − |(1, 3)6,3|
= |M6,3(4)| − 4− 2 = 3,
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|(3, 3)6,4| = |(2, 3)6,4| − |(2, 1)6,3| = |(1, 3)6,4| − |(1, 2)6,3| − |(2, 1)6,3|
= |(0, 3)6,4| − |(0, 3)6,3| − |(1, 2)6,3| − |(2, 1)6,3|
= |M6,3(3)| − 3− 3− 2 = 2,

|(4, 2)6,4| = |(3, 2)6,4| − |(3, 5)6,3| = |(2, 2)6,4| − |(2, 0)6,3| − |(3, 5)6,3|
= |(1, 2)6,4| − |(1, 1)6,3| − |(2, 0)6,3| − |(3, 5)6,3|
= |(0, 2)6,4| − |(0, 2)6,3| − |(1, 1)6,3| − |(2, 0)6,3| − |(3, 5)6,3|
= |M6,4(2)| − 4− 2− 3− 0 = 1,

|(5, 1)6,4| = |(4, 1)6,4| − |(4, 3)6,3| = |(3, 1)6,4| − |(3, 4)6,3| − |(4, 3)6,3|
= |(2, 1)6,4| − |(2, 5)6,3| − |(3, 4)6,3| − |(4, 3)6,3|
= |(1, 1)6,4| − |(1, 0)6,3| − |(2, 5)6,3| − |(3, 4)6,3| − |(4, 3)6,3|

= |(0, 1)6,4| − |(0, 1)6,3| − |(1, 0)6,3| − |(2, 5)6,3| − |(3, 4)6,3| − |(4, 3)6,3|
= |M6,3(1)| − 3− 3− 1− 1− 1 = 0.

Therefore,

|M6,4(0)|
= |(0, 0)6,4|+ |(1, 5)6,4|+ |(2, 4)6,4|+ |(3, 3)6,4|+ |(4, 2)6,4|+ |(5, 1)6,4|
= 22.

We now give a recursive algorithm to enumerate the congruence
solutions of Equation (1) with the restriction x1 ≤ x2 ≤ · · · ≤ xr with
a matrix formulation.

From Propositions 3.2-3.4 we can establish

Theorem 3.5 Let (i, j)m,` and |(i, j)m,`| be defined as in Proposition
3.2. Then

|(i, j)m,`| =
m−1∑
k=i

|(k, j − k)m,`−1| (42)

and

|Mm,`(j)| =
m−1∑
i=0

|(i, j − i)m,`| =
m−1∑
i=0

m−1∑
k=i

|(k, j − i− k)m,`−1| (43)
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Proof. Using formula (27) repeatedly, we may find

|(i, j)m,`| = |(0, j)m,`| −
i−1∑
k=0

|(k, j − k)m,`−1|.

From formulas (26) and (28) presented in Propositions 3.2 and 3.4,
respectively, we further have

|(i, j)m,`| = |Mm,`−1(j)| −
i−1∑
k=0

|(k, j − k)m,`−1|

=
m−1∑
k=i

|(k, j − k)m,`−1|.

Therefore, formula (26) yields

|Mm,`(j)| =
m−1∑
i=0

|(i, j − i)m,`| =
m−1∑
i=0

m−1∑
k=i

|(k, j − i− k)m,`−1|,

which completes the proof.

Theorem 3.5 suggests the following algorithm with a matrix formu-
lation.

Algorithm 2 Consider the `− 1st matrix


|(0, j)m,`−1| |(1, j − 1)m,`−1| · · · |(m− 1, j −m+ 1)m,`−1|
|(0, j − 1)m,`−1| |(1, j − 2)m,`−1| · · · |(m− 1, j −m)m,`|

...
... · · · ...

|(0, j −m+ 1)m,`−1| |(1, j −m)m,`−1| · · · |(m− 1, j − 2m+ 2)m,`−1|


(44)

From (42), the sum of the first row of matrix (44) is equal to |(0, j)m,`|,
the sum of all the entries in the second row except the first one is
equal to |(1, j − 1)m,`|, and so forth, finally, the last entry in the last
row is equal to |(m − 1, j − m + 1)m,`|. From (43), the sum of all
the values found, |(0, j)m,`|, |(1, j − 1)m,`|, . . ., |(m− 1, j −m + 1)m,`|,
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gives |Mm,`(j)|. In addition, those values, |(0, j)m,`|, |(1, j − 1)m,`|, . . .,
|(m−1, j−m+1)m,`|, for j = 0, 1, . . . ,m−1, form a new matrix, the `th
matrix, which can be used to evaluate cardinal number of the solution
sets, |Mm,`+1(j)|, j = 0, 1, . . . ,m − 1. Repeating the process, until we
obtain |Mm,r(j)|, j = 0, 1, . . . ,m−1, the number of the the congruence
solutions of Equation (1) with the restriction x1 ≤ x2 ≤ · · · ≤ xr.

Example 4 Let us use Algorithm 2 to evaluate |M6,4(j)|, j = 0, 1, . . . , 5.
First, we find |M6,3(j)|, j = 0, 1, . . . , 5 using the 2nd matrices as follows.

1 1 1 1 0 0 4

1 1 1 0 0 0 2

1 1 1 0 0 1 2

1 1 0 0 1 0 1

1 1 0 1 1 0 1

1 0 1 1 0 0 0

10 = |M6,3(0)|

1 1 1 0 0 0 3

1 1 1 0 0 1 3

1 1 0 0 1 0 1

1 1 0 1 1 0 2

1 0 1 1 0 0 0

1 1 1 1 0 0 0

9 = |M6,3(5)|
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1 1 1 0 0 1 4

1 1 0 0 1 0 2

1 1 0 1 1 0 2

1 0 1 1 0 0 1

1 1 1 1 0 0 0

1 1 1 0 0 0 0

9 = |M6,3(4)|

1 1 0 0 1 0 3

1 1 0 1 1 0 3

1 0 1 1 0 0 2

1 1 1 1 0 0 1

1 1 1 0 0 0 0

1 1 1 0 0 1 1

10 = |M6,3(3)|

1 1 0 1 1 0 4

1 0 1 1 0 0 2

1 1 1 1 0 0 2

1 1 1 0 0 0 0

1 1 1 0 0 1 1

1 1 0 0 1 0 0

9 = |M6,3(2)|



22 T. X. He and P. J.-S. Shiue

1 0 1 1 0 0 3

1 1 1 1 0 0 3

1 1 1 0 0 0 1

1 1 1 0 0 1 1

1 1 0 0 1 0 1

1 1 0 1 1 0 0

9 = |M6,3(1)|

Second, we find |M6,4(j)|, j = 0, 1, . . . , 5 using the 3rd matrices as
follows. To save the space, we combine six matrices together.

4 2 2 1 1 0 10
3 3 1 2 0 0 6 9

4 2 2 1 0 0 3 5 9

3 3 2 1 0 1 2 4 7 10

4 2 2 0 1 0 1 1 3 5 9

3 3 1 1 1 0 0 1 2 3 6 9

4 2 2 1 1 0 0 1 2 4 6

3 3 1 2 0 0 0 0 2 3

4 2 2 1 0 0 0 0 1

3 3 2 1 0 1 1 1

4 2 2 0 1 0 0

22 20 22 20 22 20

Thus, |M6,4(0)| = |M6,4(4)| = |M6,4(2)| = 22 and |M6,4(5)| =
|M6,4(3)| = |M6,4(1)| = 20. Although we may use (2) to obtain |M6,5(i)| =
42 for i = 0, 1, . . . , 5, we can also use Algorithm 2 to evaluate the values.
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10 6 3 2 1 0 22
9 5 4 1 1 0 11 20

9 7 3 2 1 0 6 13 22

10 5 3 2 0 0 2 5 10 20

9 6 4 2 0 1 1 3 7 13 22

9 6 3 1 1 0 0 1 2 5 11 20

10 6 3 2 1 0 0 1 3 6 12

9 5 4 1 1 0 0 1 2 6

9 7 3 2 1 0 0 1 3

10 5 3 2 0 0 0 0

9 6 4 2 0 1 1

42 42 42 42 42 42
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