1: #include <stdlib.h> 2: #include <stdio.h> 3: #include <string.h> 4: #include <math.h> 5: #include <GL/glut.h> 6: 7: #include "pgm.h" 8: #include "chaincode.h" 9: 10: #define Round(v) ((int)(v+0.5)) 11: 12: /*minimal size to consider an "object" as length of chaincode*/ 13: #define DECENT_SIZED_OBJECT 100 14: 15: #define ONE_THIRD (1.0 / 3.0) 16: #define ONE_HALF (1.0 / 2.0) 17: #define ONE_SIXTH (1.0 / 6.0) 18: #define ONE_TWELTH (1.0 / 12.0) 19: 20: typedef struct 21: { 22: coord corner1; 23: coord corner2; 24: coord corner3; 25: coord corner4; 26: }object; 27: 28: typedef struct 29: { 30: /*The corners of the board. corner1 and corner2 are always opposite 31: (diagnol), just like corner3 and corner4 too.*/ 32: object corners; 33: 34: /*The sides. The numbers represent the to corners that the point is 35: between. The first number is the corner that it is closest to.*/ 36: coord side14, side13, side23, side24; 37: coord side31, side32, side41, side42; 38: 39: /*The points surrounding the middle square. The number indicates the 40: closest corner.*/ 41: coord middle1, middle2, middle3, middle4; 42: }ttt; 43: 44: /*Evil globals, but not do-able otherwise.*/ 45: static PGMImage *img_cur; /*current*/ 46: static PGMImage *img_original; /*original*/ 47: static PGMImage *img_pers_corr; /*perspective correction*/ 48: static PGMImage *img_grayscale; 49: static PGMImage *img_moravec; /*moravec*/ 50: static int HSIZE; 51: static int VSIZE; 52: static int MVAL; 53: 54: static ttt *ttt_board; /*pointer to a ttt structer containing the board info*/ 55: 56: const RGB_INT white = {255, 255, 255}; 57: const RGB_INT yellow = {255, 255, 0}; 58: const RGB_INT magenta = {255, 0, 255}; 59: const RGB_INT cyan = {0, 255, 255}; 60: const RGB_INT red = {255, 0, 0}; 61: const RGB_INT green = {0, 255, 0}; 62: const RGB_INT blue = {0, 0, 255}; 63: const RGB_INT black = {0, 0, 0}; 64: 65: const RGB_INT gray = {128, 128, 128}; 66: const RGB_INT lt_yellow = {255, 255, 128}; 67: const RGB_INT lt_magenta = {255, 128, 255}; 68: const RGB_INT lt_cyan = {128, 255, 255}; 69: 70: const RGB_INT lt_red = {255, 128, 128}; 71: const RGB_INT lt_green = {128, 255, 128}; 72: const RGB_INT lt_blue = {128, 128, 255}; 73: 74: const RGB_INT dk_yellow = {128, 128, 0}; 75: const RGB_INT dk_magenta = {128, 0, 128}; 76: const RGB_INT dk_cyan = { 0, 128, 128}; 77: 78: const RGB_INT dk_red = {128, 0, 0}; 79: const RGB_INT dk_green = { 0, 128, 0}; 80: const RGB_INT dk_blue = { 0, 0, 128}; 81: 82: /*pointer to an array of pointers which point to the first nodes in each of 83: the chain codes.*/ 84: list_info* chain_codes; 85: 86: /*hold the points farthest away from each other for each object*/ 87: /*coord corner1[MAX_CHAINS], corner2[MAX_CHAINS]; 88: coord corner3[MAX_CHAINS], corner4[MAX_CHAINS];*/ 89: /*object all_objects[MAX_CHAINS];*/ 90: static object *all_objects; 91: 92: /*use double buffered output and keep running enable idle callback to call 93: detect_corners() over and over simulating realtime response. 94: Is set to TRUE or FALSE.*/ 95: int is_buffered; 96: 97: /*used to determine if abstract lines should be drawn to the screen. 98: Set to <0 if no abstract lines are to be drawn. Otherwise 99: is set to the number of objects found (AKA number of chaincodes).*/ 100: int draw_abstract_lines = -1; 101: 102: /*used to draw the single object most likely to be considered the 103: tic-tac-toe board. Should be <0 if this should not be drawn. 104: Should be equal to the chain-code number (from 0 to MAX_CHAINS - 1) 105: if it is to be drawn.*/ 106: int draw_abstract_board = -1; 107: 108: 109: /**************Drawing funcitions************************************/ 110: /********************************************************************/ 111: 112: void setCPixel(int ix, int iy, RGB_INT color) 113: /*Same as setIPixel except that the last parameter is an RGB color*/ 114: { 115: float x = (ix*2.0)/HSIZE - 1.0; 116: float y = (iy*2.0)/VSIZE - 1.0; 117: 118: float red = (float)color.red/(float)MVAL; 119: float green = (float)color.green/(float)MVAL; 120: float blue = (float)color.blue/(float)MVAL; 121: 122: glColor3f(red, green, blue); 123: 124: glBegin(GL_POINTS); 125: glVertex2f (x, y); 126: glEnd(); 127: } 128: 129: void setCLines(int ix1, int iy1, int ix2, int iy2, RGB_INT color) 130: /*Similar as setIPixel except that this one draws a line between the first set 131: of points given and the second set in the RGB color specified*/ 132: { 133: float x1 = (ix1*2.0)/HSIZE - 1.0; 134: float y1 = (iy1*2.0)/VSIZE - 1.0; 135: float x2 = (ix2*2.0)/HSIZE - 1.0; 136: float y2 = (iy2*2.0)/VSIZE - 1.0; 137: 138: float red = (float)color.red/(float)MVAL; 139: float green = (float)color.green/(float)MVAL; 140: float blue = (float)color.blue/(float)MVAL; 141: 142: glColor3f(red, green, blue); 143: 144: glBegin(GL_LINES); 145: glVertex2f (x1, y1); 146: glVertex2f (x2, y2); 147: glEnd(); 148: } 149: 150: void setCRect(int ix1, int iy1, int ix2, int iy2, RGB_INT color) 151: /*Similar as setIPixel except that this one draws a line between the first set 152: of points given and the second set in the RGB color specified*/ 153: { 154: float x1 = (ix1*2.0)/HSIZE - 1.0; 155: float y1 = (iy1*2.0)/VSIZE - 1.0; 156: float x2 = (ix2*2.0)/HSIZE - 1.0; 157: float y2 = (iy2*2.0)/VSIZE - 1.0; 158: 159: float red = (float)color.red/(float)MVAL; 160: float green = (float)color.green/(float)MVAL; 161: float blue = (float)color.blue/(float)MVAL; 162: 163: glColor3f(red, green, blue); 164: 165: glBegin(GL_POLYGON); 166: glVertex2f (x1, y1); 167: glVertex2f (x1, y2); 168: glVertex2f (x2, y2); 169: glVertex2f (x2, y1); 170: glEnd(); 171: } 172: 173: /* ================================================================= 174: * drawString - outputs a string of characters to the graphics port 175: * 176: * x, y: defines the starting location to draw the text 177: * note: this point is the lower left anchor of 178: * the first character - a character's decending 179: * portion would be drawn below this point. 180: * theFont: points to the glut font to be used 181: * theString: holds the string to be output -- up to 255 ch 182: * ----------------------------------------------------------------- */ 183: void drawString(int ix, int iy, void *theFont, char theString[256], 184: RGB_INT color) 185: { 186: float x = (ix*2.0)/HSIZE - 1.0; 187: float y = (iy*2.0)/VSIZE - 1.0; 188: int i; 189: 190: float red = (float)color.red/(float)MVAL; 191: float green = (float)color.green/(float)MVAL; 192: float blue = (float)color.blue/(float)MVAL; 193: 194: glColor3f(red, green, blue); 195: 196: glRasterPos2f(x, y); 197: for (i = 0; theString[i] != '\0'; i++) /* draw the chars one at a time */ 198: glutBitmapCharacter(theFont, theString[i]); 199: } 200: 201: void showColor (PGMImage *img) 202: { 203: int i, j; /*loop counting: i = y, j = x*/ 204: 205: GLubyte checkImage[(*img).height][(*img).width][3]; 206: 207: for(i = 0; i < (*img).height; i++) 208: { 209: for(j = 0; j < (*img).width; j++) 210: { 211: checkImage[i][j][0] = (GLubyte) (*img).data[i][j].red; 212: checkImage[i][j][1] = (GLubyte) (*img).data[i][j].green; 213: checkImage[i][j][2] = (GLubyte) (*img).data[i][j].blue; 214: } 215: } 216: /*draw the current image*/ 217: glPixelStorei(GL_UNPACK_ALIGNMENT, 1); 218: glRasterPos2f(-1, -1); 219: glDrawPixels((*img).width, (*img).height, GL_RGB, 220: GL_UNSIGNED_BYTE, checkImage); 221: 222: glFlush(); 223: } 224: 225: void display_labels(int x_coord, int y_coord) 226: { 227: char text[40]; /*for displaying the locations in text form*/ 228: int offset = 8; /*offset text # pixels from location*/ 229: 230: sprintf(text, "(%d, %d)\0", x_coord, y_coord); 231: drawString(x_coord + offset, y_coord + offset, 232: GLUT_BITMAP_TIMES_ROMAN_10, text, blue); 233: } 234: 235: /*display the global abstract data*/ 236: void showAbstract(object* object_list, ttt *ttt_data) 237: { 238: int i; 239: 240: /* coord hor_top1, hor_top2; 241: coord hor_bot1, hor_bot2; 242: coord ver_rgt1, ver_rgt2; 243: coord ver_lft1, ver_lft2; 244: */ 245: list_info temp; 246: 247: glPointSize(2); /*make points more visible, if desired*/ 248: /*glLineWidth(4);*/ 249: 250: /*draw the chaincodes*/ 251: /*chain_codes is a global pointer to an array of list_info types*/ 252: for(i = 0; (i < MAX_CHAINS) && chain_codes && chain_codes[i].cur; i++) 253: { 254: memcpy(&temp, &chain_codes[i], sizeof(list_info)); 255: while(RetrieveNextNode(&temp).cur) 256: { 257: setCPixel(RetrieveInfo(&temp).location.x, 258: RetrieveInfo(&temp).location.y, gray); 259: Advance(&temp); 260: } 261: } 262: 263: /*first check for non-null pointer, next check for dereferenced pointers 264: in the array of head pointers and lastly make sure things stay in 265: bound of the max incase all MAX_CHAINS number of chains are used.*/ 266: /*draw_abstract_lines is the global that holds the number of "objects" 267: to draw abstract information for*/ 268: for(i = 0; i < draw_abstract_lines && i < MAX_CHAINS; i++) 269: { 270: setCLines(object_list[i].corner1.x, object_list[i].corner1.y, 271: object_list[i].corner3.x, object_list[i].corner3.y,yellow); 272: setCLines(object_list[i].corner4.x, object_list[i].corner4.y, 273: object_list[i].corner2.x, object_list[i].corner2.y,yellow); 274: setCLines(object_list[i].corner3.x, object_list[i].corner3.y, 275: object_list[i].corner2.x, object_list[i].corner2.y,yellow); 276: setCLines(object_list[i].corner4.x, object_list[i].corner4.y, 277: object_list[i].corner1.x, object_list[i].corner1.y,yellow); 278: 279: setCPixel(object_list[i].corner1.x, object_list[i].corner1.y,dk_red); 280: setCPixel(object_list[i].corner2.x, object_list[i].corner2.y,dk_blue); 281: setCPixel(object_list[i].corner3.x, object_list[i].corner3.y,white); 282: setCPixel(object_list[i].corner4.x, object_list[i].corner4.y,dk_green); 283: 284: /*labels for middle points*/ 285: display_labels(ttt_data->corners.corner1.x, ttt_data->corners.corner1.y); 286: display_labels(ttt_data->corners.corner2.x, ttt_data->corners.corner2.y); 287: display_labels(ttt_data->corners.corner3.x, ttt_data->corners.corner3.y); 288: display_labels(ttt_data->corners.corner4.x, ttt_data->corners.corner4.y); 289: } 290: 291: /*if there is board to draw and just make sure there isn't a NULL pointer*/ 292: if((draw_abstract_board > -1) && ttt_data) 293: { 294: /*This code should draw the bounding box*/ 295: /*setCLines(ttt_data->corners.corner1.x, 296: ttt_data->corners.corner1.y, 297: ttt_data->corners.corner3.x, 298: ttt_data->corners.corner3.y,blue); 299: setCLines(ttt_data->corners.corner4.x, 300: ttt_data->corners.corner4.y, 301: ttt_data->corners.corner2.x, 302: ttt_data->corners.corner2.y,blue); 303: setCLines(ttt_data->corners.corner3.x, 304: ttt_data->corners.corner3.y, 305: ttt_data->corners.corner2.x, 306: ttt_data->corners.corner2.y,blue); 307: setCLines(ttt_data->corners.corner4.x, 308: ttt_data->corners.corner4.y, 309: ttt_data->corners.corner1.x, 310: ttt_data->corners.corner1.y,blue); 311: setCPixel(ttt_data->corners.corner1.x, 312: ttt_data->corners.corner1.y, red); 313: setCPixel(ttt_data->corners.corner2.x, 314: ttt_data->corners.corner2.y, red); 315: setCPixel(ttt_data->corners.corner3.x, 316: ttt_data->corners.corner3.y, red); 317: setCPixel(ttt_data->corners.corner4.x, 318: ttt_data->corners.corner4.y, red); 319: */ 320: 321: setCLines(ttt_data->side13.x, 322: ttt_data->side13.y, 323: ttt_data->side42.x, 324: ttt_data->side42.y,blue); 325: setCLines(ttt_data->side31.x, 326: ttt_data->side31.y, 327: ttt_data->side24.x, 328: ttt_data->side24.y,blue); 329: setCLines(ttt_data->side23.x, 330: ttt_data->side23.y, 331: ttt_data->side41.x, 332: ttt_data->side41.y,blue); 333: setCLines(ttt_data->side32.x, 334: ttt_data->side32.y, 335: ttt_data->side14.x, 336: ttt_data->side14.y,blue); 337: 338: setCPixel(ttt_data->middle1.x, ttt_data->middle1.y, red); 339: setCPixel(ttt_data->middle2.x, ttt_data->middle2.y, red); 340: setCPixel(ttt_data->middle3.x, ttt_data->middle3.y, red); 341: setCPixel(ttt_data->middle4.x, ttt_data->middle4.y, red); 342: 343: /*labels for middle points*/ 344: display_labels(ttt_data->middle1.x, ttt_data->middle1.y); 345: display_labels(ttt_data->middle2.x, ttt_data->middle2.y); 346: display_labels(ttt_data->middle3.x, ttt_data->middle3.y); 347: display_labels(ttt_data->middle4.x, ttt_data->middle4.y); 348: 349: /*lables for side points*/ 350: display_labels(ttt_data->side13.x, ttt_data->side13.y); 351: display_labels(ttt_data->side14.x, ttt_data->side14.y); 352: display_labels(ttt_data->side23.x, ttt_data->side23.y); 353: display_labels(ttt_data->side24.x, ttt_data->side24.y); 354: display_labels(ttt_data->side31.x, ttt_data->side31.y); 355: display_labels(ttt_data->side32.x, ttt_data->side32.y); 356: display_labels(ttt_data->side41.x, ttt_data->side41.y); 357: display_labels(ttt_data->side42.x, ttt_data->side42.y); 358: } 359: glFlush(); 360: } 361: 362: /**********************Support functions*******************************/ 363: /***********************************************************************/ 364: 365: void pxlcpy(PGMImage *dest, int dest_row, int dest_col, 366: PGMImage *src, int src_row, int src_col) 367: { 368: /*make sure values are within bounds*/ 369: if(dest_col > 0 && dest_col < (*dest).width 370: && dest_row > 0 && dest_row < (*dest).height 371: && src_col > 0 && src_col < (*src).width 372: && src_row > 0 && src_row < (*src).height) 373: { 374: (*dest).data[dest_row][dest_col].red = 375: (*src).data[src_row][src_col].red; 376: 377: (*dest).data[dest_row][dest_col].green = 378: (*src).data[src_row][src_col].green; 379: 380: (*dest).data[dest_row][dest_col].blue = 381: (*src).data[src_row][src_col].blue; 382: } 383: } 384: 385: int rgb_avg(RGB_INT cur_pxl) 386: { 387: /*convert each RGB to the average of the original*/ 388: return ((cur_pxl.red + cur_pxl.green + cur_pxl.blue) / 3); 389: } 390: 391: /*Returns average (with RGB avg) pixel value for the image passed in.*/ 392: int img_pxl_avg(PGMImage* img) 393: { 394: int i, j; /*loop counting*/ 395: int sum = 0; 396: int temp; 397: 398: for(i = 0; i < (*img).height; i++)/*collumn*/ 399: for(j = 0; j < (*img).width; j++)/*row*/ 400: sum += rgb_avg((*img).data[i][j]); 401: 402: printf("sum: %d height: %d width: %d\n", sum, (*img).height, (*img).width); 403: temp = (sum / ((*img).height * (*img).width)); 404: printf("temp: %d\n", temp); 405: return temp; 406: } 407: 408: /*1st: pixel one of type RGB_INT 409: 2nd: pixel one of type RGB_INT 410: 3rd: differnce allowed to be considered "equal" or close enough*/ 411: int pxlcmp (RGB_INT pxl1, RGB_INT pxl2, int range) 412: { 413: return ((abs((rgb_avg(pxl1) - rgb_avg(pxl2)))) < range); 414: } 415: 416: /*return >0 if number of pixels is greater than img. pxl. avg., return <0 if 417: number of pixesl is less than img. pxl. avg. and return zero of equal*/ 418: int background(int treash_value, PGMImage* img) 419: { 420: int i, j; /*loop counting*/ 421: int pxl_less = 0, pxl_more = 0; 422: 423: for(i = 0; i < (*img).height; i++)/*collumn*/ 424: for(j = 0; j < (*img).width; j++)/*row*/ 425: { 426: if(rgb_avg((*img).data[i][j]) < treash_value) 427: pxl_less++; 428: 429: if(rgb_avg((*img).data[i][j]) > treash_value) 430: pxl_more++; 431: } 432: 433: if(pxl_less > pxl_more) 434: return -1; 435: else if(pxl_less < pxl_more) 436: return 1; 437: else 438: return 0; 439: } 440: 441: /*Used by showColor() and detect_pieces()*/ 442: coord find_dividers(coord point1, coord point2, float t) 443: { 444: coord temp; 445: 446: temp.x = (int)(((1.0 - t) * point1.x) + (t * point2.x)); 447: temp.y = (int)(((1.0 - t) * point1.y) + (t * point2.y)); 448: 449: return temp; 450: } 451: 452: /******Perspective correction******************************************* 453: ***********************************************************************/ 454: void pers_corr(PGMImage* new_img, PGMImage* org_img) 455: { 456: /*i and j are the left half, k and l are the right half*/ 457: float i, k; /*loop counting*/ 458: int j, l, row; /*loop counting*/ 459: int old_i, old_k; 460: 461: float ins_s = 2.0; /*insert constant starting value*/ 462: float ins_k = ins_s; /*insert constant*/ 463: 464: /*The halfway marks in the width.*/ 465: int mid_width_left = ((*new_img).width / 2) - 1; 466: int mid_width_right = ((*new_img).width / 2); 467: 468: /*just to be thourough clear the memory and reset maxes*/ 469: memset(new_img, 0, sizeof(PGMImage)); 470: (*new_img).height = (*org_img).height; 471: (*new_img).width = (*org_img).width; 472: (*new_img).maxVal = (*org_img).maxVal; 473: 474: /****x direction correction******/ 475: 476: /*Loop through each row from top to bottom...*/ 477: for(row = ((*new_img).height - 1); row >= 0; row--) 478: { 479: /*...reset moire interference removal counter...*/ 480: old_i = ((*new_img).width / 2) - 1; 481: old_k = ((*new_img).width / 2); 482: 483: /*...so each half is ajusted to remove perspective effect...*/ 484: for(i = j = mid_width_left, k = l = mid_width_right 485: ; i >= 0, j >= 0, k < (*new_img).width, l < (*new_img).width 486: ; i -= ins_k, j--, k += ins_k, l++) 487: { 488: for(;old_i >= (int)i; old_i--) /*...in the left half...*/ 489: pxlcpy(new_img, row, old_i, org_img, row, j); 490: for(;old_k <= (int)k; old_k++) /*...in the right half.*/ 491: pxlcpy(new_img, row, old_k, org_img, row, l); 492: } 493: /*Move the new image x_coord pixel counter to next new image pixel*/ 494: ins_k -= ((ins_s - 1.0) / (*new_img).height); 495: } 496: } 497: 498: /*****convert color to grayscale**************************************** 499: ***********************************************************************/ 500: void color_to_gray(PGMImage* new_img, PGMImage* org_img) 501: { 502: int row, col; /*loop counting*/ 503: RGB_INT cur_pxl; /*current pixel*/ 504: 505: (*new_img).height = (*org_img).height; 506: (*new_img).width = (*org_img).width; 507: (*new_img).maxVal = (*org_img).maxVal; 508: 509: /*Starting with the top row...*/ 510: for(row = (*new_img).height - 1; row >= 0; row--) 511: for(col = 0; col < (*new_img).width - 1; col++) 512: { 513: cur_pxl = (*org_img).data[row][col]; /*more readable*/ 514: 515: /*convert each RGB to the average of the original*/ 516: (*new_img).data[row][col].red = rgb_avg(cur_pxl); 517: (*new_img).data[row][col].green = rgb_avg(cur_pxl); 518: (*new_img).data[row][col].blue = rgb_avg(cur_pxl); 519: } 520: } 521: 522: /*******Edge highlighting********************************************** 523: **********************************************************************/ 524: void moravec(PGMImage* new_img, PGMImage* org_img) 525: { 526: int row, col; /*loop counting*/ 527: int i, j, k, l; /*Sanka, Hlavac & Boyle; p. 97 f. 4.73*/ 528: int running_sum; 529: float K = .5; /*.125 according to org. formula, but .5 is brighter*/ 530: int max_val = 0, row_max, col_max; /* max porportion value in image*/ 531: printf("width: %d\n", (*org_img).height); 532: memset(new_img, 0, sizeof(PGMImage)); 533: (*new_img).height = (*org_img).height; 534: (*new_img).width = (*org_img).width; 535: (*new_img).maxVal = (*org_img).maxVal; 536: 537: /*starting at the top row*/ 538: for(row = (*new_img).height - 1 - 1; row > 0; row--) 539: for(col = 1; col < (*new_img).width - 1; col++) /*left col start*/ 540: { 541: i = row; 542: j = col; 543: running_sum = 0; 544: 545: /*Sanka, Hlavac & Boyle; p. 97 f. 4.73*/ 546: for(k = i - 1; k <= i + 1; k++) /*row*/ 547: for(l = j - 1; l <= j + 1; l++) /*column*/ 548: running_sum += abs(rgb_avg((*org_img).data[k][l]) - 549: rgb_avg((*org_img).data[i][j])); 550: 551: /*assign the new pixel value*/ 552: /*since it all the data is initalized to 0, we only worry when it 553: shouldn't be*/ 554: if((int)(K * running_sum) >= 128) 555: { 556: (*new_img).data[row][col].red = 255; 557: (*new_img).data[row][col].green = 255; 558: (*new_img).data[row][col].blue = 255; 559: } 560: /*this is the original code...*/ 561: /*(*new_img).data[row][col].red = (int)(K * running_sum); 562: (*new_img).data[row][col].green = (int)(K * running_sum); 563: (*new_img).data[row][col].blue = (int)(K * running_sum);*/ 564: } 565: } 566: 567: /*******Corners***************************************************** 568: *******************************************************************/ 569: 570: /*takes two coordinates as x and y pairs and returns the distence betweem them 571: as a decimal*/ 572: float findDist(int x1, int y1, int x2, int y2) 573: { 574: return sqrt(((x1 - x2) * (x1 - x2)) + ((y1 - y2) * (y1 - y2))); 575: } 576: 577: /*1st param: The array of coords that the first point of the major axis is 578: returned in. 579: 2nd: The array of coords that the second point of the major axis is 580: returned in. 581: 3rd: The array of chain codes that are searched through to find the major 582: axes.*/ 583: /* Note: the ending condition is when a NULL chainCodes value is reached. 584: Thusly, it works like a string requiring it to have the last legal value 585: followed by a null value.*/ 586: void findFirstTwoCorners(object *objects_array, list_info* chainCodes) 587: { 588: int i; /*loop counting*/ 589: list_info temp, search; 590: double max_dist, test_dist; 591: 592: /*printf("\nFinding first 2 corners.\n");*/ 593: 594: /*as long as there are codes to check, keep checking. Note: the ending 595: condition is when a NULL chainCodes value is reached. Thusly, it works 596: like a string requiring it to have the last legal value followed by a 597: null value.*/ 598: for(i = 0; ((i < MAX_CHAINS) && chainCodes[i].cur); i++) 599: { 600: memcpy(&temp, &chainCodes[i], sizeof(list_info)); 601: 602: max_dist = 0.0; /*reset this for each iteration*/ 603: 604: /*printf("checking list: %d\n", i);*/ 605: 606: while(RetrieveNextNode(&temp).cur) /*while there are nodes to check*/ 607: { 608: /*set the faster moving search pointer to temp, 609: this increases the effiecency a lot compared to 610: setting it equal to the first node..*/ 611: memcpy(&search, &temp, sizeof(list_info)); 612: 613: while(RetrieveNextNode(&search).cur) 614: { 615: /*setCPixel(RetrieveInfo(&temp).location.x, 616: RetrieveInfo(&temp).location.y, green);*/ 617: 618: /*determine if found a new maximum distance between two locations*/ 619: if((test_dist = findDist(RetrieveInfo(&search).location.x, 620: RetrieveInfo(&search).location.y, 621: RetrieveInfo(&temp).location.x, 622: RetrieveInfo(&temp).location.y))>max_dist) 623: { 624: max_dist = test_dist; 625: objects_array[i].corner1.x = RetrieveInfo(&temp).location.x; 626: objects_array[i].corner1.y = RetrieveInfo(&temp).location.y; 627: objects_array[i].corner2.x = RetrieveInfo(&search).location.x; 628: objects_array[i].corner2.y = RetrieveInfo(&search).location.y; 629: } 630: Advance(&search); 631: } 632: Advance(&temp); 633: } 634: /*printf("point1: %d %d\n", max1[i].x, max1[i].y); 635: printf("point2: %d %d\n", max2[i].x, max2[i].y);*/ 636: } 637: } 638: 639: /*1st param: Array of coords for the first corner of each chain code. 640: 2nd param: Array of coords for the second corner of each chain code. 641: The first two parameters should equal the first two parameters "returned" 642: from the findFirstTwoCorners() function. 643: 3rd: Array of coords "returned" with the third corners. 644: 4th: Array of coords "returned" with the fourth corners. 645: 5th: Pointer pointing to the array of chaincode pointers, obtained from 646: showChain().*/ 647: void findSecondTwoCorners(object *objects_array, list_info* chain_code_array) 648: { 649: int i; /*loop counting*/ 650: list_info temp; 651: float temp_dist1, temp_dist2; /*distance between point and each corner*/ 652: coord canidate_coord1, temp_coord; 653: float canidate_dist1, max_dist; 654: int corner_count; 655: 656: /*printf("\nFinding last 2 corners.\n\n");*/ 657: 658: /*for each chain code find the corners*/ 659: for(i = 0; (i < MAX_CHAINS) && chain_code_array[i].cur; i++) 660: { 661: memcpy(&temp, &chain_code_array[i], sizeof(list_info)); 662: 663: /*reset these for the next chain code*/ 664: max_dist = 0.0; 665: corner_count = 1; 666: 667: /*while there are nodes in the chain code to check*/ 668: /*if there isn't a next node cur is NULL, which is checked*/ 669: while(RetrieveNextNode(&temp).cur) 670: { 671: /*setCPixel(RetrieveInfo(&temp).location.x, 672: RetrieveInfo(&temp).location.y, color1);*/ 673: 674: /*determine the first canidate coord for corner 3/4*/ 675: if(((RetrieveInfo(&temp).location.x == objects_array[i].corner1.x) 676: && (RetrieveInfo(&temp).location.y == objects_array[i].corner1.y)) 677: || ((RetrieveInfo(&temp).location.x == objects_array[i].corner2.x) 678: &&(RetrieveInfo(&temp).location.y == objects_array[i].corner2.y))) 679: { 680: /*if this corner found is the first of the two allready known 681: corners, then set the first canidate coord data and reset data 682: to find the next canidate corner point*/ 683: if(corner_count == 1) 684: { 685: canidate_coord1.x = temp_coord.x; 686: canidate_coord1.y = temp_coord.y; 687: canidate_dist1 = max_dist; 688: 689: corner_count = 2; /*set for next corner*/ 690: max_dist = 0.0; 691: } 692: else if(corner_count == 2) 693: { 694: /*the second canidate is always a corner*/ 695: all_objects[i].corner4.x = temp_coord.x; 696: all_objects[i].corner4.y = temp_coord.y; 697: 698: max_dist = 0.0; /*set for next corner canidate*/ 699: } 700: } 701: 702: /*calculate the distance between the current point being checked and 703: each corner point*/ 704: temp_dist1 = findDist(all_objects[i].corner1.x, 705: all_objects[i].corner1.y, 706: RetrieveInfo(&temp).location.x, 707: RetrieveInfo(&temp).location.y); 708: temp_dist2 = findDist(all_objects[i].corner2.x, 709: all_objects[i].corner2.y, 710: RetrieveInfo(&temp).location.x, 711: RetrieveInfo(&temp).location.y); 712: 713: /*if the current point is the furthest away sofar, store this point 714: untill it is overridden or becomes a canidate point*/ 715: if((temp_dist1 + temp_dist2) > max_dist) 716: { 717: temp_coord.x = RetrieveInfo(&temp).location.x; 718: temp_coord.y = RetrieveInfo(&temp).location.y; 719: 720: max_dist = (temp_dist1 + temp_dist2); 721: } 722: 723: Advance(&temp); 724: } 725: 726: /*from the three canidate coords find the two real corners.*/ 727: /*the second canidate will always be a corner, must test 1 vs 3, where 728: three is in the variables temp_coord and max_dist.*/ 729: if(canidate_dist1 > max_dist) /*first canidate*/ 730: { 731: all_objects[i].corner3.x = canidate_coord1.x; 732: all_objects[i].corner3.y = canidate_coord1.y; 733: } 734: else /*third canidate*/ 735: { 736: all_objects[i].corner3.x = temp_coord.x; 737: all_objects[i].corner3.y = temp_coord.y; 738: } 739: /*printf("corner3: (%d, %d) corner4: (%d, %d)\n", corner3[i].x, 740: corner3[i].y, corner4[i].x, corner4[i].y);*/ 741: } 742: } 743: 744: /*takes a pointer to an image, and a pointer pointing to an array of 745: chain codes pointers, here each chainCode pointer needs to be accessed 746: by calculating the memory address.*/ 747: void showBound(/*PGMImage *original,*/ list_info* chainCodes, object *all_objects) 748: { 749: int i; 750: 751: /*find the first two corners. they will be across a diagnal.*/ 752: findFirstTwoCorners(all_objects, chainCodes); 753: /*find the second two corners. they will be across a diagnal too.*/ 754: findSecondTwoCorners(all_objects, chainCodes); 755: /* 756: for(i = 0; chainCodes[i] && i < MAX_CHAINS; i++) 757: { 758: setCLines(corner1[i].x, corner1[i].y, corner3[i].x, corner3[i].y,yellow); 759: setCLines(corner4[i].x, corner4[i].y, corner2[i].x, corner2[i].y,yellow); 760: setCLines(corner3[i].x, corner3[i].y, corner2[i].x, corner2[i].y,yellow); 761: setCLines(corner4[i].x, corner4[i].y, corner1[i].x, corner1[i].y,yellow); 762: setCPixel(corner1[i].x, corner1[i].y, magenta); 763: setCPixel(corner2[i].x, corner2[i].y, magenta); 764: setCPixel(corner3[i].x, corner3[i].y, magenta); 765: setCPixel(corner4[i].x, corner4[i].y, magenta); 766: }*/ 767: } 768: 769: /*returns the number of objects found*/ 770: /*places the corner info in the global corners data*/ 771: int detect_corners(list_info* current_chaincodes, 772: object *objects_array) 773: { 774: int i; /*temporarily holds number of chaincodes*/ 775: 776: showBound(/*org_img,*/ current_chaincodes, objects_array); 777: 778: /*when this stops, i holds the number of chaincodes*/ 779: for(i = 0; (i < MAX_CHAINS) && chain_codes && chain_codes[i].cur; i++); 780: 781: return i; 782: } 783: 784: /*******Find the game board******************************************** 785: **********************************************************************/ 786: 787: float compare_length(float length1, float length2) 788: { 789: float denom_check = fabs((length1 + length2) / 2); 790: if(denom_check == 0) 791: { 792: /*the only way to possibly pull this off is if one point is 793: is considered more than one corner. This is most likely 794: to happen where the chain was only two or three nodes long.*/ 795: /*Just set the error to the maximum value obtained from float.h, 796: since such a small chain is not what we are looking for.*/ 797: 798: /*error24to13[i] =*/ return FLT_MAX; 799: } 800: else 801: /*error24to13[i] =*/return fabs(length1 - length2) / denom_check; 802: } 803: 804: /*determines which object is the game board and determine moves made in 805: the game.*/ 806: /*takes the number of object corners (equal to # of chaincodes) as param.*/ 807: int detect_game(list_info *current_chaincodes, object *object_array) 808: { 809: float length2to4[MAX_CHAINS], length1to3[MAX_CHAINS]; /*side pairs*/ 810: float length1to4[MAX_CHAINS], length2to3[MAX_CHAINS]; /*side pairs*/ 811: float length1to2[MAX_CHAINS], length3to4[MAX_CHAINS]; /*diagnaols*/ 812: 813: float error24to13[MAX_CHAINS], error14to23[MAX_CHAINS];/*opp. sides*/ 814: float error14to13[MAX_CHAINS], error23to24[MAX_CHAINS];/*share corner*/ 815: float error31to32[MAX_CHAINS], error41to42[MAX_CHAINS];/*share corner*/ 816: float error12to34[MAX_CHAINS];/*diagnaols*/ 817: 818: float error_avg;/*average of the errors stored in error##to## variables*/ 819: 820: int i, k; /*loop counting*/ 821: /*float denom_check; /*make sure denominators are not zero*/ 822: list* temp; 823: 824: /*the most likely object (0 to num_of_corners) that is to be considered 825: as the board. The float is the error associated with this object.*/ 826: int most_likely = -1; 827: float ml_error = FLT_MAX; /*just to make sure*/ 828: printf("here inside detect game\n"); 829: /*for each chaincode*/ 830: for(i = 0; (i < MAX_CHAINS) && current_chaincodes && 831: current_chaincodes[i].cur; i++) 832: { 833: printf("length: %d\n", Length(¤t_chaincodes[i])); 834: /*count the number of nodes in the chaincode. Unless the size is 835: considered long enough, skip it and move on.*/ 836: if(Length(¤t_chaincodes[i]) < DECENT_SIZED_OBJECT) 837: continue; 838: printf("here inside detect game for loop\n"); 839: /*since points 1 & 2 are at a diagnal, and 3 & 4 are at a diagnol, 840: then the dist between 2 and 4 & 1 and 3 should be close 841: in value.*/ 842: length2to4[i] = findDist(object_array[i].corner2.x, 843: object_array[i].corner2.y, 844: object_array[i].corner4.x, 845: object_array[i].corner4.y); 846: length1to3[i] = findDist(object_array[i].corner1.x, 847: object_array[i].corner1.y, 848: object_array[i].corner3.x, 849: object_array[i].corner3.y); 850: 851: /*the other side pair*/ 852: length1to4[i] = findDist(object_array[i].corner1.x, 853: object_array[i].corner1.y, 854: object_array[i].corner4.x, 855: object_array[i].corner4.y); 856: length2to3[i] = findDist(object_array[i].corner2.x, 857: object_array[i].corner2.y, 858: object_array[i].corner3.x, 859: object_array[i].corner3.y); 860: 861: /*diagnols... always will be 1 & 2 and 3 & 4*/ 862: length1to2[i] = findDist(object_array[i].corner1.x, 863: object_array[i].corner1.y, 864: object_array[i].corner2.x, 865: object_array[i].corner2.y); 866: length3to4[i] = findDist(object_array[i].corner3.x, 867: object_array[i].corner3.y, 868: object_array[i].corner4.x, 869: object_array[i].corner4.y); 870: 871: /*calculate percent errors for all edge (and diagnal) combinations*/ 872: error24to13[i] = compare_length(length2to4[i], length1to3[i]);/*op.side*/ 873: error14to23[i] = compare_length(length1to4[i], length2to3[i]); 874: error14to13[i] = compare_length(length1to4[i], length1to3[i]);/*1 crn.*/ 875: error23to24[i] = compare_length(length2to3[i], length2to4[i]); 876: error31to32[i] = compare_length(length1to3[i], length2to3[i]); 877: error41to42[i] = compare_length(length1to4[i], length2to4[i]); 878: error12to34[i] = compare_length(length1to2[i], length3to4[i]);/*diag.*/ 879: 880: /*average all of the error values together*/ 881: error_avg = ((error24to13[i] + error14to23[i] + error14to13[i] + 882: error23to24[i] + error31to32[i] + error41to42[i] + 883: error12to34[i]) / 7); 884: 885: printf("error avg: %f\n\n", error_avg); 886: /*determine if the current object is considered the most likely to 887: be the ttt board so far. Average of all the error##to##'s. 888: If the current is */ 889: if(ml_error > error_avg) 890: { 891: most_likely = i; 892: ml_error = error_avg; 893: } 894: } 895: 896: printf("Object %d is most likely the board with %f\%% error.\n", 897: most_likely, ml_error * 100); 898: 899: return most_likely; /*return the object number that is the board*/ 900: } 901: 902: coord search_moravec(coord point1, coord point2, PGMImage *moravec) 903: { 904: int i, j; /*loop counting*/ 905: float t; 906: coord temp; 907: float dist = findDist(point1.x, point1.y, point2.x, point2.y); 908: int search_size = 5; 909: 910: coord most_likely_corner = {-1, -1}; 911: int most_likely_sum = 0; 912: int sum_moravec_points = 0; 913: 914: /*calculate the coordinates where the divider edges should be.*/ 915: for(t = ONE_HALF; t > ONE_SIXTH; t -= (1 / dist)) 916: { 917: temp = find_dividers(point1, point2, t); 918: /* search_size = findDist(point1.x, point1.y, point2.x, point2.y) / 10;*/ 919: sum_moravec_points = 0; /*clear this before next iteration*/ 920: 921: for(i = -(search_size); i <= search_size; i++) 922: { 923: for(j = -(search_size); j <= search_size; j++) 924: { 925: if(rgb_avg((*moravec).data[temp.y + i][temp.x + j]) > 115) 926: { 927: /*setCPixel(temp.x + j, temp.y + i, red);*/ 928: sum_moravec_points++; 929: } 930: } 931: } 932: 933: /*if the current point in the search is the best, store it*/ 934: if(most_likely_sum <= sum_moravec_points) 935: { 936: most_likely_corner.x = temp.x; 937: most_likely_corner.y = temp.y; 938: most_likely_sum = sum_moravec_points; 939: } 940: } 941: 942: return most_likely_corner; 943: } 944: 945: 946: coord find_intersection(coord line1_point1, coord line1_point2, 947: coord line2_point1, coord line2_point2) 948: { 949: float line1_slope, line2_slope; 950: coord target = {-1, -1}; 951: int *temp = NULL; 952: /*find slope for first line*/ 953: if((line1_point1.x - line1_point2.x) != 0) 954: { 955: line1_slope = ((float)(line1_point1.y - line1_point2.y)) / 956: ((float)(line1_point1.x - line1_point2.x)); 957: } 958: else /*otherwise handle the undefined slope*/ 959: { 960: /*find slope for secon line when first is undefined*/ 961: if((line2_point1.x - line2_point2.x) != 0) 962: { 963: line2_slope = ((float)(line2_point1.y - line2_point2.y)) / 964: ((float)(line2_point1.x - line2_point2.x)); 965: } 966: else /*this should never happen, but could if someone specifed the same 967: line twice*/ 968: return target; /*target is initalized to (-1, -1)*/ 969: 970: /*since the slope is undefined the x coord in known*/ 971: target.x = line1_point1.x; 972: target.y = line2_slope * target.x + line2_point1.y; /*y = mx + b*/ 973: printf("line one has undefined slope\n"); 974: return target; 975: } 976: 977: /*find slope for second line*/ 978: if((line2_point1.x - line2_point2.x) != 0) 979: { 980: line2_slope = ((float)(line2_point1.y - line2_point2.y)) / 981: ((float)(line2_point1.x - line2_point2.x)); 982: } 983: else 984: { 985: /*since the slope is undefined the x coord in known*/ 986: target.x = line1_point1.x; 987: target.y = line1_slope * target.x + line1_point1.y; /*y = mx + b*/ 988: printf("line two has undefined slope\n"); 989: return target; 990: } 991: 992: /*if both lines have defined slopes find the target point*/ 993: /* slope is m and defined by: 994: (y1 - y2) 995: m = --------- 996: (x1 - x2) 997: 998: target calculated by setting Yt = M1*(Xt - Xa) + Ya equal to 999: Yt = M2 * (Xt - Xc) + Yc to get 1000: 1001: (Xa*M1 - M2*Xc + Yc - Ya) 1002: Xt = ------------------------- 1003: M1 - M2 1004: 1005: then to get the y coordinate sub Xt into: 1006: 1007: Yt = M1 * (Xt - Xa) + Ya 1008: 1009: Where line1_point1 = a 1010: line1_point2 = b 1011: line2_point1 = c 1012: line12point2 = d 1013: and are indicated as subscripts of their X or Y coordinate. 1014: M1 = line1_slope 1015: M2 = line2_slope 1016: */ 1017: 1018: 1019: 1020: target.x = (((float)(line1_point1.x * line1_slope) 1021: - (float)(line2_point1.x * line2_slope) 1022: + (float)line2_point1.y - (float)line1_point1.y)) 1023: / (float)(line1_slope - line2_slope); 1024: 1025: target.y = line1_slope * ((float)target.x - (float)line1_point1.x) 1026: + (float)line1_point1.y; 1027: /*target.y = line2_slope * ((float)target.x - (float)line2_point1.x) 1028: + (float)line2_point1.y;*/ 1029: 1030: /*printf("%d\n", *temp); *//*for gdb*/ 1031: return target; 1032: } 1033: 1034: /*anchor - the corner closest to the side divider point being looked for. 1035: common - the corner that the line between itself and the anchor corner contains 1036: the target divider point. 1037: anchor_opposite - the corner adjacent to the anchor corner & oppsoite common. 1038: common_opposite - the corner adjacent to the common corner & oppposite anchor. 1039: */ 1040: /*return the divider point*/ 1041: coord find_side_points(coord anchor, coord common, coord anchor_opposite, 1042: coord common_opposite, PGMImage *moravec) 1043: { 1044: coord temp1, temp2; 1045: 1046: temp1 = find_dividers(anchor, anchor_opposite, ONE_TWELTH); 1047: temp2 = find_dividers(common, common_opposite, ONE_TWELTH); 1048: 1049: return search_moravec(temp1, temp2, moravec); 1050: } 1051: 1052: 1053: /*find the ttt boards cross lines coordinates*/ 1054: void detect_ttt_board(object board_object, ttt *board_details, 1055: PGMImage *moravec) 1056: { 1057: /*copy the corners into the ttt datatype*/ 1058: memcpy(&(board_details->corners), &board_object, sizeof(object)); 1059: 1060: board_details->side13 = find_side_points(board_object.corner1, 1061: board_object.corner3, 1062: board_object.corner2, 1063: board_object.corner4, moravec); 1064: 1065: board_details->side14 = find_side_points(board_object.corner1, 1066: board_object.corner4, 1067: board_object.corner2, 1068: board_object.corner3, moravec); 1069: 1070: board_details->side23 = find_side_points(board_object.corner2, 1071: board_object.corner3, 1072: board_object.corner1, 1073: board_object.corner4, moravec); 1074: 1075: board_details->side24 = find_side_points(board_object.corner2, 1076: board_object.corner4, 1077: board_object.corner1, 1078: board_object.corner3, moravec); 1079: 1080: board_details->side31 = find_side_points(board_object.corner3, 1081: board_object.corner1, 1082: board_object.corner4, 1083: board_object.corner2, moravec); 1084: 1085: board_details->side32 = find_side_points(board_object.corner3, 1086: board_object.corner2, 1087: board_object.corner4, 1088: board_object.corner1, moravec); 1089: 1090: board_details->side41 = find_side_points(board_object.corner4, 1091: board_object.corner1, 1092: board_object.corner3, 1093: board_object.corner2, moravec); 1094: 1095: board_details->side42 = find_side_points(board_object.corner4, 1096: board_object.corner2, 1097: board_object.corner3, 1098: board_object.corner1, moravec); 1099: 1100: board_details->side13 = find_side_points(board_object.corner1, 1101: board_object.corner3, 1102: board_object.corner2, 1103: board_object.corner4, moravec); 1104: 1105: board_details->side14 = find_side_points(board_object.corner1, 1106: board_object.corner4, 1107: board_object.corner2, 1108: board_object.corner3, moravec); 1109: 1110: board_details->side23 = find_side_points(board_object.corner2, 1111: board_object.corner3, 1112: board_object.corner1, 1113: board_object.corner4, moravec); 1114: 1115: board_details->side24 = find_side_points(board_object.corner2, 1116: board_object.corner4, 1117: board_object.corner1, 1118: board_object.corner3, moravec); 1119: 1120: /*correct the length of the lines that is shortend to calculate them 1121: in the first place above. simply find the intersection of the *short* 1122: line with that of the outside line between the corners.*/ 1123: board_details->side13 = find_intersection(board_details->side13, 1124: board_details->side42, 1125: board_details->corners.corner1, 1126: board_details->corners.corner3); 1127: board_details->side14 = find_intersection(board_details->side14, 1128: board_details->side32, 1129: board_details->corners.corner1, 1130: board_details->corners.corner4); 1131: board_details->side23 = find_intersection(board_details->side23, 1132: board_details->side41, 1133: board_details->corners.corner2, 1134: board_details->corners.corner3); 1135: board_details->side24 = find_intersection(board_details->side24, 1136: board_details->side31, 1137: board_details->corners.corner2, 1138: board_details->corners.corner4); 1139: board_details->side31 = find_intersection(board_details->side31, 1140: board_details->side24, 1141: board_details->corners.corner3, 1142: board_details->corners.corner1); 1143: board_details->side32 = find_intersection(board_details->side32, 1144: board_details->side14, 1145: board_details->corners.corner3, 1146: board_details->corners.corner2); 1147: board_details->side41 = find_intersection(board_details->side41, 1148: board_details->side23, 1149: board_details->corners.corner4, 1150: board_details->corners.corner1); 1151: board_details->side42 = find_intersection(board_details->side42, 1152: board_details->side13, 1153: board_details->corners.corner4, 1154: board_details->corners.corner2); 1155: 1156: /*now that the sides are found, find the intersections to find the 1157: middle points*/ 1158: 1159: board_details->middle1 = find_intersection(board_details->side14, 1160: board_details->side32, 1161: board_details->side13, 1162: board_details->side42); 1163: 1164: board_details->middle2 = find_intersection(board_details->side23, 1165: board_details->side41, 1166: board_details->side24, 1167: board_details->side31); 1168: 1169: board_details->middle3 = find_intersection(board_details->side31, 1170: board_details->side24, 1171: board_details->side32, 1172: board_details->side14); 1173: printf("middle3: (%d, %d)\n", board_details->middle3.x, board_details->middle3.y); 1174: board_details->middle4 = find_intersection(board_details->side41, 1175: board_details->side23, 1176: board_details->side42, 1177: board_details->side13); 1178: 1179: } 1180: 1181: /*****Find the pieces*************************************************** 1182: ***********************************************************************/ 1183: 1184: /*Takes four points that must be in order going around the region. Also, 1185: needs a pointer to an image with the moravec filter applied.*/ 1186: int search_area(coord point1, coord point2, coord point3, coord point4, 1187: PGMImage *moravec) 1188: { 1189: /*The following variables are used to calculate the existence of a marble 1190: at a location on the board or not. Uses the following basic formula 1191: new_point = ((t-1) * 1st point) + (t * 2nd point) 1192: where the start & end coords are opposite sides of the area being 1193: searched. If you take the entire area of a single position on a ttt 1194: board, the area that is searched is the region that is bouned by the 1195: points halfway between those passed in to this function.*/ 1196: 1197: float t, s, r; /*hold values incrementing from 0 to 1*/ 1198: coord t_start, t_end, s_start, s_end; 1199: coord temp_t, temp_s, temp_r; 1200: float dist_t, dist_s, dist_r; 1201: 1202: /*pixel count of those over the threashhold and total pixels*/ 1203: int pixel_count = 0, moravec_count = 0; 1204: 1205: t_start = find_dividers(point1, point2, ONE_HALF); 1206: t_end = find_dividers(point1, point4, ONE_HALF); 1207: 1208: s_start = find_dividers(point3, point2, ONE_HALF); 1209: s_end = find_dividers(point3, point4, ONE_HALF); 1210: 1211: dist_t = findDist(t_start.x, t_start.y, t_end.x, t_end.y); 1212: dist_s = findDist(s_start.x, s_start.y, s_end.x, s_end.y); 1213: printf("%f %f\n", dist_t, dist_s); 1214: 1215: /*march two points along that parallel each other in the search area*/ 1216: for(t = 0.0, s = 0.0; t <= 1.0; t += (1.0 / dist_t), s += (1.0 / dist_s)) 1217: { 1218: temp_t = find_dividers(t_start, t_end, t); 1219: 1220: temp_s = find_dividers(s_start, s_end, s); 1221: 1222: dist_r = findDist(temp_t.x, temp_t.y, temp_s.x, temp_s.y); 1223: 1224: /*march a single point along that starts at temp_s and ends 1225: at temp_t. This fills in the region for the search.*/ 1226: for(r = 0.0; r <= 1.0; r += (1 / dist_r)) 1227: { 1228: temp_r = find_dividers(temp_s, temp_t, r); 1229: 1230: /*talley the number of edge points found (rgb. avg. >= 128)*/ 1231: if(rgb_avg((*moravec).data[temp_r.y][temp_r.x]) >= 128) 1232: { 1233: setCPixel(temp_r.x, temp_r.y, blue); 1234: moravec_count++; 1235: } 1236: pixel_count++; /*increment the number of pixels*/ 1237: } 1238: 1239: } 1240: 1241: printf("total: %d edge: %d\n", pixel_count, moravec_count); 1242: 1243: /*if the number of edge pixels is greater than 10% of the total, then 1244: this is an edge of marble. The percent is there because there could be 1245: a few small blobs that get counted when the shouldn't that otherwise 1246: would give a positive hit that a marble was found*/ 1247: if(moravec_count >= (pixel_count / 10)) 1248: return TRUE; 1249: 1250: /*otherwise a marble isn't here*/ 1251: return FALSE; 1252: } 1253: 1254: /*takes the object number that is determined to be the board*/ 1255: void detect_pieces(ttt *board_data, PGMImage* moravec) 1256: { 1257: if(search_area(board_data->corners.corner1, board_data->side13, 1258: board_data->middle1, board_data->side14, moravec)) 1259: printf("corner 1 has a piece\n"); 1260: else 1261: printf("corner 1 has no piece\n"); 1262: 1263: 1264: if(search_area(board_data->middle1, board_data->middle3, 1265: board_data->middle2, board_data->middle4, moravec)) 1266: printf("middle has a piece\n"); 1267: else 1268: printf("middle has no piece\n"); 1269: 1270: 1271: if(search_area(board_data->corners.corner2, board_data->side23, 1272: board_data->middle2, board_data->side24, moravec)) 1273: printf("corner 2 has a piece\n"); 1274: else 1275: printf("corner 2 has no piece\n"); 1276: 1277: setCPixel(board_data->middle1.x, board_data->middle1.y, red); 1278: setCPixel(board_data->middle2.x, board_data->middle2.y, green); 1279: setCPixel(board_data->middle3.x, board_data->middle3.y, blue); 1280: setCPixel(board_data->middle4.x, board_data->middle4.y, yellow); 1281: } 1282: 1283: 1284: /* ================================================================= 1285: * Callback functions. 1286: * 1287: * color = displayed graphics in window 1288: * menu = menu event handling 1289: * keyboard = deyboard event handling 1290: * ----------------------------------------------------------------- */ 1291: void color(void) 1292: { 1293: /*glClear (GL_COLOR_BUFFER_BIT);*/ 1294: 1295: /*show the current image*/ 1296: showColor(img_cur); 1297: 1298: /*show the current abstract information*/ 1299: showAbstract(all_objects, ttt_board); 1300: 1301: } 1302: 1303: void buffer() 1304: { 1305: /*if the drawing state of all objects is enabled, recalculate*/ 1306: if(draw_abstract_lines >= 0) 1307: draw_abstract_lines = detect_corners(chain_codes, all_objects); 1308: 1309: /*if the drawing state of the object most likely to be the board is 1310: found, recalulate*/ 1311: if(draw_abstract_board >= 0) 1312: draw_abstract_board = detect_game(chain_codes, all_objects); 1313: 1314: glutPostRedisplay(); 1315: } 1316: 1317: #define RESTART 0 1318: #define PERS_CORR 3 1319: #define COLOR_TO_GRAY 4 1320: #define MORAVEC 5 1321: #define EDGES 6 1322: #define CORNERS 7 1323: #define BUFFERS 8 1324: #define GAME 9 1325: #define PIECES 10 1326: 1327: /*this is not a callback function, but is used inside menu() for setting 1328: new states of execution*/ 1329: void reset_state(PGMImage* new_current) 1330: { 1331: img_cur = new_current; 1332: draw_abstract_lines = -1; 1333: draw_abstract_board = -1; 1334: free_chaincodes(&chain_codes); 1335: } 1336: 1337: void menu(int selection) 1338: { 1339: if(selection == RESTART) 1340: { 1341: reset_state(img_original); 1342: } 1343: if(selection == PERS_CORR) 1344: { 1345: pers_corr(img_pers_corr, img_cur); 1346: reset_state(img_pers_corr); 1347: } 1348: if(selection == COLOR_TO_GRAY) 1349: { 1350: color_to_gray(img_grayscale, img_cur); 1351: reset_state(img_grayscale); 1352: } 1353: if(selection == MORAVEC) 1354: { 1355: moravec(img_moravec, img_cur); 1356: reset_state(img_moravec); 1357: } 1358: if(selection == EDGES) 1359: { 1360: /*if there is a chaincode already in memory, free it before a new one 1361: is created.*/ 1362: showChain(img_cur, &chain_codes); 1363: } 1364: if(selection == CORNERS) 1365: { 1366: /*if there are chaincodes already in memory, free it before a new one 1367: is created.*/ 1368: showChain(img_cur, &chain_codes); 1369: 1370: draw_abstract_lines = detect_corners(chain_codes, all_objects); 1371: } 1372: if(selection == BUFFERS) 1373: { 1374: if(is_buffered == FALSE) 1375: { 1376: glutIdleFunc(buffer); 1377: is_buffered = TRUE; 1378: } 1379: else 1380: { 1381: glutIdleFunc(NULL); 1382: is_buffered = FALSE; 1383: } 1384: } 1385: if(selection == GAME) 1386: { 1387: /*need an image with the moravec filter applied*/ 1388: /*don't calculating this if it is the current image!!! 1389: Bad things happen like memseting to zero the current image.*/ 1390: if(img_cur != img_moravec) 1391: { 1392: moravec(img_moravec, img_cur); 1393: /*img_cur = img_moravec;*/ 1394: } 1395: 1396: /*if there are chaincodes already in memory, free it before a new one 1397: is created.*/ 1398: showChain(img_moravec, &chain_codes); 1399: 1400: detect_corners(chain_codes, all_objects); 1401: draw_abstract_board = detect_game(chain_codes, all_objects); 1402: detect_ttt_board(all_objects[draw_abstract_board], ttt_board, 1403: img_moravec); 1404: return; 1405: } 1406: if(selection == PIECES) 1407: { 1408: /*need an image with the moravec filter applied*/ 1409: /*don't calculating this if it is the current image!!! 1410: Bad things happen like memseting to zero the current image.*/ 1411: if(img_cur != img_moravec) 1412: { 1413: moravec(img_moravec, img_cur); 1414: /*img_cur = img_moravec;*/ 1415: } 1416: 1417: /*if there are chaincodes already in memory, they are freed before a 1418: new one is created.*/ 1419: showChain(img_moravec, &chain_codes); 1420: 1421: /*detect the ttt game board*/ 1422: detect_corners(chain_codes, all_objects); 1423: draw_abstract_board = detect_game(chain_codes, all_objects); 1424: detect_ttt_board(all_objects[draw_abstract_board], ttt_board, 1425: img_moravec); 1426: 1427: /*detect the locations of the pieces*/ 1428: detect_pieces(ttt_board, img_moravec); 1429: 1430: glFlush(); 1431: return; 1432: } 1433: 1434: glutPostRedisplay(); /*redraw the image*/ 1435: } 1436: 1437: void keyboard(unsigned char key, int x, int y) 1438: { 1439: switch (key) 1440: { 1441: case 27: 1442: exit(0); 1443: break; 1444: } 1445: } 1446: 1447: void mouse(int button, int state, int x, int y) 1448: { 1449: char temp[50]; 1450: 1451: if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) 1452: { 1453: sprintf(temp, "(x, y): (%d, %d) red: %d green: %d blue: %d\n", 1454: x, VSIZE - y, (*img_cur).data[VSIZE - y][x].red, 1455: (*img_cur).data[VSIZE - y][x].green, 1456: (*img_cur).data[VSIZE - y][x].blue); 1457: setCRect(0, 0, 200, 12, black); 1458: glColor3f(1.0, 0.0, 0.0); 1459: drawString(0, 0, GLUT_BITMAP_TIMES_ROMAN_10, temp, red); 1460: glFlush(); 1461: } 1462: } 1463: 1464: 1465: /* ================================================================= 1466: * init() & parse_command_line() 1467: * initalize none-OpenGL related things. 1468: * ----------------------------------------------------------------- */ 1469: 1470: /*set global flag variables from things specified at commandline.*/ 1471: /*return the filename specified, if none specified exit().*/ 1472: char* parse_command_line(int argc, char** argv) 1473: { 1474: /*parse the command line*/ 1475: if(argc == 1) 1476: { 1477: printf("To few parameters.\n"); 1478: printf("Usage: research <file.pgm>\n"); 1479: exit(1); 1480: } 1481: else if(argc == 2) 1482: { 1483: return argv[1]; 1484: } 1485: else 1486: { 1487: printf("To many parameters.\n"); 1488: printf("Usage: research <file.pgm>\n"); 1489: exit(1); 1490: } 1491: } 1492: 1493: char* init (int argc, char** argv) 1494: { 1495: char* PGMfileName;/*pointer to the string containing the filename*/ 1496: 1497: /*parse the command line*/ 1498: PGMfileName = parse_command_line(argc, argv); 1499: 1500: /* 1501: * Read in image file. - note: sets our global values, too. 1502: * ----------------------------------------------------------------- */ 1503: 1504: /*allocate memory for original image*/ 1505: img_original = (PGMImage*) malloc(sizeof(PGMImage)); 1506: getPGMfile(PGMfileName, img_original); 1507: HSIZE = (*img_original).width; 1508: VSIZE = (*img_original).height; 1509: MVAL = (*img_original).maxVal; 1510: 1511: img_cur = img_original; /*VERY IMPORTANT to set this*/ 1512: 1513: /*allocate memory for pers. corr. image*/ 1514: img_pers_corr = (PGMImage*) malloc(sizeof(PGMImage)); 1515: (*img_pers_corr).width = HSIZE; 1516: (*img_pers_corr).height = VSIZE; 1517: (*img_pers_corr).maxVal = 255; 1518: 1519: img_grayscale = (PGMImage*) malloc(sizeof(PGMImage)); 1520: (*img_grayscale).width = HSIZE; 1521: (*img_grayscale).height = VSIZE; 1522: (*img_grayscale).maxVal = 255; 1523: 1524: img_moravec = (PGMImage*) malloc(sizeof(PGMImage)); 1525: (*img_moravec).width = HSIZE; 1526: (*img_moravec).height = VSIZE; 1527: (*img_moravec).maxVal = 255; 1528: 1529: 1530: all_objects = (object*) malloc(sizeof(object) * MAX_CHAINS); 1531: memset(all_objects, 0, sizeof(object) * MAX_CHAINS); 1532: 1533: ttt_board = (ttt*) malloc(sizeof(ttt)); 1534: memset(ttt_board, 0, sizeof(ttt)); 1535: 1536: return PGMfileName; 1537: } 1538: 1539: 1540: int main(int argc, char** argv) 1541: { 1542: char* PGMfileName; 1543: int WindowID; /*unique window id, there is only one used*/ 1544: int i; /*looping variable*/ 1545: 1546: /* 1547: * Call our init function to define non-OpenGL related things. 1548: * Have init return a pointer to the filename, used to display the 1549: * filename in the titlebar of the window. 1550: * ----------------------------------------------------------------- */ 1551: PGMfileName = init (argc, argv); 1552: 1553: /* 1554: * Initialize the glut package. 1555: * ----------------------------------------------------------------- */ 1556: glutInit(&argc, argv); 1557: glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); 1558: 1559: /* 1560: * Define a new window (its size, position and title). 1561: * ----------------------------------------------------------------- */ 1562: glutInitWindowSize (HSIZE, VSIZE); /*size*/ 1563: glutInitWindowPosition (10, 10); /*position*/ 1564: WindowID = glutCreateWindow (PGMfileName); /*title*/ 1565: glutSetWindow(WindowID); 1566: glutDisplayFunc(color); 1567: 1568: /* 1569: * select clearing color - white 1570: */ 1571: glClearColor (1.0, 1.0, 1.0, 0.0); 1572: 1573: /* 1574: * initialize viewport values 1575: */ 1576: glMatrixMode(GL_PROJECTION); 1577: glLoadIdentity(); 1578: glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0); 1579: 1580: /*add menus*/ 1581: glutCreateMenu(menu); 1582: glutAddMenuEntry("Restart", RESTART); 1583: glutAddMenuEntry("perspective correction", PERS_CORR); 1584: glutAddMenuEntry("color to gray", COLOR_TO_GRAY); 1585: glutAddMenuEntry("moravec", MORAVEC); 1586: glutAddMenuEntry("edges", EDGES); 1587: glutAddMenuEntry("corners", CORNERS); 1588: glutAddMenuEntry("detect game", GAME); 1589: glutAddMenuEntry("detect pieces", PIECES); 1590: glutAddMenuEntry("toggle buffering", BUFFERS); 1591: glutAttachMenu(GLUT_RIGHT_BUTTON); 1592: 1593: glutMouseFunc(mouse); 1594: glutKeyboardFunc(keyboard); 1595: glutMainLoop(); 1596: 1597: /* 1598: * When we reach here, we've left the event loop and are ready to 1599: * exit. 1600: * ----------------------------------------------------------------- */ 1601: return 0; 1602: } 1603: