1:  #include <stdlib.h>
2:  #include <stdio.h>
3:  #include <string.h>
4:  #include <math.h>
5:  #include <GL/glut.h>
6:  
7:  #include "pgm.h"
8:  #include "chaincode.h"
9:  
10:  #define Round(v) ((int)(v+0.5))
11:  
12:  /*minimal size to consider an "object" as length of chaincode*/
13:  #define DECENT_SIZED_OBJECT 100
14:  
15:  #define ONE_THIRD  (1.0 / 3.0)
16:  #define ONE_HALF   (1.0 / 2.0)
17:  #define ONE_SIXTH  (1.0 / 6.0)
18:  #define ONE_TWELTH (1.0 / 12.0)
19:  
20:  typedef struct
21:  {
22:    coord corner1;
23:    coord corner2;
24:    coord corner3;
25:    coord corner4;
26:  }object;
27:  
28:  typedef struct
29:  {
30:     /*The corners of the board.  corner1 and corner2 are always opposite
31:       (diagnol), just like corner3 and corner4 too.*/
32:     object corners;
33:  
34:     /*The sides.  The numbers represent the to corners that the point is
35:      between.  The first number is the corner that it is closest to.*/
36:     coord side14, side13, side23, side24;
37:     coord side31, side32, side41, side42;
38:     
39:     /*The points surrounding the middle square.  The number indicates the
40:       closest corner.*/
41:     coord middle1, middle2, middle3, middle4;
42:  }ttt;
43:  
44:  /*Evil globals, but not do-able otherwise.*/
45:  static PGMImage *img_cur;       /*current*/
46:  static PGMImage *img_original;  /*original*/
47:  static PGMImage *img_pers_corr; /*perspective correction*/
48:  static PGMImage *img_grayscale;
49:  static PGMImage *img_moravec;   /*moravec*/
50:  static int HSIZE;
51:  static int VSIZE;
52:  static int MVAL;
53:  
54:  static ttt *ttt_board; /*pointer to a ttt structer containing the board info*/
55:  
56:  const RGB_INT white      = {255, 255, 255};
57:  const RGB_INT yellow     = {255, 255,   0};
58:  const RGB_INT magenta    = {255,   0, 255};
59:  const RGB_INT cyan       = {0,   255, 255};
60:  const RGB_INT red        = {255,   0,   0};
61:  const RGB_INT green      = {0,   255,   0};
62:  const RGB_INT blue       = {0,     0, 255};
63:  const RGB_INT black      = {0,     0,   0};
64:  
65:  const RGB_INT gray       = {128, 128, 128};
66:  const RGB_INT lt_yellow  = {255, 255, 128};
67:  const RGB_INT lt_magenta = {255, 128, 255};
68:  const RGB_INT lt_cyan    = {128, 255, 255};
69:  
70:  const RGB_INT lt_red     = {255, 128, 128};
71:  const RGB_INT lt_green   = {128, 255, 128};
72:  const RGB_INT lt_blue    = {128, 128, 255};
73:  
74:  const RGB_INT dk_yellow  = {128, 128,   0};
75:  const RGB_INT dk_magenta = {128,   0, 128};
76:  const RGB_INT dk_cyan    = {  0, 128, 128};
77:  
78:  const RGB_INT dk_red     = {128,   0,   0};
79:  const RGB_INT dk_green   = {  0, 128,   0};
80:  const RGB_INT dk_blue    = {  0,   0, 128};
81:  
82:  /*pointer to an array of pointers which point to the first nodes in each of
83:    the chain codes.*/ 
84:  list_info* chain_codes;
85:  
86:  /*hold the points farthest away from each other for each object*/
87:  /*coord corner1[MAX_CHAINS], corner2[MAX_CHAINS];
88:    coord corner3[MAX_CHAINS], corner4[MAX_CHAINS];*/
89:  /*object all_objects[MAX_CHAINS];*/
90:  static object *all_objects;
91:  
92:  /*use double buffered output and keep running enable idle callback to call
93:    detect_corners() over and over simulating realtime response.
94:    Is set to TRUE or FALSE.*/
95:  int is_buffered;
96:  
97:  /*used to determine if abstract lines should be drawn to the screen.
98:    Set to <0 if no abstract lines are to be drawn.  Otherwise
99:    is set to the number of objects found (AKA number of chaincodes).*/
100:  int draw_abstract_lines = -1;
101:  
102:  /*used to draw the single object most likely to be considered the
103:    tic-tac-toe board.  Should be <0 if this should not be drawn.
104:    Should be equal to the chain-code number (from 0 to MAX_CHAINS - 1)
105:    if it is to be drawn.*/
106:  int draw_abstract_board = -1;
107:  
108:  
109:  /**************Drawing funcitions************************************/
110:  /********************************************************************/
111:  
112:  void setCPixel(int ix, int iy, RGB_INT color)
113:  /*Same as setIPixel except that the last parameter is an RGB color*/
114:  {
115:    float x = (ix*2.0)/HSIZE - 1.0;
116:    float y = (iy*2.0)/VSIZE - 1.0;
117:  
118:    float red = (float)color.red/(float)MVAL;
119:    float green = (float)color.green/(float)MVAL;
120:    float blue = (float)color.blue/(float)MVAL;
121:  
122:    glColor3f(red, green, blue);
123:    
124:    glBegin(GL_POINTS); 
125:       glVertex2f (x, y);
126:    glEnd();
127:  }
128:  
129:  void setCLines(int ix1, int iy1, int ix2, int iy2, RGB_INT color)
130:  /*Similar as setIPixel except that this one draws a line between the first set
131:    of points given and the second set in the RGB color specified*/
132:  {
133:    float x1 = (ix1*2.0)/HSIZE - 1.0;
134:    float y1 = (iy1*2.0)/VSIZE - 1.0;
135:    float x2 = (ix2*2.0)/HSIZE - 1.0;
136:    float y2 = (iy2*2.0)/VSIZE - 1.0;
137:   
138:    float red = (float)color.red/(float)MVAL;
139:    float green = (float)color.green/(float)MVAL;
140:    float blue = (float)color.blue/(float)MVAL;
141:  
142:    glColor3f(red, green, blue);
143:  
144:    glBegin(GL_LINES);
145:      glVertex2f (x1, y1);
146:      glVertex2f (x2, y2);
147:    glEnd();
148:  }
149:  
150:  void setCRect(int ix1, int iy1, int ix2, int iy2, RGB_INT color)
151:  /*Similar as setIPixel except that this one draws a line between the first set
152:    of points given and the second set in the RGB color specified*/
153:  {
154:    float x1 = (ix1*2.0)/HSIZE - 1.0;
155:    float y1 = (iy1*2.0)/VSIZE - 1.0;
156:    float x2 = (ix2*2.0)/HSIZE - 1.0;
157:    float y2 = (iy2*2.0)/VSIZE - 1.0;
158:   
159:    float red = (float)color.red/(float)MVAL;
160:    float green = (float)color.green/(float)MVAL;
161:    float blue = (float)color.blue/(float)MVAL;
162:  
163:    glColor3f(red, green, blue);
164:  
165:    glBegin(GL_POLYGON);
166:      glVertex2f (x1, y1);
167:      glVertex2f (x1, y2);
168:      glVertex2f (x2, y2);
169:      glVertex2f (x2, y1);
170:    glEnd();
171:  }
172:  
173:  /* ================================================================= 
174:   * drawString - outputs a string of characters to the graphics port
175:   *
176:   *   x, y:      defines the starting location to draw the text
177:   *               note: this point is the lower left anchor of
178:   *                     the first character - a character's decending
179:   *                     portion would be drawn below this point.
180:   *   theFont:   points to the glut font to be used
181:   *   theString: holds the string to be output -- up to 255 ch
182:   * ----------------------------------------------------------------- */
183:  void drawString(int ix, int iy, void *theFont, char theString[256],
184:  		RGB_INT color)
185:  {
186:     float x = (ix*2.0)/HSIZE - 1.0;
187:     float y = (iy*2.0)/VSIZE - 1.0;
188:     int i;
189:  
190:     float red = (float)color.red/(float)MVAL;
191:     float green = (float)color.green/(float)MVAL;
192:     float blue = (float)color.blue/(float)MVAL;
193:  
194:     glColor3f(red, green, blue);
195:  
196:     glRasterPos2f(x, y);
197:     for (i = 0; theString[i] != '\0'; i++) /* draw the chars one at a time */
198:       glutBitmapCharacter(theFont, theString[i]);
199:  }
200:  
201:  void showColor (PGMImage *img)
202:  {
203:     int i, j; /*loop counting: i = y, j = x*/
204:  
205:     GLubyte checkImage[(*img).height][(*img).width][3];
206:  
207:     for(i = 0; i < (*img).height; i++)
208:     {
209:        for(j = 0; j < (*img).width; j++)
210:        {
211:           checkImage[i][j][0] = (GLubyte) (*img).data[i][j].red;
212:           checkImage[i][j][1] = (GLubyte) (*img).data[i][j].green;
213:           checkImage[i][j][2] = (GLubyte) (*img).data[i][j].blue;
214:        }
215:     }
216:     /*draw the current image*/
217:     glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
218:     glRasterPos2f(-1, -1);
219:     glDrawPixels((*img).width, (*img).height, GL_RGB,
220:  		GL_UNSIGNED_BYTE, checkImage);
221:  
222:     glFlush();
223:  }
224:  
225:  void display_labels(int x_coord, int y_coord)
226:  {
227:     char text[40]; /*for displaying the locations in text form*/
228:     int offset = 8; /*offset text # pixels from location*/
229:  
230:     sprintf(text, "(%d, %d)\0", x_coord, y_coord);
231:     drawString(x_coord + offset, y_coord + offset,
232:  	      GLUT_BITMAP_TIMES_ROMAN_10, text, blue);
233:  }
234:  
235:  /*display the global abstract data*/
236:  void showAbstract(object* object_list, ttt *ttt_data)
237:  {
238:     int i;
239:  
240:     /*   coord hor_top1, hor_top2;
241:     coord hor_bot1, hor_bot2;
242:     coord ver_rgt1, ver_rgt2;
243:     coord ver_lft1, ver_lft2;
244:     */
245:     list_info temp;
246:  
247:     glPointSize(2); /*make points more visible, if desired*/
248:     /*glLineWidth(4);*/
249:  
250:     /*draw the chaincodes*/
251:     /*chain_codes is a global pointer to an array of list_info types*/
252:     for(i = 0; (i < MAX_CHAINS) && chain_codes && chain_codes[i].cur; i++)
253:     {
254:        memcpy(&temp, &chain_codes[i], sizeof(list_info));
255:        while(RetrieveNextNode(&temp).cur)
256:        {
257:  	setCPixel(RetrieveInfo(&temp).location.x,
258:  		  RetrieveInfo(&temp).location.y, gray);
259:          Advance(&temp);
260:        }
261:     }
262:  
263:     /*first check for non-null pointer, next check for dereferenced pointers
264:       in the array of head pointers and lastly make sure things stay in
265:       bound of the max incase all MAX_CHAINS number of chains are used.*/
266:     /*draw_abstract_lines is the global that holds the number of "objects"
267:       to draw abstract information for*/
268:     for(i = 0; i < draw_abstract_lines && i < MAX_CHAINS; i++)
269:     {
270:        setCLines(object_list[i].corner1.x, object_list[i].corner1.y,
271:  		object_list[i].corner3.x, object_list[i].corner3.y,yellow);
272:        setCLines(object_list[i].corner4.x, object_list[i].corner4.y,
273:  		object_list[i].corner2.x, object_list[i].corner2.y,yellow);
274:        setCLines(object_list[i].corner3.x, object_list[i].corner3.y,
275:  		object_list[i].corner2.x, object_list[i].corner2.y,yellow);
276:        setCLines(object_list[i].corner4.x, object_list[i].corner4.y,
277:  		object_list[i].corner1.x, object_list[i].corner1.y,yellow);
278:  
279:        setCPixel(object_list[i].corner1.x, object_list[i].corner1.y,dk_red);
280:        setCPixel(object_list[i].corner2.x, object_list[i].corner2.y,dk_blue);
281:        setCPixel(object_list[i].corner3.x, object_list[i].corner3.y,white);
282:        setCPixel(object_list[i].corner4.x, object_list[i].corner4.y,dk_green);
283:  
284:        /*labels for middle points*/
285:        display_labels(ttt_data->corners.corner1.x, ttt_data->corners.corner1.y);
286:        display_labels(ttt_data->corners.corner2.x, ttt_data->corners.corner2.y);
287:        display_labels(ttt_data->corners.corner3.x, ttt_data->corners.corner3.y);
288:        display_labels(ttt_data->corners.corner4.x, ttt_data->corners.corner4.y);
289:     }
290:  
291:     /*if there is board to draw and just make sure there isn't a NULL pointer*/
292:     if((draw_abstract_board > -1) && ttt_data)
293:     {
294:        /*This code should draw the bounding box*/
295:       /*setCLines(ttt_data->corners.corner1.x, 
296:                  ttt_data->corners.corner1.y,
297:                  ttt_data->corners.corner3.x,
298:                  ttt_data->corners.corner3.y,blue);
299:        setCLines(ttt_data->corners.corner4.x,
300:                  ttt_data->corners.corner4.y,
301:                  ttt_data->corners.corner2.x,
302:                  ttt_data->corners.corner2.y,blue);
303:        setCLines(ttt_data->corners.corner3.x,
304:                  ttt_data->corners.corner3.y,
305:                  ttt_data->corners.corner2.x,
306:                  ttt_data->corners.corner2.y,blue);
307:        setCLines(ttt_data->corners.corner4.x,
308:                  ttt_data->corners.corner4.y,
309:                  ttt_data->corners.corner1.x,
310:                  ttt_data->corners.corner1.y,blue);
311:        setCPixel(ttt_data->corners.corner1.x,
312:                  ttt_data->corners.corner1.y, red);
313:        setCPixel(ttt_data->corners.corner2.x,
314:                  ttt_data->corners.corner2.y, red);
315:        setCPixel(ttt_data->corners.corner3.x,
316:                  ttt_data->corners.corner3.y, red);
317:        setCPixel(ttt_data->corners.corner4.x,
318:                  ttt_data->corners.corner4.y, red);
319:       */
320:  
321:        setCLines(ttt_data->side13.x,
322:                  ttt_data->side13.y,
323:                  ttt_data->side42.x,
324:                  ttt_data->side42.y,blue);
325:        setCLines(ttt_data->side31.x,
326:                  ttt_data->side31.y,
327:                  ttt_data->side24.x,
328:                  ttt_data->side24.y,blue);
329:        setCLines(ttt_data->side23.x,
330:                  ttt_data->side23.y,
331:                  ttt_data->side41.x,
332:                  ttt_data->side41.y,blue);
333:        setCLines(ttt_data->side32.x,
334:                  ttt_data->side32.y,
335:                  ttt_data->side14.x,
336:                  ttt_data->side14.y,blue);
337:  
338:        setCPixel(ttt_data->middle1.x, ttt_data->middle1.y, red);
339:        setCPixel(ttt_data->middle2.x, ttt_data->middle2.y, red);
340:        setCPixel(ttt_data->middle3.x, ttt_data->middle3.y, red);
341:        setCPixel(ttt_data->middle4.x, ttt_data->middle4.y, red);
342:  
343:        /*labels for middle points*/
344:        display_labels(ttt_data->middle1.x, ttt_data->middle1.y);
345:        display_labels(ttt_data->middle2.x, ttt_data->middle2.y);
346:        display_labels(ttt_data->middle3.x, ttt_data->middle3.y);
347:        display_labels(ttt_data->middle4.x, ttt_data->middle4.y);
348:  
349:        /*lables for side points*/
350:        display_labels(ttt_data->side13.x, ttt_data->side13.y);
351:        display_labels(ttt_data->side14.x, ttt_data->side14.y);
352:        display_labels(ttt_data->side23.x, ttt_data->side23.y);
353:        display_labels(ttt_data->side24.x, ttt_data->side24.y);
354:        display_labels(ttt_data->side31.x, ttt_data->side31.y);
355:        display_labels(ttt_data->side32.x, ttt_data->side32.y);
356:        display_labels(ttt_data->side41.x, ttt_data->side41.y);
357:        display_labels(ttt_data->side42.x, ttt_data->side42.y);      
358:     }
359:     glFlush();
360:  }
361:  
362:  /**********************Support functions*******************************/
363:  /***********************************************************************/
364:  
365:  void pxlcpy(PGMImage *dest, int dest_row, int dest_col,
366:  	    PGMImage *src, int src_row, int src_col)
367:  {
368:    /*make sure values are within bounds*/
369:    if(dest_col > 0 && dest_col < (*dest).width
370:       && dest_row > 0 && dest_row < (*dest).height
371:       && src_col > 0 && src_col < (*src).width
372:       && src_row > 0 && src_row < (*src).height)
373:    {
374:      (*dest).data[dest_row][dest_col].red =
375:        (*src).data[src_row][src_col].red;
376:  
377:      (*dest).data[dest_row][dest_col].green =
378:        (*src).data[src_row][src_col].green;
379:  
380:      (*dest).data[dest_row][dest_col].blue =
381:        (*src).data[src_row][src_col].blue;
382:    }
383:  } 
384:  
385:  int rgb_avg(RGB_INT cur_pxl)
386:  {
387:     /*convert each RGB to the average of the original*/
388:     return ((cur_pxl.red + cur_pxl.green + cur_pxl.blue) / 3);
389:  }
390:  
391:  /*Returns average (with RGB avg) pixel value for the image passed in.*/
392:  int img_pxl_avg(PGMImage* img)
393:  {
394:     int i, j; /*loop counting*/
395:     int sum = 0;
396:     int temp;
397:  
398:     for(i = 0; i < (*img).height; i++)/*collumn*/
399:        for(j = 0; j < (*img).width; j++)/*row*/
400:           sum += rgb_avg((*img).data[i][j]);
401:  
402:  printf("sum: %d  height: %d  width: %d\n", sum, (*img).height, (*img).width);
403:     temp = (sum / ((*img).height * (*img).width));
404:  printf("temp: %d\n", temp);
405:     return temp;
406:  }
407:  
408:  /*1st: pixel one of type RGB_INT
409:  2nd: pixel one of type RGB_INT
410:  3rd: differnce allowed to be considered "equal" or close enough*/
411:  int pxlcmp (RGB_INT pxl1, RGB_INT pxl2, int range)
412:  {
413:    return ((abs((rgb_avg(pxl1) - rgb_avg(pxl2)))) < range);
414:  }
415:  
416:  /*return >0 if number of pixels is greater than img. pxl. avg., return <0 if
417:    number of pixesl is less than img. pxl. avg. and return zero of equal*/
418:  int background(int treash_value, PGMImage* img)
419:  {
420:     int i, j; /*loop counting*/
421:     int pxl_less = 0, pxl_more = 0;
422:  
423:     for(i = 0; i < (*img).height; i++)/*collumn*/
424:        for(j = 0; j < (*img).width; j++)/*row*/
425:        {
426:  	 if(rgb_avg((*img).data[i][j]) < treash_value)
427:  	   pxl_less++;
428:  
429:           if(rgb_avg((*img).data[i][j]) > treash_value)
430:  	   pxl_more++;
431:        }
432:  
433:     if(pxl_less > pxl_more)
434:        return -1;
435:     else if(pxl_less < pxl_more)
436:        return 1;
437:     else
438:        return 0;
439:  }
440:  
441:  /*Used by showColor() and detect_pieces()*/
442:  coord find_dividers(coord point1, coord point2, float t)
443:  {
444:     coord temp;
445:     
446:     temp.x = (int)(((1.0 - t) * point1.x) + (t * point2.x));
447:     temp.y = (int)(((1.0 - t) * point1.y) + (t * point2.y));
448:     
449:     return temp;   
450:  }
451:  
452:  /******Perspective correction*******************************************
453:  ***********************************************************************/
454:  void pers_corr(PGMImage* new_img, PGMImage* org_img)
455:  {
456:     /*i and j are the left half, k and l are the right half*/
457:     float i, k; /*loop counting*/
458:     int j, l, row; /*loop counting*/
459:     int old_i, old_k;
460:  
461:     float ins_s = 2.0; /*insert constant starting value*/
462:     float ins_k = ins_s; /*insert constant*/
463:  
464:     /*The halfway marks in the width.*/
465:     int mid_width_left = ((*new_img).width / 2) - 1;
466:     int mid_width_right = ((*new_img).width / 2);
467:     
468:     /*just to be thourough clear the memory and reset maxes*/
469:     memset(new_img, 0, sizeof(PGMImage));
470:     (*new_img).height = (*org_img).height;
471:     (*new_img).width = (*org_img).width;
472:     (*new_img).maxVal = (*org_img).maxVal;
473:  
474:     /****x direction correction******/
475:  
476:     /*Loop through each row from top to bottom...*/
477:     for(row = ((*new_img).height - 1); row >= 0; row--)
478:     {
479:        /*...reset moire interference removal counter...*/
480:        old_i = ((*new_img).width / 2) - 1;
481:        old_k = ((*new_img).width / 2);
482:  
483:        /*...so each half is ajusted to remove perspective effect...*/
484:        for(i = j = mid_width_left, k = l = mid_width_right
485:  	    ; i >= 0, j >= 0, k < (*new_img).width, l < (*new_img).width
486:  	    ; i -= ins_k, j--, k += ins_k, l++)
487:        {
488:  	 for(;old_i >= (int)i; old_i--)  /*...in the left half...*/ 
489:  	    pxlcpy(new_img, row, old_i, org_img, row, j);
490:  	 for(;old_k <= (int)k; old_k++)  /*...in the right half.*/
491:  	    pxlcpy(new_img, row, old_k, org_img, row, l);
492:        }
493:        /*Move the new image x_coord pixel counter to next new image pixel*/
494:        ins_k -= ((ins_s - 1.0) / (*new_img).height);
495:     }
496:  }
497:  
498:  /*****convert color to grayscale****************************************
499:  ***********************************************************************/
500:  void color_to_gray(PGMImage* new_img, PGMImage* org_img)
501:  {
502:     int row, col; /*loop counting*/
503:     RGB_INT cur_pxl; /*current pixel*/
504:  
505:     (*new_img).height = (*org_img).height;
506:     (*new_img).width = (*org_img).width;
507:     (*new_img).maxVal = (*org_img).maxVal;
508:  
509:     /*Starting with the top row...*/
510:     for(row = (*new_img).height - 1; row >= 0; row--)
511:        for(col = 0; col < (*new_img).width - 1; col++)
512:        {
513:  	 cur_pxl = (*org_img).data[row][col]; /*more readable*/
514:  	
515:  	 /*convert each RGB to the average of the original*/
516:  	 (*new_img).data[row][col].red =  rgb_avg(cur_pxl);
517:  	 (*new_img).data[row][col].green =  rgb_avg(cur_pxl);
518:  	 (*new_img).data[row][col].blue =  rgb_avg(cur_pxl);
519:        }
520:  }
521:  
522:  /*******Edge highlighting**********************************************
523:  **********************************************************************/
524:  void moravec(PGMImage* new_img, PGMImage* org_img)
525:  {
526:     int row, col; /*loop counting*/
527:     int i, j, k, l; /*Sanka, Hlavac & Boyle; p. 97 f. 4.73*/
528:     int running_sum;
529:     float K = .5; /*.125 according to org. formula, but .5 is brighter*/
530:     int max_val = 0, row_max, col_max; /* max porportion value in image*/
531:     printf("width: %d\n", (*org_img).height);
532:     memset(new_img, 0, sizeof(PGMImage));
533:     (*new_img).height = (*org_img).height;
534:     (*new_img).width = (*org_img).width;
535:     (*new_img).maxVal = (*org_img).maxVal;
536:    
537:     /*starting at the top row*/
538:     for(row = (*new_img).height - 1 - 1; row > 0; row--)
539:        for(col = 1; col < (*new_img).width - 1; col++) /*left col start*/
540:        {
541:  	 i = row;
542:  	 j = col;
543:  	 running_sum = 0;
544:  
545:  	 /*Sanka, Hlavac & Boyle; p. 97 f. 4.73*/
546:  	 for(k = i - 1; k <= i + 1; k++) /*row*/
547:  	   for(l = j - 1; l <= j + 1; l++) /*column*/
548:  	     running_sum += abs(rgb_avg((*org_img).data[k][l]) -
549:  				rgb_avg((*org_img).data[i][j]));
550:  
551:  	 /*assign the new pixel value*/
552:  	 /*since it all the data is initalized to 0, we only worry when it
553:             shouldn't be*/
554:  	 if((int)(K * running_sum) >= 128)
555:  	 {
556:  	    (*new_img).data[row][col].red = 255;
557:  	    (*new_img).data[row][col].green = 255;
558:  	    (*new_img).data[row][col].blue = 255;
559:  	  }
560:  	   /*this is the original code...*/
561:  	   /*(*new_img).data[row][col].red = (int)(K * running_sum);
562:  	 (*new_img).data[row][col].green = (int)(K * running_sum);
563:  	 (*new_img).data[row][col].blue = (int)(K * running_sum);*/
564:        } 
565:  }
566:  
567:  /*******Corners*****************************************************
568:  *******************************************************************/
569:  
570:  /*takes two coordinates as x and y pairs and returns the distence betweem them
571:     as a decimal*/
572:  float findDist(int x1, int y1, int x2, int y2)
573:  {
574:     return sqrt(((x1 - x2) * (x1 - x2)) + ((y1 - y2) * (y1 - y2)));
575:  }
576:           
577:  /*1st param: The array of coords that the first point of the major axis is
578:     returned in.
579:  2nd: The array of coords that the second point of the major axis is
580:     returned in.
581:  3rd: The array of chain codes that are searched through to find the major
582:     axes.*/
583:  /* Note: the ending condition is when a NULL chainCodes value is reached.
584:     Thusly, it works like a string requiring it to have the last legal value
585:     followed by a null value.*/
586:  void findFirstTwoCorners(object *objects_array, list_info* chainCodes)
587:  {
588:     int i; /*loop counting*/
589:     list_info temp, search;
590:     double max_dist, test_dist;
591:  
592:  /*printf("\nFinding first 2 corners.\n");*/
593:  
594:     /*as long as there are codes to check, keep checking.  Note: the ending
595:     condition is when a NULL chainCodes value is reached.  Thusly, it works
596:     like a string requiring it to have the last legal value followed by a
597:     null value.*/
598:     for(i = 0; ((i < MAX_CHAINS) && chainCodes[i].cur); i++)
599:     {      
600:        memcpy(&temp, &chainCodes[i], sizeof(list_info)); 
601:  
602:        max_dist = 0.0;  /*reset this for each iteration*/
603:  
604:  /*printf("checking list: %d\n", i);*/
605:  
606:        while(RetrieveNextNode(&temp).cur) /*while there are nodes to check*/
607:        {
608:  	 /*set the faster moving search pointer to temp,
609:  	   this increases the effiecency a lot compared to
610:  	   setting it equal to the first node..*/
611:           memcpy(&search, &temp, sizeof(list_info));
612:           
613:  	 while(RetrieveNextNode(&search).cur)
614:           {
615:  /*setCPixel(RetrieveInfo(&temp).location.x,
616:    RetrieveInfo(&temp).location.y, green);*/
617:  
618:              /*determine if found a new maximum distance between two locations*/
619:              if((test_dist = findDist(RetrieveInfo(&search).location.x,
620:  				     RetrieveInfo(&search).location.y,
621:  				     RetrieveInfo(&temp).location.x,
622:  				     RetrieveInfo(&temp).location.y))>max_dist)
623:              {
624:                 max_dist = test_dist;
625:                 objects_array[i].corner1.x = RetrieveInfo(&temp).location.x;
626:                 objects_array[i].corner1.y = RetrieveInfo(&temp).location.y;
627:                 objects_array[i].corner2.x = RetrieveInfo(&search).location.x;
628:                 objects_array[i].corner2.y = RetrieveInfo(&search).location.y;
629:              }
630:              Advance(&search);
631:           }
632:           Advance(&temp);
633:        }
634:  /*printf("point1: %d  %d\n", max1[i].x, max1[i].y);
635:  printf("point2: %d  %d\n", max2[i].x, max2[i].y);*/
636:     }
637:  }
638:  
639:  /*1st param: Array of coords for the first corner of each chain code.
640:  2nd param: Array of coords for the second corner of each chain code.
641:  The first two parameters should equal the first two parameters "returned"
642:  from the findFirstTwoCorners() function.
643:  3rd: Array of coords "returned" with the third corners.
644:  4th:  Array of coords "returned" with the fourth corners.
645:  5th: Pointer pointing to the array of chaincode pointers, obtained from
646:    showChain().*/
647:  void findSecondTwoCorners(object *objects_array, list_info* chain_code_array)
648:  {
649:     int i; /*loop counting*/
650:     list_info temp;
651:     float temp_dist1, temp_dist2; /*distance between point and each corner*/
652:     coord canidate_coord1, temp_coord;
653:     float canidate_dist1, max_dist;
654:     int corner_count;
655:  
656:  /*printf("\nFinding last 2 corners.\n\n");*/
657:  
658:     /*for each chain code find the corners*/
659:     for(i = 0; (i < MAX_CHAINS) && chain_code_array[i].cur; i++)
660:     {
661:        memcpy(&temp, &chain_code_array[i], sizeof(list_info));
662:        
663:        /*reset these for the next chain code*/
664:        max_dist = 0.0;
665:        corner_count = 1;
666:  
667:        /*while there are nodes in the chain code to check*/
668:        /*if there isn't a next node cur is NULL, which is checked*/
669:        while(RetrieveNextNode(&temp).cur)
670:        {
671:  /*setCPixel(RetrieveInfo(&temp).location.x,
672:    RetrieveInfo(&temp).location.y, color1);*/
673:  
674:  	/*determine the first canidate coord for corner 3/4*/
675:  	if(((RetrieveInfo(&temp).location.x == objects_array[i].corner1.x)
676:  	    && (RetrieveInfo(&temp).location.y == objects_array[i].corner1.y))
677:  	   || ((RetrieveInfo(&temp).location.x == objects_array[i].corner2.x)
678:  	     &&(RetrieveInfo(&temp).location.y == objects_array[i].corner2.y)))
679:  	{
680:  	  /*if this corner found is the first of the two allready known
681:  	    corners, then set the first canidate coord data and reset data
682:  	    to find the next canidate corner point*/
683:  	   if(corner_count == 1)
684:  	   {
685:  	      canidate_coord1.x = temp_coord.x;
686:  	      canidate_coord1.y = temp_coord.y;
687:  	      canidate_dist1 = max_dist;
688:  
689:  	      corner_count = 2; /*set for next corner*/
690:  	      max_dist = 0.0;
691:  	   }
692:  	   else if(corner_count == 2)
693:  	   {
694:  	      /*the second canidate is always a corner*/
695:  	      all_objects[i].corner4.x = temp_coord.x;
696:  	      all_objects[i].corner4.y = temp_coord.y;
697:  	      
698:  	      max_dist = 0.0; /*set for next corner canidate*/
699:  	   }
700:  	}
701:  
702:  	/*calculate the distance between the current point being checked and
703:  	  each corner point*/
704:  	temp_dist1 = findDist(all_objects[i].corner1.x,
705:  			      all_objects[i].corner1.y,
706:  			      RetrieveInfo(&temp).location.x,
707:  			      RetrieveInfo(&temp).location.y);
708:  	temp_dist2 = findDist(all_objects[i].corner2.x,
709:  			      all_objects[i].corner2.y,
710:  			      RetrieveInfo(&temp).location.x,
711:  			      RetrieveInfo(&temp).location.y);
712:  
713:  	/*if the current point is the furthest away sofar, store this point
714:  	  untill it is overridden or becomes a canidate point*/
715:  	if((temp_dist1 + temp_dist2) > max_dist)
716:  	{
717:  	   temp_coord.x = RetrieveInfo(&temp).location.x;
718:  	   temp_coord.y = RetrieveInfo(&temp).location.y;
719:  	  
720:  	   max_dist = (temp_dist1 + temp_dist2);
721:  	}
722:  
723:  	Advance(&temp);
724:        }
725:  
726:        /*from the three canidate coords find the two real corners.*/
727:        /*the second canidate will always be a corner, must test 1 vs 3, where
728:  	three is in the variables temp_coord and max_dist.*/
729:        if(canidate_dist1 > max_dist) /*first canidate*/
730:        {
731:           all_objects[i].corner3.x = canidate_coord1.x;
732:  	 all_objects[i].corner3.y = canidate_coord1.y;
733:        }
734:        else /*third canidate*/
735:        {
736:           all_objects[i].corner3.x = temp_coord.x;
737:  	 all_objects[i].corner3.y = temp_coord.y;
738:        }
739:  /*printf("corner3: (%d, %d)  corner4: (%d, %d)\n", corner3[i].x,
740:    corner3[i].y, corner4[i].x, corner4[i].y);*/
741:     }
742:  }
743:  
744:  /*takes a pointer to an image, and a pointer pointing to an array of
745:    chain codes pointers, here each chainCode pointer needs to be accessed
746:    by calculating the memory address.*/
747:  void showBound(/*PGMImage *original,*/ list_info* chainCodes, object *all_objects)
748:  {     
749:     int i;
750:  
751:     /*find the first two corners.  they will be across a diagnal.*/
752:     findFirstTwoCorners(all_objects, chainCodes);
753:     /*find the second two corners.  they will be across a diagnal too.*/
754:     findSecondTwoCorners(all_objects, chainCodes);
755:     /*     
756:     for(i = 0; chainCodes[i] && i < MAX_CHAINS; i++)
757:     {
758:        setCLines(corner1[i].x, corner1[i].y, corner3[i].x, corner3[i].y,yellow);
759:        setCLines(corner4[i].x, corner4[i].y, corner2[i].x, corner2[i].y,yellow);
760:        setCLines(corner3[i].x, corner3[i].y, corner2[i].x, corner2[i].y,yellow);
761:        setCLines(corner4[i].x, corner4[i].y, corner1[i].x, corner1[i].y,yellow);
762:        setCPixel(corner1[i].x, corner1[i].y, magenta);
763:        setCPixel(corner2[i].x, corner2[i].y, magenta);
764:        setCPixel(corner3[i].x, corner3[i].y, magenta);
765:        setCPixel(corner4[i].x, corner4[i].y, magenta);
766:        }*/
767:  }
768:  
769:  /*returns the number of objects found*/
770:  /*places the corner info in the global corners data*/
771:  int detect_corners(list_info* current_chaincodes,
772:  		   object *objects_array)
773:  {
774:     int i; /*temporarily holds number of chaincodes*/
775:  
776:     showBound(/*org_img,*/ current_chaincodes, objects_array);
777:  
778:     /*when this stops, i holds the number of chaincodes*/
779:     for(i = 0; (i < MAX_CHAINS) && chain_codes && chain_codes[i].cur; i++);
780:  
781:     return i;
782:  }
783:  
784:  /*******Find the game board********************************************
785:  **********************************************************************/
786:  
787:  float compare_length(float length1, float length2)
788:  {
789:     float denom_check = fabs((length1 + length2) / 2);
790:     if(denom_check == 0)
791:     {
792:        /*the only way to possibly pull this off is if one point is
793:  	is considered more than one corner.  This is most likely
794:  	to happen where the chain was only two or three nodes long.*/
795:        /*Just set the error to the maximum value obtained from float.h,
796:  	since such a small chain is not what we are looking for.*/
797:       
798:       /*error24to13[i] =*/ return FLT_MAX;
799:     }
800:     else
801:  /*error24to13[i] =*/return fabs(length1 - length2) / denom_check;
802:  }
803:  
804:  /*determines which object is the game board and determine moves made in
805:     the game.*/
806:  /*takes the number of object corners (equal to # of chaincodes) as param.*/
807:  int detect_game(list_info *current_chaincodes, object *object_array)
808:  {
809:     float length2to4[MAX_CHAINS], length1to3[MAX_CHAINS]; /*side pairs*/
810:     float length1to4[MAX_CHAINS], length2to3[MAX_CHAINS]; /*side pairs*/
811:     float length1to2[MAX_CHAINS], length3to4[MAX_CHAINS]; /*diagnaols*/
812:  
813:     float error24to13[MAX_CHAINS], error14to23[MAX_CHAINS];/*opp. sides*/
814:     float error14to13[MAX_CHAINS], error23to24[MAX_CHAINS];/*share corner*/
815:     float error31to32[MAX_CHAINS], error41to42[MAX_CHAINS];/*share corner*/
816:     float error12to34[MAX_CHAINS];/*diagnaols*/
817:  
818:     float error_avg;/*average of the errors stored in error##to## variables*/
819:  
820:     int i, k; /*loop counting*/
821:     /*float denom_check; /*make sure denominators are not zero*/
822:     list* temp;
823:  
824:     /*the most likely object (0 to num_of_corners) that is to be considered
825:       as the board.  The float is the error associated with this object.*/
826:     int most_likely = -1;
827:     float ml_error = FLT_MAX; /*just to make sure*/
828:  printf("here inside detect game\n");
829:     /*for each chaincode*/
830:     for(i = 0; (i < MAX_CHAINS) && current_chaincodes &&
831:  	 current_chaincodes[i].cur; i++)
832:     {
833:       printf("length: %d\n", Length(¤t_chaincodes[i]));
834:        /*count the number of nodes in the chaincode.  Unless the size is
835:         considered long enough, skip it and move on.*/
836:        if(Length(¤t_chaincodes[i]) < DECENT_SIZED_OBJECT)
837:  	 continue;
838:  printf("here inside detect game for loop\n");
839:        /*since points 1 & 2 are at a diagnal, and 3 & 4 are at a diagnol,
840:           then the dist between  2 and 4 & 1 and 3 should be close
841:           in value.*/
842:        length2to4[i] = findDist(object_array[i].corner2.x,
843:  			       object_array[i].corner2.y,
844:  			       object_array[i].corner4.x,
845:  			       object_array[i].corner4.y);
846:        length1to3[i] = findDist(object_array[i].corner1.x,
847:  			       object_array[i].corner1.y,
848:  			       object_array[i].corner3.x,
849:  			       object_array[i].corner3.y);
850:  
851:        /*the other side pair*/
852:        length1to4[i] = findDist(object_array[i].corner1.x,
853:  			       object_array[i].corner1.y,
854:  			       object_array[i].corner4.x,
855:  			       object_array[i].corner4.y);
856:        length2to3[i] = findDist(object_array[i].corner2.x,
857:  			       object_array[i].corner2.y,
858:  			       object_array[i].corner3.x,
859:  			       object_array[i].corner3.y);
860:        
861:        /*diagnols... always will be 1 & 2 and 3 & 4*/
862:        length1to2[i] = findDist(object_array[i].corner1.x,
863:  			       object_array[i].corner1.y,
864:  			       object_array[i].corner2.x,
865:  			       object_array[i].corner2.y);
866:        length3to4[i] = findDist(object_array[i].corner3.x,
867:  			       object_array[i].corner3.y,
868:  			       object_array[i].corner4.x,
869:  			       object_array[i].corner4.y);
870:  
871:        /*calculate percent errors for all edge (and diagnal) combinations*/
872:        error24to13[i] = compare_length(length2to4[i], length1to3[i]);/*op.side*/
873:        error14to23[i] = compare_length(length1to4[i], length2to3[i]);
874:        error14to13[i] = compare_length(length1to4[i], length1to3[i]);/*1 crn.*/
875:        error23to24[i] = compare_length(length2to3[i], length2to4[i]);
876:        error31to32[i] = compare_length(length1to3[i], length2to3[i]);
877:        error41to42[i] = compare_length(length1to4[i], length2to4[i]);
878:        error12to34[i] = compare_length(length1to2[i], length3to4[i]);/*diag.*/
879:  
880:        /*average all of the error values together*/
881:        error_avg = ((error24to13[i] + error14to23[i] + error14to13[i] +
882:  		    error23to24[i] + error31to32[i] + error41to42[i] +
883:  		    error12to34[i]) / 7);
884:        
885:  printf("error avg: %f\n\n",  error_avg);
886:        /*determine if the current object is considered the most likely to
887:           be the ttt board so far.  Average of all the error##to##'s.
888:           If the current is */
889:        if(ml_error > error_avg)
890:        {
891:           most_likely = i;
892:           ml_error = error_avg;
893:        }
894:     }
895:  
896:    printf("Object %d is most likely the board with %f\%% error.\n",
897:       most_likely, ml_error * 100);
898:  
899:    return most_likely; /*return the object number that is the board*/
900:  }
901:  
902:  coord search_moravec(coord point1, coord point2, PGMImage *moravec)
903:  {
904:     int i, j; /*loop counting*/
905:     float t;
906:     coord temp;
907:     float dist = findDist(point1.x, point1.y, point2.x, point2.y);
908:     int search_size = 5;
909:  
910:     coord most_likely_corner = {-1, -1};
911:     int most_likely_sum = 0;
912:     int sum_moravec_points = 0;
913:  
914:     /*calculate the coordinates where the divider edges should be.*/
915:     for(t = ONE_HALF; t > ONE_SIXTH; t -= (1 / dist))
916:     {
917:        temp = find_dividers(point1, point2, t);
918:        /* search_size = findDist(point1.x, point1.y, point2.x, point2.y) / 10;*/
919:        sum_moravec_points = 0; /*clear this before next iteration*/      
920:  
921:        for(i = -(search_size); i <= search_size; i++)
922:        {
923:  	 for(j = -(search_size); j <= search_size; j++)
924:  	 {
925:  	    if(rgb_avg((*moravec).data[temp.y + i][temp.x + j]) > 115)
926:  	    {
927:  /*setCPixel(temp.x + j, temp.y + i, red);*/
928:  	       sum_moravec_points++;
929:  	    }
930:  	 }
931:        }
932:  
933:        /*if the current point in the search is the best, store it*/
934:        if(most_likely_sum <= sum_moravec_points)
935:        {
936:  	 most_likely_corner.x = temp.x;
937:  	 most_likely_corner.y = temp.y;
938:           most_likely_sum = sum_moravec_points;
939:        }
940:     }
941:  
942:     return most_likely_corner;
943:  }
944:  
945:  
946:  coord find_intersection(coord line1_point1, coord line1_point2,
947:  			coord line2_point1, coord line2_point2)
948:  {
949:     float line1_slope, line2_slope;
950:     coord target = {-1, -1};
951:  int *temp = NULL;
952:     /*find slope for first line*/
953:     if((line1_point1.x - line1_point2.x) != 0)
954:     {
955:        line1_slope = ((float)(line1_point1.y - line1_point2.y)) /
956:  	((float)(line1_point1.x - line1_point2.x));
957:     }
958:     else /*otherwise handle the undefined slope*/
959:     { 
960:       /*find slope for secon line when first is undefined*/
961:        if((line2_point1.x - line2_point2.x) != 0)
962:        {
963:  	 line2_slope = ((float)(line2_point1.y - line2_point2.y)) /
964:  	   ((float)(line2_point1.x - line2_point2.x));
965:        }
966:        else /*this should never happen, but could if someone specifed the same
967:               line twice*/
968:  	return target; /*target is initalized to (-1, -1)*/
969:  
970:        /*since the slope is undefined the x coord in known*/
971:        target.x = line1_point1.x;
972:        target.y = line2_slope * target.x + line2_point1.y; /*y = mx + b*/
973:        printf("line one has undefined slope\n");
974:        return target;
975:     }
976:  
977:     /*find slope for second line*/
978:     if((line2_point1.x - line2_point2.x) != 0)
979:     {
980:        line2_slope = ((float)(line2_point1.y - line2_point2.y)) /
981:  	((float)(line2_point1.x - line2_point2.x));
982:     }
983:     else
984:     {
985:        /*since the slope is undefined the x coord in known*/
986:        target.x = line1_point1.x;
987:        target.y = line1_slope * target.x + line1_point1.y; /*y = mx + b*/
988:        printf("line two has undefined slope\n");
989:        return target;
990:     }
991:  
992:     /*if both lines have defined slopes find the target point*/
993:     /* slope is m and defined by:
994:           (y1 - y2)
995:       m = ---------
996:           (x1 - x2)
997:  
998:       target calculated by setting Yt = M1*(Xt - Xa) + Ya equal to
999:       Yt = M2 * (Xt - Xc) + Yc to get
1000:  
1001:              (Xa*M1 - M2*Xc + Yc - Ya)
1002:         Xt = -------------------------
1003:                   M1 - M2
1004:  
1005:       then to get the y coordinate sub Xt into:
1006:  
1007:       Yt = M1 * (Xt - Xa) + Ya
1008:  
1009:       Where line1_point1 = a
1010:             line1_point2 = b
1011:             line2_point1 = c
1012:  	   line12point2 = d
1013:       and are indicated as subscripts of their X or Y coordinate.
1014:             M1 = line1_slope
1015:             M2 = line2_slope
1016:     */
1017:  
1018:  
1019:     
1020:     target.x = (((float)(line1_point1.x * line1_slope)
1021:  		- (float)(line2_point1.x * line2_slope)
1022:  		+ (float)line2_point1.y - (float)line1_point1.y))
1023:       / (float)(line1_slope - line2_slope);
1024:  
1025:     target.y = line1_slope * ((float)target.x - (float)line1_point1.x)
1026:       + (float)line1_point1.y;
1027:     /*target.y = line2_slope * ((float)target.x - (float)line2_point1.x)
1028:       + (float)line2_point1.y;*/
1029:  
1030:     /*printf("%d\n", *temp);   *//*for gdb*/
1031:     return target;
1032:  }
1033:  
1034:  /*anchor - the corner closest to the side divider point being looked for.
1035:  common - the corner that the line between itself and the anchor corner contains
1036:     the target divider point.
1037:  anchor_opposite - the corner adjacent to the anchor corner & oppsoite common.
1038:  common_opposite - the corner adjacent to the common corner & oppposite anchor.
1039:  */
1040:  /*return the divider point*/
1041:  coord find_side_points(coord anchor, coord common, coord anchor_opposite,
1042:  		       coord common_opposite, PGMImage *moravec)
1043:  {
1044:       coord temp1, temp2;
1045:  
1046:       temp1 = find_dividers(anchor, anchor_opposite, ONE_TWELTH);
1047:       temp2 = find_dividers(common, common_opposite, ONE_TWELTH);
1048:  
1049:       return search_moravec(temp1, temp2, moravec);
1050:  }
1051:  
1052:  
1053:  /*find the ttt boards cross lines coordinates*/
1054:  void detect_ttt_board(object board_object, ttt *board_details,
1055:  		      PGMImage *moravec)
1056:  {
1057:     /*copy the corners into the ttt datatype*/
1058:     memcpy(&(board_details->corners), &board_object, sizeof(object));
1059:     
1060:     board_details->side13 = find_side_points(board_object.corner1,
1061:  					    board_object.corner3,
1062:  					    board_object.corner2,
1063:  					    board_object.corner4, moravec);
1064:   
1065:     board_details->side14 = find_side_points(board_object.corner1,
1066:  					    board_object.corner4,
1067:  					    board_object.corner2,
1068:  					    board_object.corner3, moravec);
1069:  
1070:     board_details->side23 = find_side_points(board_object.corner2,
1071:  					    board_object.corner3,
1072:  					    board_object.corner1,
1073:  					    board_object.corner4, moravec);
1074:     
1075:     board_details->side24 = find_side_points(board_object.corner2,
1076:  					    board_object.corner4,
1077:  					    board_object.corner1,
1078:  					    board_object.corner3, moravec);
1079:  
1080:     board_details->side31 = find_side_points(board_object.corner3,
1081:  					    board_object.corner1,
1082:  					    board_object.corner4,
1083:  					    board_object.corner2, moravec);
1084:     
1085:     board_details->side32 = find_side_points(board_object.corner3,
1086:  					    board_object.corner2,
1087:  					    board_object.corner4,
1088:  					    board_object.corner1, moravec);
1089:  
1090:     board_details->side41 = find_side_points(board_object.corner4,
1091:  					    board_object.corner1,
1092:  					    board_object.corner3,
1093:  					    board_object.corner2, moravec);
1094:     
1095:     board_details->side42 = find_side_points(board_object.corner4,
1096:  					    board_object.corner2,
1097:  					    board_object.corner3,
1098:  					    board_object.corner1, moravec);
1099:  
1100:     board_details->side13 = find_side_points(board_object.corner1,
1101:  					    board_object.corner3,
1102:  					    board_object.corner2,
1103:  					    board_object.corner4, moravec);
1104:   
1105:     board_details->side14 = find_side_points(board_object.corner1,
1106:  					    board_object.corner4,
1107:  					    board_object.corner2,
1108:  					    board_object.corner3, moravec);
1109:  
1110:     board_details->side23 = find_side_points(board_object.corner2,
1111:  					    board_object.corner3,
1112:  					    board_object.corner1,
1113:  					    board_object.corner4, moravec);
1114:     
1115:     board_details->side24 = find_side_points(board_object.corner2,
1116:  					    board_object.corner4,
1117:  					    board_object.corner1,
1118:  					    board_object.corner3, moravec);
1119:  
1120:     /*correct the length of the lines that is shortend to calculate them
1121:       in the first place above.  simply find the intersection of the *short*
1122:       line with that of the outside line between the corners.*/
1123:     board_details->side13 = find_intersection(board_details->side13,
1124:  					     board_details->side42,
1125:  					     board_details->corners.corner1,
1126:  					     board_details->corners.corner3);
1127:     board_details->side14 = find_intersection(board_details->side14,
1128:  					     board_details->side32,
1129:  					     board_details->corners.corner1,
1130:  					     board_details->corners.corner4);
1131:     board_details->side23 = find_intersection(board_details->side23,
1132:  					     board_details->side41,
1133:  					     board_details->corners.corner2,
1134:  					     board_details->corners.corner3);
1135:     board_details->side24 = find_intersection(board_details->side24,
1136:  					     board_details->side31,
1137:  					     board_details->corners.corner2,
1138:  					     board_details->corners.corner4);
1139:     board_details->side31 = find_intersection(board_details->side31,
1140:  					     board_details->side24,
1141:  					     board_details->corners.corner3,
1142:  					     board_details->corners.corner1);
1143:     board_details->side32 = find_intersection(board_details->side32,
1144:  					     board_details->side14,
1145:  					     board_details->corners.corner3,
1146:  					     board_details->corners.corner2);
1147:     board_details->side41 = find_intersection(board_details->side41,
1148:  					     board_details->side23,
1149:  					     board_details->corners.corner4,
1150:  					     board_details->corners.corner1);
1151:     board_details->side42 = find_intersection(board_details->side42,
1152:  					     board_details->side13,
1153:  					     board_details->corners.corner4,
1154:  					     board_details->corners.corner2);
1155:  
1156:     /*now that the sides are found, find the intersections to find the
1157:       middle points*/
1158:     
1159:     board_details->middle1 = find_intersection(board_details->side14,
1160:  					      board_details->side32,
1161:  					      board_details->side13,
1162:  					      board_details->side42);
1163:  
1164:     board_details->middle2 = find_intersection(board_details->side23,
1165:  					      board_details->side41,
1166:  					      board_details->side24,
1167:  					      board_details->side31);
1168:     
1169:     board_details->middle3 = find_intersection(board_details->side31,
1170:  					      board_details->side24,
1171:  					      board_details->side32,
1172:  					      board_details->side14);
1173:  printf("middle3: (%d, %d)\n", board_details->middle3.x, board_details->middle3.y);
1174:     board_details->middle4 = find_intersection(board_details->side41,
1175:  					      board_details->side23,
1176:  					      board_details->side42,
1177:  					      board_details->side13);
1178:  
1179:  }
1180:  
1181:  /*****Find the pieces***************************************************
1182:  ***********************************************************************/
1183:  
1184:  /*Takes four points that must be in order going around the region.  Also,
1185:    needs a pointer to an image with the moravec filter applied.*/
1186:  int search_area(coord point1, coord point2, coord point3, coord point4,
1187:  		PGMImage *moravec)
1188:  {
1189:     /*The following variables are used to calculate the existence of a marble
1190:       at a location on the board or not.  Uses the following basic formula
1191:          new_point = ((t-1) * 1st point) + (t * 2nd point)
1192:       where the start & end coords are opposite sides of the area being
1193:       searched.  If you take the entire area of a single position on a ttt
1194:       board, the area that is searched is the region that is bouned by the
1195:       points halfway between those passed in to this function.*/
1196:       
1197:     float t, s, r; /*hold values incrementing from 0 to 1*/
1198:     coord t_start, t_end, s_start, s_end;
1199:     coord temp_t, temp_s, temp_r;
1200:     float dist_t, dist_s, dist_r;
1201:  
1202:     /*pixel count of those over the threashhold and total pixels*/
1203:     int pixel_count = 0, moravec_count = 0;
1204:  
1205:     t_start = find_dividers(point1, point2, ONE_HALF);
1206:     t_end = find_dividers(point1, point4, ONE_HALF);
1207:  
1208:     s_start = find_dividers(point3, point2, ONE_HALF);
1209:     s_end = find_dividers(point3, point4, ONE_HALF);
1210:  
1211:     dist_t = findDist(t_start.x, t_start.y, t_end.x, t_end.y);
1212:     dist_s = findDist(s_start.x, s_start.y, s_end.x, s_end.y);
1213:     printf("%f  %f\n", dist_t, dist_s);
1214:  
1215:     /*march two points along that parallel each other in the search area*/
1216:     for(t = 0.0, s = 0.0; t <= 1.0; t += (1.0 / dist_t), s += (1.0 / dist_s))
1217:     {
1218:        temp_t = find_dividers(t_start, t_end, t);
1219:  
1220:  	 temp_s = find_dividers(s_start, s_end, s);
1221:  
1222:  	 dist_r = findDist(temp_t.x, temp_t.y, temp_s.x, temp_s.y);
1223:  
1224:           /*march a single point along that starts at temp_s and ends
1225:  	   at temp_t.  This fills in the region for the search.*/
1226:  	 for(r = 0.0; r <= 1.0; r += (1 / dist_r))
1227:  	 {
1228:  	    temp_r = find_dividers(temp_s, temp_t, r);
1229:  
1230:              /*talley the number of edge points found (rgb. avg. >= 128)*/
1231:  	    if(rgb_avg((*moravec).data[temp_r.y][temp_r.x]) >= 128)
1232:  	    {
1233:  	       setCPixel(temp_r.x, temp_r.y, blue);
1234:  	       moravec_count++;
1235:  	    }
1236:  	    pixel_count++; /*increment the number of pixels*/
1237:  	 }
1238:  
1239:     }
1240:  
1241:     printf("total: %d  edge: %d\n", pixel_count, moravec_count);
1242:     
1243:     /*if the number of edge pixels is greater than 10% of the total, then
1244:       this is an edge of marble.  The percent is there because there could be
1245:       a few small blobs that get counted when the shouldn't that otherwise
1246:       would give a positive hit that a marble was found*/
1247:     if(moravec_count >= (pixel_count / 10))
1248:        return TRUE;
1249:  
1250:     /*otherwise a marble isn't here*/
1251:     return FALSE;
1252:  }
1253:  
1254:  /*takes the object number that is determined to be the board*/
1255:  void detect_pieces(ttt *board_data, PGMImage* moravec)
1256:  {
1257:      if(search_area(board_data->corners.corner1, board_data->side13,
1258:  		 board_data->middle1, board_data->side14, moravec))
1259:      printf("corner 1 has a piece\n");
1260:    else
1261:      printf("corner 1 has no piece\n");
1262:    
1263:    
1264:    if(search_area(board_data->middle1, board_data->middle3,
1265:  		 board_data->middle2, board_data->middle4, moravec))
1266:      printf("middle has a piece\n");
1267:    else
1268:    printf("middle has no piece\n");
1269:    
1270:  
1271:    if(search_area(board_data->corners.corner2, board_data->side23,
1272:  		 board_data->middle2, board_data->side24, moravec))
1273:      printf("corner 2 has a piece\n");
1274:    else
1275:      printf("corner 2 has no piece\n");
1276:  
1277:  setCPixel(board_data->middle1.x, board_data->middle1.y, red);
1278:  setCPixel(board_data->middle2.x, board_data->middle2.y, green);
1279:  setCPixel(board_data->middle3.x, board_data->middle3.y, blue);
1280:  setCPixel(board_data->middle4.x, board_data->middle4.y, yellow);
1281:  }
1282:  
1283:  
1284:  /* =================================================================
1285:   * Callback functions.
1286:   *
1287:   * color = displayed graphics in window
1288:   * menu = menu event handling
1289:   * keyboard = deyboard event handling
1290:   * ----------------------------------------------------------------- */
1291:  void color(void)
1292:  {
1293:    /*glClear (GL_COLOR_BUFFER_BIT);*/
1294:  
1295:    /*show the current image*/
1296:    showColor(img_cur);
1297:  
1298:    /*show the current abstract information*/
1299:    showAbstract(all_objects, ttt_board);   
1300:  
1301:  }
1302:  
1303:  void buffer()
1304:  {
1305:     /*if the drawing state of all objects is enabled, recalculate*/
1306:     if(draw_abstract_lines >= 0)
1307:       draw_abstract_lines = detect_corners(chain_codes, all_objects);
1308:  
1309:     /*if the drawing state of the object most likely to be the board is
1310:       found, recalulate*/
1311:     if(draw_abstract_board >= 0)
1312:        draw_abstract_board = detect_game(chain_codes, all_objects);
1313:  
1314:     glutPostRedisplay();
1315:  }
1316:  
1317:  #define RESTART 0
1318:  #define PERS_CORR 3
1319:  #define COLOR_TO_GRAY 4
1320:  #define MORAVEC 5
1321:  #define EDGES 6
1322:  #define CORNERS 7
1323:  #define BUFFERS 8
1324:  #define GAME 9
1325:  #define PIECES 10
1326:  
1327:  /*this is not a callback function, but is used inside menu() for setting
1328:    new states of execution*/
1329:  void reset_state(PGMImage* new_current)
1330:  {
1331:     img_cur = new_current;
1332:     draw_abstract_lines = -1;
1333:     draw_abstract_board = -1;
1334:     free_chaincodes(&chain_codes);
1335:  }
1336:  
1337:  void menu(int selection)
1338:  {
1339:     if(selection == RESTART)   
1340:     {
1341:        reset_state(img_original);
1342:     }
1343:     if(selection == PERS_CORR)
1344:     {
1345:        pers_corr(img_pers_corr, img_cur);
1346:        reset_state(img_pers_corr);
1347:     }
1348:     if(selection == COLOR_TO_GRAY)
1349:     {
1350:        color_to_gray(img_grayscale, img_cur);
1351:        reset_state(img_grayscale);
1352:     }
1353:     if(selection == MORAVEC)
1354:     {
1355:        moravec(img_moravec, img_cur);
1356:        reset_state(img_moravec);
1357:     }
1358:     if(selection == EDGES)
1359:     {
1360:        /*if there is a chaincode already in memory, free it before a new one
1361:  	is created.*/
1362:        showChain(img_cur, &chain_codes);
1363:     }
1364:     if(selection == CORNERS)
1365:     {
1366:        /*if there are chaincodes already in memory, free it before a new one
1367:  	is created.*/
1368:        showChain(img_cur, &chain_codes);
1369:  
1370:        draw_abstract_lines = detect_corners(chain_codes, all_objects);
1371:     }
1372:     if(selection == BUFFERS)
1373:     {
1374:        if(is_buffered == FALSE)
1375:        {
1376:  	 glutIdleFunc(buffer);
1377:  	 is_buffered = TRUE;
1378:        }
1379:        else
1380:        {
1381:  	 glutIdleFunc(NULL);
1382:  	 is_buffered = FALSE;
1383:        }
1384:     }
1385:     if(selection == GAME)
1386:     {
1387:        /*need an image with the moravec filter applied*/
1388:        /*don't calculating this if it is the current image!!!
1389:  	Bad things happen like memseting to zero the current image.*/
1390:        if(img_cur != img_moravec)
1391:        {
1392:  	 moravec(img_moravec, img_cur);
1393:  	 /*img_cur = img_moravec;*/
1394:        }
1395:  
1396:        /*if there are chaincodes already in memory, free it before a new one
1397:  	is created.*/
1398:        showChain(img_moravec, &chain_codes);
1399:  
1400:        detect_corners(chain_codes, all_objects);
1401:        draw_abstract_board = detect_game(chain_codes, all_objects);
1402:        detect_ttt_board(all_objects[draw_abstract_board], ttt_board,
1403:  		       img_moravec);
1404:  return;
1405:     }
1406:     if(selection == PIECES)
1407:     {
1408:        /*need an image with the moravec filter applied*/
1409:        /*don't calculating this if it is the current image!!!
1410:  	Bad things happen like memseting to zero the current image.*/
1411:        if(img_cur != img_moravec)
1412:        {
1413:  	 moravec(img_moravec, img_cur);
1414:  	 /*img_cur = img_moravec;*/
1415:        }
1416:  
1417:        /*if there are chaincodes already in memory, they are freed before a
1418:  	new one is created.*/
1419:        showChain(img_moravec, &chain_codes);
1420:  
1421:        /*detect the ttt game board*/
1422:        detect_corners(chain_codes, all_objects);
1423:        draw_abstract_board = detect_game(chain_codes, all_objects);
1424:        detect_ttt_board(all_objects[draw_abstract_board], ttt_board,
1425:  		       img_moravec);
1426:  
1427:        /*detect the locations of the pieces*/
1428:        detect_pieces(ttt_board, img_moravec);
1429:  
1430:        glFlush();
1431:        return;
1432:     }
1433:  
1434:     glutPostRedisplay(); /*redraw the image*/
1435:  }
1436:  
1437:  void keyboard(unsigned char key, int x, int y)
1438:  { 
1439:     switch (key)
1440:     {
1441:        case 27: 
1442:           exit(0);
1443:           break;
1444:     }
1445:  }
1446:  
1447:  void mouse(int button, int state, int x, int y)
1448:  {
1449:    char temp[50];
1450:    
1451:    if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
1452:    {
1453:       sprintf(temp, "(x, y): (%d, %d)  red: %d green: %d blue: %d\n",
1454:  	     x, VSIZE - y, (*img_cur).data[VSIZE - y][x].red,
1455:  	     (*img_cur).data[VSIZE - y][x].green,
1456:  	     (*img_cur).data[VSIZE - y][x].blue);
1457:       setCRect(0, 0, 200, 12, black);
1458:       glColor3f(1.0, 0.0, 0.0);
1459:       drawString(0, 0, GLUT_BITMAP_TIMES_ROMAN_10, temp, red);
1460:       glFlush();
1461:    }
1462:  }
1463:  
1464:    
1465:  /* =================================================================
1466:   * init() & parse_command_line()
1467:   * initalize none-OpenGL related things.
1468:   * ----------------------------------------------------------------- */
1469:  
1470:  /*set global flag variables from things specified at commandline.*/
1471:  /*return the filename specified, if none specified exit().*/
1472:  char* parse_command_line(int argc, char** argv)
1473:  {
1474:     /*parse the command line*/
1475:     if(argc == 1)
1476:     {
1477:        printf("To few parameters.\n");
1478:        printf("Usage: research <file.pgm>\n");
1479:        exit(1);
1480:     }
1481:     else if(argc == 2)
1482:     {
1483:       return argv[1];
1484:     }
1485:     else
1486:     {
1487:        printf("To many parameters.\n");
1488:        printf("Usage: research <file.pgm>\n");
1489:        exit(1);
1490:     }
1491:  }
1492:  
1493:  char* init (int argc, char** argv)
1494:  {
1495:     char* PGMfileName;/*pointer to the string containing the filename*/
1496:  
1497:     /*parse the command line*/
1498:     PGMfileName = parse_command_line(argc, argv);
1499:     
1500:  /*
1501:   * Read in image file. - note: sets our global values, too.
1502:   * ----------------------------------------------------------------- */
1503:        
1504:     /*allocate memory for original image*/
1505:     img_original = (PGMImage*) malloc(sizeof(PGMImage));
1506:     getPGMfile(PGMfileName, img_original);
1507:     HSIZE = (*img_original).width;
1508:     VSIZE = (*img_original).height;
1509:     MVAL = (*img_original).maxVal;
1510:  
1511:     img_cur = img_original; /*VERY IMPORTANT to set this*/
1512:              
1513:     /*allocate memory for pers. corr. image*/
1514:     img_pers_corr = (PGMImage*) malloc(sizeof(PGMImage));
1515:     (*img_pers_corr).width = HSIZE;
1516:     (*img_pers_corr).height = VSIZE;
1517:     (*img_pers_corr).maxVal = 255;
1518:               
1519:     img_grayscale = (PGMImage*) malloc(sizeof(PGMImage));
1520:     (*img_grayscale).width = HSIZE;
1521:     (*img_grayscale).height = VSIZE;
1522:     (*img_grayscale).maxVal = 255;
1523:  
1524:     img_moravec = (PGMImage*) malloc(sizeof(PGMImage));
1525:     (*img_moravec).width = HSIZE;
1526:     (*img_moravec).height = VSIZE;
1527:     (*img_moravec).maxVal = 255;
1528:  
1529:  
1530:     all_objects = (object*) malloc(sizeof(object) * MAX_CHAINS);
1531:     memset(all_objects, 0, sizeof(object) * MAX_CHAINS);
1532:     
1533:     ttt_board = (ttt*) malloc(sizeof(ttt));
1534:     memset(ttt_board, 0, sizeof(ttt));
1535:  
1536:     return PGMfileName;
1537:  }
1538:  
1539:  
1540:  int main(int argc, char** argv)
1541:  {
1542:     char* PGMfileName;
1543:     int WindowID; /*unique window id, there is only one used*/
1544:     int i;  /*looping variable*/
1545:  
1546:  /*  
1547:   * Call our init function to define non-OpenGL related things.
1548:   * Have init return a pointer to the filename, used to display the
1549:   * filename in the titlebar of the window.
1550:   * ----------------------------------------------------------------- */
1551:     PGMfileName = init (argc, argv);
1552:  
1553:  /*
1554:   * Initialize the glut package.
1555:   * ----------------------------------------------------------------- */
1556:     glutInit(&argc, argv);
1557:     glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
1558:  
1559:  /*           
1560:   * Define a new window (its size, position and title).
1561:   * ----------------------------------------------------------------- */
1562:     glutInitWindowSize (HSIZE, VSIZE);  /*size*/
1563:     glutInitWindowPosition (10, 10);    /*position*/
1564:     WindowID = glutCreateWindow (PGMfileName); /*title*/
1565:     glutSetWindow(WindowID);
1566:     glutDisplayFunc(color);
1567:        
1568:  /*
1569:   * select clearing color - white
1570:   */
1571:     glClearColor (1.0, 1.0, 1.0, 0.0);
1572:  
1573:  /*
1574:   * initialize viewport values
1575:   */
1576:     glMatrixMode(GL_PROJECTION);
1577:     glLoadIdentity();
1578:     glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
1579:  
1580:     /*add menus*/
1581:     glutCreateMenu(menu);
1582:     glutAddMenuEntry("Restart", RESTART);
1583:     glutAddMenuEntry("perspective correction", PERS_CORR);
1584:     glutAddMenuEntry("color to gray", COLOR_TO_GRAY);
1585:     glutAddMenuEntry("moravec", MORAVEC);
1586:     glutAddMenuEntry("edges", EDGES);
1587:     glutAddMenuEntry("corners", CORNERS);
1588:     glutAddMenuEntry("detect game", GAME);
1589:     glutAddMenuEntry("detect pieces", PIECES);
1590:     glutAddMenuEntry("toggle buffering", BUFFERS);
1591:     glutAttachMenu(GLUT_RIGHT_BUTTON);
1592:  
1593:     glutMouseFunc(mouse);
1594:     glutKeyboardFunc(keyboard); 
1595:     glutMainLoop();
1596:  
1597:  /*  
1598:   * When we reach here, we've left the event loop and are ready to
1599:   * exit.
1600:   * ----------------------------------------------------------------- */
1601:     return 0;
1602:  }
1603: