1:  #include <stdlib.h>
2:  #include <stdio.h>
3:  #include <string.h>
4:  #include <math.h>
5:  #include <GL/glut.h>
6:  
7:  #include "pgm.h"
8:  #include "chaincode.h"
9:  
10:  #define Round(v) ((int)(v+0.5))
11:  
12:  /*minimal size to consider an "object" as length of chaincode*/
13:  #define DECENT_SIZED_OBJECT 100
14:  
15:  #define ONE_THIRD  (1.0 / 3.0)
16:  #define ONE_HALF   (1.0 / 2.0)
17:  #define ONE_SIXTH  (1.0 / 6.0)
18:  #define ONE_TWELTH (1.0 / 12.0)
19:  
20:  typedef struct
21:  {
22:    coord corner1;
23:    coord corner2;
24:    coord corner3;
25:    coord corner4;
26:  }object;
27:  
28:  typedef struct
29:  {
30:     /*The corners of the board.  corner1 and corner2 are always opposite
31:       (diagnol), just like corner3 and corner4 too.*/
32:     object corners;
33:  
34:     /*The sides.  The numbers represent the to corners that the point is
35:      between.  The first number is the corner that it is closest to.*/
36:     coord side14, side13, side23, side24;
37:     coord side31, side32, side41, side42;
38:     
39:     /*The points surrounding the middle square.  The number indicates the
40:       closest corner.*/
41:     coord middle1, middle2, middle3, middle4;
42:  }ttt;
43:  
44:  /*Evil globals, but not do-able otherwise.*/
45:  static PGMImage *img_cur;       /*current*/
46:  static PGMImage *img_original;  /*original*/
47:  static PGMImage *img_pers_corr; /*perspective correction*/
48:  static PGMImage *img_grayscale;
49:  static PGMImage *img_moravec;   /*moravec*/
50:  static int HSIZE;
51:  static int VSIZE;
52:  static int MVAL;
53:  
54:  static ttt *ttt_board; /*pointer to a ttt structer containing the board info*/
55:  
56:  const RGB_INT white      = {255, 255, 255};
57:  const RGB_INT yellow     = {255, 255,   0};
58:  const RGB_INT magenta    = {255,   0, 255};
59:  const RGB_INT cyan       = {0,   255, 255};
60:  const RGB_INT red        = {255,   0,   0};
61:  const RGB_INT green      = {0,   255,   0};
62:  const RGB_INT blue       = {0,     0, 255};
63:  const RGB_INT black      = {0,     0,   0};
64:  
65:  const RGB_INT gray       = {128, 128, 128};
66:  const RGB_INT lt_yellow  = {255, 255, 128};
67:  const RGB_INT lt_magenta = {255, 128, 255};
68:  const RGB_INT lt_cyan    = {128, 255, 255};
69:  
70:  const RGB_INT lt_red     = {255, 128, 128};
71:  const RGB_INT lt_green   = {128, 255, 128};
72:  const RGB_INT lt_blue    = {128, 128, 255};
73:  
74:  const RGB_INT dk_yellow  = {128, 128,   0};
75:  const RGB_INT dk_magenta = {128,   0, 128};
76:  const RGB_INT dk_cyan    = {  0, 128, 128};
77:  
78:  const RGB_INT dk_red     = {128,   0,   0};
79:  const RGB_INT dk_green   = {  0, 128,   0};
80:  const RGB_INT dk_blue    = {  0,   0, 128};
81:  
82:  /*pointer to an array of pointers which point to the first nodes in each of
83:    the chain codes.*/ 
84:  list_info* chain_codes;
85:  
86:  /*hold the points farthest away from each other for each object*/
87:  /*coord corner1[MAX_CHAINS], corner2[MAX_CHAINS];
88:    coord corner3[MAX_CHAINS], corner4[MAX_CHAINS];*/
89:  /*object all_objects[MAX_CHAINS];*/
90:  static object *all_objects;
91:  
92:  /*use double buffered output and keep running enable idle callback to call
93:    detect_corners() over and over simulating realtime response.
94:    Is set to TRUE or FALSE.*/
95:  int is_buffered;
96:  
97:  /*used to determine if abstract lines should be drawn to the screen.
98:    Set to <0 if no abstract lines are to be drawn.  Otherwise
99:    is set to the number of objects found (AKA number of chaincodes).*/
100:  int draw_abstract_lines = -1;
101:  
102:  /*used to draw the single object most likely to be considered the
103:    tic-tac-toe board.  Should be <0 if this should not be drawn.
104:    Should be equal to the chain-code number (from 0 to MAX_CHAINS - 1)
105:    if it is to be drawn.*/
106:  int draw_abstract_board = -1;
107:  
108:  
109:  /**************Drawing funcitions************************************/
110:  /********************************************************************/
111:  
112:  void setCPixel(int ix, int iy, RGB_INT color)
113:  /*Same as setIPixel except that the last parameter is an RGB color*/
114:  {
115:    float x = (ix*2.0)/HSIZE - 1.0;
116:    float y = (iy*2.0)/VSIZE - 1.0;
117:  
118:    float red = (float)color.red/(float)MVAL;
119:    float green = (float)color.green/(float)MVAL;
120:    float blue = (float)color.blue/(float)MVAL;
121:  
122:    glColor3f(red, green, blue);
123:    
124:    glBegin(GL_POINTS); 
125:       glVertex2f (x, y);
126:    glEnd();
127:  }
128:  
129:  void setCLines(int ix1, int iy1, int ix2, int iy2, RGB_INT color)
130:  /*Similar as setIPixel except that this one draws a line between the first set
131:    of points given and the second set in the RGB color specified*/
132:  {
133:    float x1 = (ix1*2.0)/HSIZE - 1.0;
134:    float y1 = (iy1*2.0)/VSIZE - 1.0;
135:    float x2 = (ix2*2.0)/HSIZE - 1.0;
136:    float y2 = (iy2*2.0)/VSIZE - 1.0;
137:   
138:    float red = (float)color.red/(float)MVAL;
139:    float green = (float)color.green/(float)MVAL;
140:    float blue = (float)color.blue/(float)MVAL;
141:  
142:    glColor3f(red, green, blue);
143:  
144:    glBegin(GL_LINES);
145:      glVertex2f (x1, y1);
146:      glVertex2f (x2, y2);
147:    glEnd();
148:  }
149:  
150:  void setCRect(int ix1, int iy1, int ix2, int iy2, RGB_INT color)
151:  /*Similar as setIPixel except that this one draws a line between the first set
152:    of points given and the second set in the RGB color specified*/
153:  {
154:    float x1 = (ix1*2.0)/HSIZE - 1.0;
155:    float y1 = (iy1*2.0)/VSIZE - 1.0;
156:    float x2 = (ix2*2.0)/HSIZE - 1.0;
157:    float y2 = (iy2*2.0)/VSIZE - 1.0;
158:   
159:    float red = (float)color.red/(float)MVAL;
160:    float green = (float)color.green/(float)MVAL;
161:    float blue = (float)color.blue/(float)MVAL;
162:  
163:    glColor3f(red, green, blue);
164:  
165:    glBegin(GL_POLYGON);
166:      glVertex2f (x1, y1);
167:      glVertex2f (x1, y2);
168:      glVertex2f (x2, y2);
169:      glVertex2f (x2, y1);
170:    glEnd();
171:  }
172:  
173:  /* ================================================================= 
174:   * drawString - outputs a string of characters to the graphics port
175:   *
176:   *   x, y:      defines the starting location to draw the text
177:   *               note: this point is the lower left anchor of
178:   *                     the first character - a character's decending
179:   *                     portion would be drawn below this point.
180:   *   theFont:   points to the glut font to be used
181:   *   theString: holds the string to be output -- up to 255 ch
182:   * ----------------------------------------------------------------- */
183:  void drawString(int ix, int iy, void *theFont, char theString[256])
184:  {
185:     float x = (ix*2.0)/HSIZE - 1.0;
186:     float y = (iy*2.0)/VSIZE - 1.0;
187:     int i;
188:     glRasterPos2f(x, y);
189:     for (i = 0; theString[i] != '\0'; i++) /* draw the chars one at a time */
190:       glutBitmapCharacter(theFont, theString[i]);
191:  }
192:  
193:  void showColor (PGMImage *img)
194:  {
195:     int i, j; /*loop counting: i = y, j = x*/
196:  
197:     GLubyte checkImage[(*img).height][(*img).width][3];
198:  
199:     for(i = 0; i < (*img).height; i++)
200:     {
201:        for(j = 0; j < (*img).width; j++)
202:        {
203:           checkImage[i][j][0] = (GLubyte) (*img).data[i][j].red;
204:           checkImage[i][j][1] = (GLubyte) (*img).data[i][j].green;
205:           checkImage[i][j][2] = (GLubyte) (*img).data[i][j].blue;
206:        }
207:     }
208:     /*draw the current image*/
209:     glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
210:     glRasterPos2f(-1, -1);
211:     glDrawPixels((*img).width, (*img).height, GL_RGB,
212:  		GL_UNSIGNED_BYTE, checkImage);
213:  
214:     glFlush();
215:  }
216:  
217:  /*display the global abstract data*/
218:  void showAbstract(object* object_list, ttt *ttt_data)
219:  {
220:     int i;
221:  
222:     /*   coord hor_top1, hor_top2;
223:     coord hor_bot1, hor_bot2;
224:     coord ver_rgt1, ver_rgt2;
225:     coord ver_lft1, ver_lft2;
226:     */
227:     list_info temp;
228:  
229:     glPointSize(2); /*make points more visible, if desired*/
230:     /*glLineWidth(4);*/
231:  
232:     /*draw the chaincodes*/
233:     /*chain_codes is a global pointer to an array of list_info types*/
234:     for(i = 0; (i < MAX_CHAINS) && chain_codes && chain_codes[i].cur; i++)
235:     {
236:        memcpy(&temp, &chain_codes[i], sizeof(list_info));
237:        while(RetrieveNextNode(&temp).cur)
238:        {
239:  	setCPixel(RetrieveInfo(&temp).location.x,
240:  		  RetrieveInfo(&temp).location.y, gray);
241:          Advance(&temp);
242:        }
243:     }
244:  
245:     /*first check for non-null pointer, next check for dereferenced pointers
246:       in the array of head pointers and lastly make sure things stay in
247:       bound of the max incase all MAX_CHAINS number of chains are used.*/
248:     /*draw_abstract_lines is the global that holds the number of "objects"
249:       to draw abstract information for*/
250:     for(i = 0; i < draw_abstract_lines && i < MAX_CHAINS; i++)
251:     {
252:        setCLines(object_list[i].corner1.x, object_list[i].corner1.y,
253:  		object_list[i].corner3.x, object_list[i].corner3.y,yellow);
254:        setCLines(object_list[i].corner4.x, object_list[i].corner4.y,
255:  		object_list[i].corner2.x, object_list[i].corner2.y,yellow);
256:        setCLines(object_list[i].corner3.x, object_list[i].corner3.y,
257:  		object_list[i].corner2.x, object_list[i].corner2.y,yellow);
258:        setCLines(object_list[i].corner4.x, object_list[i].corner4.y,
259:  		object_list[i].corner1.x, object_list[i].corner1.y,yellow);
260:  
261:        setCPixel(object_list[i].corner1.x, object_list[i].corner1.y,dk_red);
262:        setCPixel(object_list[i].corner2.x, object_list[i].corner2.y,dk_blue);
263:        setCPixel(object_list[i].corner3.x, object_list[i].corner3.y,white);
264:        setCPixel(object_list[i].corner4.x, object_list[i].corner4.y,dk_green);
265:     }
266:  
267:     /*if there is board to draw and just make sure there isn't a NULL pointer*/
268:     if((draw_abstract_board > -1) && ttt_data)
269:     {
270:        /*This code should draw the bounding box*/
271:       /*setCLines(ttt_data->corners.corner1.x, 
272:                  ttt_data->corners.corner1.y,
273:                  ttt_data->corners.corner3.x,
274:                  ttt_data->corners.corner3.y,blue);
275:        setCLines(ttt_data->corners.corner4.x,
276:                  ttt_data->corners.corner4.y,
277:                  ttt_data->corners.corner2.x,
278:                  ttt_data->corners.corner2.y,blue);
279:        setCLines(ttt_data->corners.corner3.x,
280:                  ttt_data->corners.corner3.y,
281:                  ttt_data->corners.corner2.x,
282:                  ttt_data->corners.corner2.y,blue);
283:        setCLines(ttt_data->corners.corner4.x,
284:                  ttt_data->corners.corner4.y,
285:                  ttt_data->corners.corner1.x,
286:                  ttt_data->corners.corner1.y,blue);
287:        setCPixel(ttt_data->corners.corner1.x,
288:                  ttt_data->corners.corner1.y, red);
289:        setCPixel(ttt_data->corners.corner2.x,
290:                  ttt_data->corners.corner2.y, red);
291:        setCPixel(ttt_data->corners.corner3.x,
292:                  ttt_data->corners.corner3.y, red);
293:        setCPixel(ttt_data->corners.corner4.x,
294:                  ttt_data->corners.corner4.y, red);
295:       */
296:  
297:        setCLines(ttt_data->side13.x,
298:                  ttt_data->side13.y,
299:                  ttt_data->side42.x,
300:                  ttt_data->side42.y,blue);
301:        setCLines(ttt_data->side31.x,
302:                  ttt_data->side31.y,
303:                  ttt_data->side24.x,
304:                  ttt_data->side24.y,blue);
305:        setCLines(ttt_data->side23.x,
306:                  ttt_data->side23.y,
307:                  ttt_data->side41.x,
308:                  ttt_data->side41.y,blue);
309:        setCLines(ttt_data->side32.x,
310:                  ttt_data->side32.y,
311:                  ttt_data->side14.x,
312:                  ttt_data->side14.y,blue);
313:  
314:        setCPixel(ttt_data->middle1.x, ttt_data->middle1.y, red);
315:        setCPixel(ttt_data->middle2.x, ttt_data->middle2.y, red);
316:        setCPixel(ttt_data->middle3.x, ttt_data->middle3.y, red);
317:        setCPixel(ttt_data->middle4.x, ttt_data->middle4.y, red);
318:     }
319:     glFlush();
320:  }
321:  
322:  /**********************Support functions*******************************/
323:  /***********************************************************************/
324:  
325:  void pxlcpy(PGMImage *dest, int dest_row, int dest_col,
326:  	    PGMImage *src, int src_row, int src_col)
327:  {
328:    /*make sure values are within bounds*/
329:    if(dest_col > 0 && dest_col < (*dest).width
330:       && dest_row > 0 && dest_row < (*dest).height
331:       && src_col > 0 && src_col < (*src).width
332:       && src_row > 0 && src_row < (*src).height)
333:    {
334:      (*dest).data[dest_row][dest_col].red =
335:        (*src).data[src_row][src_col].red;
336:  
337:      (*dest).data[dest_row][dest_col].green =
338:        (*src).data[src_row][src_col].green;
339:  
340:      (*dest).data[dest_row][dest_col].blue =
341:        (*src).data[src_row][src_col].blue;
342:    }
343:  } 
344:  
345:  int rgb_avg(RGB_INT cur_pxl)
346:  {
347:     /*convert each RGB to the average of the original*/
348:     return ((cur_pxl.red + cur_pxl.green + cur_pxl.blue) / 3);
349:  }
350:  
351:  /*Returns average (with RGB avg) pixel value for the image passed in.*/
352:  int img_pxl_avg(PGMImage* img)
353:  {
354:     int i, j; /*loop counting*/
355:     int sum = 0;
356:     int temp;
357:  
358:     for(i = 0; i < (*img).height; i++)/*collumn*/
359:        for(j = 0; j < (*img).width; j++)/*row*/
360:           sum += rgb_avg((*img).data[i][j]);
361:  
362:  printf("sum: %d  height: %d  width: %d\n", sum, (*img).height, (*img).width);
363:     temp = (sum / ((*img).height * (*img).width));
364:  printf("temp: %d\n", temp);
365:     return temp;
366:  }
367:  
368:  /*1st: pixel one of type RGB_INT
369:  2nd: pixel one of type RGB_INT
370:  3rd: differnce allowed to be considered "equal" or close enough*/
371:  int pxlcmp (RGB_INT pxl1, RGB_INT pxl2, int range)
372:  {
373:    return ((abs((rgb_avg(pxl1) - rgb_avg(pxl2)))) < range);
374:  }
375:  
376:  /*return >0 if number of pixels is greater than img. pxl. avg., return <0 if
377:    number of pixesl is less than img. pxl. avg. and return zero of equal*/
378:  int background(int treash_value, PGMImage* img)
379:  {
380:     int i, j; /*loop counting*/
381:     int pxl_less = 0, pxl_more = 0;
382:  
383:     for(i = 0; i < (*img).height; i++)/*collumn*/
384:        for(j = 0; j < (*img).width; j++)/*row*/
385:        {
386:  	 if(rgb_avg((*img).data[i][j]) < treash_value)
387:  	   pxl_less++;
388:  
389:           if(rgb_avg((*img).data[i][j]) > treash_value)
390:  	   pxl_more++;
391:        }
392:  
393:     if(pxl_less > pxl_more)
394:        return -1;
395:     else if(pxl_less < pxl_more)
396:        return 1;
397:     else
398:        return 0;
399:  }
400:  
401:  /*Used by showColor() and detect_pieces()*/
402:  coord find_dividers(coord point1, coord point2, float t)
403:  {
404:     coord temp;
405:     
406:     temp.x = (int)(((1.0 - t) * point1.x) + (t * point2.x));
407:     temp.y = (int)(((1.0 - t) * point1.y) + (t * point2.y));
408:     
409:     return temp;   
410:  }
411:  
412:  /******Perspective correction*******************************************
413:  ***********************************************************************/
414:  void pers_corr(PGMImage* new_img, PGMImage* org_img)
415:  {
416:     /*i and j are the left half, k and l are the right half*/
417:     float i, k; /*loop counting*/
418:     int j, l, row; /*loop counting*/
419:     int old_i, old_k;
420:  
421:     float ins_s = 2.0; /*insert constant starting value*/
422:     float ins_k = ins_s; /*insert constant*/
423:  
424:     /*The halfway marks in the width.*/
425:     int mid_width_left = ((*new_img).width / 2) - 1;
426:     int mid_width_right = ((*new_img).width / 2);
427:     
428:     /*just to be thourough clear the memory and reset maxes*/
429:     memset(new_img, 0, sizeof(PGMImage));
430:     (*new_img).height = (*org_img).height;
431:     (*new_img).width = (*org_img).width;
432:     (*new_img).maxVal = (*org_img).maxVal;
433:  
434:     /****x direction correction******/
435:  
436:     /*Loop through each row from top to bottom...*/
437:     for(row = ((*new_img).height - 1); row >= 0; row--)
438:     {
439:        /*...reset moire interference removal counter...*/
440:        old_i = ((*new_img).width / 2) - 1;
441:        old_k = ((*new_img).width / 2);
442:  
443:        /*...so each half is ajusted to remove perspective effect...*/
444:        for(i = j = mid_width_left, k = l = mid_width_right
445:  	    ; i >= 0, j >= 0, k < (*new_img).width, l < (*new_img).width
446:  	    ; i -= ins_k, j--, k += ins_k, l++)
447:        {
448:  	 for(;old_i >= (int)i; old_i--)  /*...in the left half...*/ 
449:  	    pxlcpy(new_img, row, old_i, org_img, row, j);
450:  	 for(;old_k <= (int)k; old_k++)  /*...in the right half.*/
451:  	    pxlcpy(new_img, row, old_k, org_img, row, l);
452:        }
453:        /*Move the new image x_coord pixel counter to next new image pixel*/
454:        ins_k -= ((ins_s - 1.0) / (*new_img).height);
455:     }
456:  }
457:  
458:  /*****convert color to grayscale****************************************
459:  ***********************************************************************/
460:  void color_to_gray(PGMImage* new_img, PGMImage* org_img)
461:  {
462:     int row, col; /*loop counting*/
463:     RGB_INT cur_pxl; /*current pixel*/
464:  
465:     (*new_img).height = (*org_img).height;
466:     (*new_img).width = (*org_img).width;
467:     (*new_img).maxVal = (*org_img).maxVal;
468:  
469:     /*Starting with the top row...*/
470:     for(row = (*new_img).height - 1; row >= 0; row--)
471:        for(col = 0; col < (*new_img).width - 1; col++)
472:        {
473:  	 cur_pxl = (*org_img).data[row][col]; /*more readable*/
474:  	
475:  	 /*convert each RGB to the average of the original*/
476:  	 (*new_img).data[row][col].red =  rgb_avg(cur_pxl);
477:  	 (*new_img).data[row][col].green =  rgb_avg(cur_pxl);
478:  	 (*new_img).data[row][col].blue =  rgb_avg(cur_pxl);
479:        }
480:  }
481:  
482:  /*******Edge highlighting**********************************************
483:  **********************************************************************/
484:  void moravec(PGMImage* new_img, PGMImage* org_img)
485:  {
486:     int row, col; /*loop counting*/
487:     int i, j, k, l; /*Sanka, Hlavac & Boyle; p. 97 f. 4.73*/
488:     int running_sum;
489:     float K = .5; /*.125 according to org. formula, but .5 is brighter*/
490:     int max_val = 0, row_max, col_max; /* max porportion value in image*/
491:     printf("width: %d\n", (*org_img).height);
492:     memset(new_img, 0, sizeof(PGMImage));
493:     (*new_img).height = (*org_img).height;
494:     (*new_img).width = (*org_img).width;
495:     (*new_img).maxVal = (*org_img).maxVal;
496:    
497:     /*starting at the top row*/
498:     for(row = (*new_img).height - 1 - 1; row > 0; row--)
499:        for(col = 1; col < (*new_img).width - 1; col++) /*left col start*/
500:        {
501:  	 i = row;
502:  	 j = col;
503:  	 running_sum = 0;
504:  
505:  	 /*Sanka, Hlavac & Boyle; p. 97 f. 4.73*/
506:  	 for(k = i - 1; k <= i + 1; k++) /*row*/
507:  	   for(l = j - 1; l <= j + 1; l++) /*column*/
508:  	     running_sum += abs(rgb_avg((*org_img).data[k][l]) -
509:  				rgb_avg((*org_img).data[i][j]));
510:  
511:  	 /*assign the new pixel value*/
512:  	 /*since it all the data is initalized to 0, we only worry when it
513:             shouldn't be*/
514:  	 if((int)(K * running_sum) >= 128)
515:  	 {
516:  	    (*new_img).data[row][col].red = 255;
517:  	    (*new_img).data[row][col].green = 255;
518:  	    (*new_img).data[row][col].blue = 255;
519:  	  }
520:  	   /*this is the original code...*/
521:  	   /*(*new_img).data[row][col].red = (int)(K * running_sum);
522:  	 (*new_img).data[row][col].green = (int)(K * running_sum);
523:  	 (*new_img).data[row][col].blue = (int)(K * running_sum);*/
524:        } 
525:  }
526:  
527:  /*******Corners*****************************************************
528:  *******************************************************************/
529:  
530:  /*takes two coordinates as x and y pairs and returns the distence betweem them
531:     as a decimal*/
532:  float findDist(int x1, int y1, int x2, int y2)
533:  {
534:     return sqrt(((x1 - x2) * (x1 - x2)) + ((y1 - y2) * (y1 - y2)));
535:  }
536:           
537:  /*1st param: The array of coords that the first point of the major axis is
538:     returned in.
539:  2nd: The array of coords that the second point of the major axis is
540:     returned in.
541:  3rd: The array of chain codes that are searched through to find the major
542:     axes.*/
543:  /* Note: the ending condition is when a NULL chainCodes value is reached.
544:     Thusly, it works like a string requiring it to have the last legal value
545:     followed by a null value.*/
546:  void findFirstTwoCorners(object *objects_array, list_info* chainCodes)
547:  {
548:     int i; /*loop counting*/
549:     list_info temp, search;
550:     double max_dist, test_dist;
551:  
552:  /*printf("\nFinding first 2 corners.\n");*/
553:  
554:     /*as long as there are codes to check, keep checking.  Note: the ending
555:     condition is when a NULL chainCodes value is reached.  Thusly, it works
556:     like a string requiring it to have the last legal value followed by a
557:     null value.*/
558:     for(i = 0; ((i < MAX_CHAINS) && chainCodes[i].cur); i++)
559:     {      
560:        memcpy(&temp, &chainCodes[i], sizeof(list_info)); 
561:  
562:        max_dist = 0.0;  /*reset this for each iteration*/
563:  
564:  /*printf("checking list: %d\n", i);*/
565:  
566:        while(RetrieveNextNode(&temp).cur) /*while there are nodes to check*/
567:        {
568:  	 /*set the faster moving search pointer to temp,
569:  	   this increases the effiecency a lot compared to
570:  	   setting it equal to the first node..*/
571:           memcpy(&search, &temp, sizeof(list_info));
572:           
573:  	 while(RetrieveNextNode(&search).cur)
574:           {
575:  /*setCPixel(RetrieveInfo(&temp).location.x,
576:    RetrieveInfo(&temp).location.y, green);*/
577:  
578:              /*determine if found a new maximum distance between two locations*/
579:              if((test_dist = findDist(RetrieveInfo(&search).location.x,
580:  				     RetrieveInfo(&search).location.y,
581:  				     RetrieveInfo(&temp).location.x,
582:  				     RetrieveInfo(&temp).location.y))>max_dist)
583:              {
584:                 max_dist = test_dist;
585:                 objects_array[i].corner1.x = RetrieveInfo(&temp).location.x;
586:                 objects_array[i].corner1.y = RetrieveInfo(&temp).location.y;
587:                 objects_array[i].corner2.x = RetrieveInfo(&search).location.x;
588:                 objects_array[i].corner2.y = RetrieveInfo(&search).location.y;
589:              }
590:              Advance(&search);
591:           }
592:           Advance(&temp);
593:        }
594:  /*printf("point1: %d  %d\n", max1[i].x, max1[i].y);
595:  printf("point2: %d  %d\n", max2[i].x, max2[i].y);*/
596:     }
597:  }
598:  
599:  /*1st param: Array of coords for the first corner of each chain code.
600:  2nd param: Array of coords for the second corner of each chain code.
601:  The first two parameters should equal the first two parameters "returned"
602:  from the findFirstTwoCorners() function.
603:  3rd: Array of coords "returned" with the third corners.
604:  4th:  Array of coords "returned" with the fourth corners.
605:  5th: Pointer pointing to the array of chaincode pointers, obtained from
606:    showChain().*/
607:  void findSecondTwoCorners(object *objects_array, list_info* chain_code_array)
608:  {
609:     int i; /*loop counting*/
610:     list_info temp;
611:     float temp_dist1, temp_dist2; /*distance between point and each corner*/
612:     coord canidate_coord1, temp_coord;
613:     float canidate_dist1, max_dist;
614:     int corner_count;
615:  
616:  /*printf("\nFinding last 2 corners.\n\n");*/
617:  
618:     /*for each chain code find the corners*/
619:     for(i = 0; (i < MAX_CHAINS) && chain_code_array[i].cur; i++)
620:     {
621:        memcpy(&temp, &chain_code_array[i], sizeof(list_info));
622:        
623:        /*reset these for the next chain code*/
624:        max_dist = 0.0;
625:        corner_count = 1;
626:  
627:        /*while there are nodes in the chain code to check*/
628:        /*if there isn't a next node cur is NULL, which is checked*/
629:        while(RetrieveNextNode(&temp).cur)
630:        {
631:  /*setCPixel(RetrieveInfo(&temp).location.x,
632:    RetrieveInfo(&temp).location.y, color1);*/
633:  
634:  	/*determine the first canidate coord for corner 3/4*/
635:  	if(((RetrieveInfo(&temp).location.x == objects_array[i].corner1.x)
636:  	    && (RetrieveInfo(&temp).location.y == objects_array[i].corner1.y))
637:  	   || ((RetrieveInfo(&temp).location.x == objects_array[i].corner2.x)
638:  	     &&(RetrieveInfo(&temp).location.y == objects_array[i].corner2.y)))
639:  	{
640:  	  /*if this corner found is the first of the two allready known
641:  	    corners, then set the first canidate coord data and reset data
642:  	    to find the next canidate corner point*/
643:  	   if(corner_count == 1)
644:  	   {
645:  	      canidate_coord1.x = temp_coord.x;
646:  	      canidate_coord1.y = temp_coord.y;
647:  	      canidate_dist1 = max_dist;
648:  
649:  	      corner_count = 2; /*set for next corner*/
650:  	      max_dist = 0.0;
651:  	   }
652:  	   else if(corner_count == 2)
653:  	   {
654:  	      /*the second canidate is always a corner*/
655:  	      all_objects[i].corner4.x = temp_coord.x;
656:  	      all_objects[i].corner4.y = temp_coord.y;
657:  	      
658:  	      max_dist = 0.0; /*set for next corner canidate*/
659:  	   }
660:  	}
661:  
662:  	/*calculate the distance between the current point being checked and
663:  	  each corner point*/
664:  	temp_dist1 = findDist(all_objects[i].corner1.x,
665:  			      all_objects[i].corner1.y,
666:  			      RetrieveInfo(&temp).location.x,
667:  			      RetrieveInfo(&temp).location.y);
668:  	temp_dist2 = findDist(all_objects[i].corner2.x,
669:  			      all_objects[i].corner2.y,
670:  			      RetrieveInfo(&temp).location.x,
671:  			      RetrieveInfo(&temp).location.y);
672:  
673:  	/*if the current point is the furthest away sofar, store this point
674:  	  untill it is overridden or becomes a canidate point*/
675:  	if((temp_dist1 + temp_dist2) > max_dist)
676:  	{
677:  	   temp_coord.x = RetrieveInfo(&temp).location.x;
678:  	   temp_coord.y = RetrieveInfo(&temp).location.y;
679:  	  
680:  	   max_dist = (temp_dist1 + temp_dist2);
681:  	}
682:  
683:  	Advance(&temp);
684:        }
685:  
686:        /*from the three canidate coords find the two real corners.*/
687:        /*the second canidate will always be a corner, must test 1 vs 3, where
688:  	three is in the variables temp_coord and max_dist.*/
689:        if(canidate_dist1 > max_dist) /*first canidate*/
690:        {
691:           all_objects[i].corner3.x = canidate_coord1.x;
692:  	 all_objects[i].corner3.y = canidate_coord1.y;
693:        }
694:        else /*third canidate*/
695:        {
696:           all_objects[i].corner3.x = temp_coord.x;
697:  	 all_objects[i].corner3.y = temp_coord.y;
698:        }
699:  /*printf("corner3: (%d, %d)  corner4: (%d, %d)\n", corner3[i].x,
700:    corner3[i].y, corner4[i].x, corner4[i].y);*/
701:     }
702:  }
703:  
704:  /*takes a pointer to an image, and a pointer pointing to an array of
705:    chain codes pointers, here each chainCode pointer needs to be accessed
706:    by calculating the memory address.*/
707:  void showBound(/*PGMImage *original,*/ list_info* chainCodes, object *all_objects)
708:  {     
709:     int i;
710:  
711:     /*find the first two corners.  they will be across a diagnal.*/
712:     findFirstTwoCorners(all_objects, chainCodes);
713:     /*find the second two corners.  they will be across a diagnal too.*/
714:     findSecondTwoCorners(all_objects, chainCodes);
715:     /*     
716:     for(i = 0; chainCodes[i] && i < MAX_CHAINS; i++)
717:     {
718:        setCLines(corner1[i].x, corner1[i].y, corner3[i].x, corner3[i].y,yellow);
719:        setCLines(corner4[i].x, corner4[i].y, corner2[i].x, corner2[i].y,yellow);
720:        setCLines(corner3[i].x, corner3[i].y, corner2[i].x, corner2[i].y,yellow);
721:        setCLines(corner4[i].x, corner4[i].y, corner1[i].x, corner1[i].y,yellow);
722:        setCPixel(corner1[i].x, corner1[i].y, magenta);
723:        setCPixel(corner2[i].x, corner2[i].y, magenta);
724:        setCPixel(corner3[i].x, corner3[i].y, magenta);
725:        setCPixel(corner4[i].x, corner4[i].y, magenta);
726:        }*/
727:  }
728:  
729:  /*returns the number of objects found*/
730:  /*places the corner info in the global corners data*/
731:  int detect_corners(list_info* current_chaincodes,
732:  		   object *objects_array)
733:  {
734:     int i; /*temporarily holds number of chaincodes*/
735:  
736:     showBound(/*org_img,*/ current_chaincodes, objects_array);
737:  
738:     /*when this stops, i holds the number of chaincodes*/
739:     for(i = 0; (i < MAX_CHAINS) && chain_codes && chain_codes[i].cur; i++);
740:  
741:     return i;
742:  }
743:  
744:  /*******Find the game board********************************************
745:  **********************************************************************/
746:  
747:  float compare_length(float length1, float length2)
748:  {
749:     float denom_check = fabs((length1 + length2) / 2);
750:     if(denom_check == 0)
751:     {
752:        /*the only way to possibly pull this off is if one point is
753:  	is considered more than one corner.  This is most likely
754:  	to happen where the chain was only two or three nodes long.*/
755:        /*Just set the error to the maximum value obtained from float.h,
756:  	since such a small chain is not what we are looking for.*/
757:       
758:       /*error24to13[i] =*/ return FLT_MAX;
759:     }
760:     else
761:  /*error24to13[i] =*/return fabs(length1 - length2) / denom_check;
762:  }
763:  
764:  /*determines which object is the game board and determine moves made in
765:     the game.*/
766:  /*takes the number of object corners (equal to # of chaincodes) as param.*/
767:  int detect_game(list_info *current_chaincodes, object *object_array)
768:  {
769:     float length2to4[MAX_CHAINS], length1to3[MAX_CHAINS]; /*side pairs*/
770:     float length1to4[MAX_CHAINS], length2to3[MAX_CHAINS]; /*side pairs*/
771:     float length1to2[MAX_CHAINS], length3to4[MAX_CHAINS]; /*diagnaols*/
772:  
773:     float error24to13[MAX_CHAINS], error14to23[MAX_CHAINS];/*opp. sides*/
774:     float error14to13[MAX_CHAINS], error23to24[MAX_CHAINS];/*share corner*/
775:     float error31to32[MAX_CHAINS], error41to42[MAX_CHAINS];/*share corner*/
776:     float error12to34[MAX_CHAINS];/*diagnaols*/
777:  
778:     float error_avg;/*average of the errors stored in error##to## variables*/
779:  
780:     int i, k; /*loop counting*/
781:     /*float denom_check; /*make sure denominators are not zero*/
782:     list* temp;
783:  
784:     /*the most likely object (0 to num_of_corners) that is to be considered
785:       as the board.  The float is the error associated with this object.*/
786:     int most_likely = -1;
787:     float ml_error = FLT_MAX; /*just to make sure*/
788:  printf("here inside detect game\n");
789:     /*for each chaincode*/
790:     for(i = 0; (i < MAX_CHAINS) && current_chaincodes &&
791:  	 current_chaincodes[i].cur; i++)
792:     {
793:       printf("length: %d\n", Length(¤t_chaincodes[i]));
794:        /*count the number of nodes in the chaincode.  Unless the size is
795:         considered long enough, skip it and move on.*/
796:        if(Length(¤t_chaincodes[i]) < DECENT_SIZED_OBJECT)
797:  	 continue;
798:  printf("here inside detect game for loop\n");
799:        /*since points 1 & 2 are at a diagnal, and 3 & 4 are at a diagnol,
800:           then the dist between  2 and 4 & 1 and 3 should be close
801:           in value.*/
802:        length2to4[i] = findDist(object_array[i].corner2.x,
803:  			       object_array[i].corner2.y,
804:  			       object_array[i].corner4.x,
805:  			       object_array[i].corner4.y);
806:        length1to3[i] = findDist(object_array[i].corner1.x,
807:  			       object_array[i].corner1.y,
808:  			       object_array[i].corner3.x,
809:  			       object_array[i].corner3.y);
810:  
811:        /*the other side pair*/
812:        length1to4[i] = findDist(object_array[i].corner1.x,
813:  			       object_array[i].corner1.y,
814:  			       object_array[i].corner4.x,
815:  			       object_array[i].corner4.y);
816:        length2to3[i] = findDist(object_array[i].corner2.x,
817:  			       object_array[i].corner2.y,
818:  			       object_array[i].corner3.x,
819:  			       object_array[i].corner3.y);
820:        
821:        /*diagnols... always will be 1 & 2 and 3 & 4*/
822:        length1to2[i] = findDist(object_array[i].corner1.x,
823:  			       object_array[i].corner1.y,
824:  			       object_array[i].corner2.x,
825:  			       object_array[i].corner2.y);
826:        length3to4[i] = findDist(object_array[i].corner3.x,
827:  			       object_array[i].corner3.y,
828:  			       object_array[i].corner4.x,
829:  			       object_array[i].corner4.y);
830:  
831:        /*calculate percent errors for all edge (and diagnal) combinations*/
832:        error24to13[i] = compare_length(length2to4[i], length1to3[i]);/*op.side*/
833:        error14to23[i] = compare_length(length1to4[i], length2to3[i]);
834:        error14to13[i] = compare_length(length1to4[i], length1to3[i]);/*1 crn.*/
835:        error23to24[i] = compare_length(length2to3[i], length2to4[i]);
836:        error31to32[i] = compare_length(length1to3[i], length2to3[i]);
837:        error41to42[i] = compare_length(length1to4[i], length2to4[i]);
838:        error12to34[i] = compare_length(length1to2[i], length3to4[i]);/*diag.*/
839:  
840:        /*average all of the error values together*/
841:        error_avg = ((error24to13[i] + error14to23[i] + error14to13[i] +
842:  		    error23to24[i] + error31to32[i] + error41to42[i] +
843:  		    error12to34[i]) / 7);
844:        
845:  printf("error avg: %f\n\n",  error_avg);
846:        /*determine if the current object is considered the most likely to
847:           be the ttt board so far.  Average of all the error##to##'s.
848:           If the current is */
849:        if(ml_error > error_avg)
850:        {
851:           most_likely = i;
852:           ml_error = error_avg;
853:        }
854:     }
855:  
856:    printf("Object %d is most likely the board with %f\%% error.\n",
857:       most_likely, ml_error * 100);
858:  
859:    return most_likely; /*return the object number that is the board*/
860:  }
861:  
862:  coord search_moravec(coord point1, coord point2, PGMImage *moravec)
863:  {
864:     int i, j; /*loop counting*/
865:     float t;
866:     coord temp;
867:     float dist = findDist(point1.x, point1.y, point2.x, point2.y);
868:     int search_size = 5;
869:  
870:     coord most_likely_corner = {-1, -1};
871:     int most_likely_sum = 0;
872:     int sum_moravec_points = 0;
873:  
874:     /*calculate the coordinates where the divider edges should be.*/
875:     for(t = ONE_HALF; t > ONE_SIXTH; t -= (1 / dist))
876:     {
877:        temp = find_dividers(point1, point2, t);
878:        /* search_size = findDist(point1.x, point1.y, point2.x, point2.y) / 10;*/
879:        sum_moravec_points = 0; /*clear this before next iteration*/      
880:  
881:        for(i = -(search_size); i <= search_size; i++)
882:        {
883:  	 for(j = -(search_size); j <= search_size; j++)
884:  	 {
885:  	    if(rgb_avg((*moravec).data[temp.y + i][temp.x + j]) > 115)
886:  	    {
887:  /*setCPixel(temp.x + j, temp.y + i, red);*/
888:  	       sum_moravec_points++;
889:  	    }
890:  	 }
891:        }
892:  
893:        /*if the current point in the search is the best, store it*/
894:        if(most_likely_sum <= sum_moravec_points)
895:        {
896:  	 most_likely_corner.x = temp.x;
897:  	 most_likely_corner.y = temp.y;
898:           most_likely_sum = sum_moravec_points;
899:        }
900:     }
901:  
902:     return most_likely_corner;
903:  }
904:  
905:  /*anchor - the corner closest to the side divider point being looked for.
906:  common - the corner that the line between itself and the anchor corner contains
907:     the target divider point.
908:  anchor_opposite - the corner adjacent to the anchor corner & oppsoite common.
909:  common_opposite - the corner adjacent to the common corner & oppposite anchor.
910:  */
911:  /*return the divider point*/
912:  coord find_side_points(coord anchor, coord common, coord anchor_opposite,
913:  		       coord common_opposite, PGMImage *moravec)
914:  {
915:       coord temp1, temp2;
916:  
917:       temp1 = find_dividers(anchor, anchor_opposite, ONE_TWELTH);
918:       temp2 = find_dividers(common, common_opposite, ONE_TWELTH);
919:  
920:       return search_moravec(temp1, temp2, moravec);
921:  }
922:  
923:  coord find_intersection(coord line1_point1, coord line1_point2,
924:  			coord line2_point1, coord line2_point2)
925:  {
926:     float line1_slope, line2_slope;
927:     coord target = {-1, -1};
928:  int *temp = NULL;
929:     /*find slope for first line*/
930:     if((line1_point1.x - line1_point2.x) != 0)
931:     {
932:        line1_slope = ((float)(line1_point1.y - line1_point2.y)) /
933:  	((float)(line1_point1.x - line1_point2.x));
934:     }
935:     else /*otherwise handle the undefined slope*/
936:     { 
937:       /*find slope for secon line when first is undefined*/
938:        if((line2_point1.x - line2_point2.x) != 0)
939:        {
940:  	 line2_slope = ((float)(line2_point1.y - line2_point2.y)) /
941:  	   ((float)(line2_point1.x - line2_point2.x));
942:        }
943:        else /*this should never happen, but could if someone specifed the same
944:               line twice*/
945:  	return target; /*target is initalized to (-1, -1)*/
946:  
947:        /*since the slope is undefined the x coord in known*/
948:        target.x = line1_point1.x;
949:        target.y = line2_slope * target.x + line2_point1.y; /*y = mx + b*/
950:        printf("line one has undefined slope\n");
951:        return target;
952:     }
953:  
954:     /*find slope for second line*/
955:     if((line2_point1.x - line2_point2.x) != 0)
956:     {
957:        line2_slope = ((float)(line2_point1.y - line2_point2.y)) /
958:  	((float)(line2_point1.x - line2_point2.x));
959:     }
960:     else
961:     {
962:        /*since the slope is undefined the x coord in known*/
963:        target.x = line1_point1.x;
964:        target.y = line1_slope * target.x + line1_point1.y; /*y = mx + b*/
965:        printf("line two has undefined slope\n");
966:        return target;
967:     }
968:  
969:     /*if both lines have defined slopes find the target point*/
970:     /* slope is m and defined by:
971:           (y1 - y2)
972:       m = ---------
973:           (x1 - x2)
974:  
975:       target calculated by setting Yt = M1*(Xt - Xa) + Ya equal to
976:       Yt = M2 * (Xt - Xc) + Yc to get
977:  
978:              (Xa*M1 - M2*Xc + Yc - Ya)
979:         Xt = -------------------------
980:                   M1 - M2
981:  
982:       then to get the y coordinate sub Xt into:
983:  
984:       Yt = M1 * (Xt - Xa) + Ya
985:  
986:       Where line1_point1 = a
987:             line1_point2 = b
988:             line2_point1 = c
989:  	   line12point2 = d
990:       and are indicated as subscripts of their X or Y coordinate.
991:             M1 = line1_slope
992:             M2 = line2_slope
993:     */
994:  
995:  
996:     
997:     target.x = (((float)(line1_point1.x * line1_slope)
998:  		- (float)(line2_point1.x * line2_slope)
999:  		+ (float)line2_point1.y - (float)line1_point1.y))
1000:       / (float)(line1_slope - line2_slope);
1001:  
1002:     target.y = line1_slope * ((float)target.x - (float)line1_point1.x)
1003:       + (float)line1_point1.y;
1004:     /*target.y = line2_slope * ((float)target.x - (float)line2_point1.x)
1005:       + (float)line2_point1.y;*/
1006:  
1007:     /*printf("%d\n", *temp);   *//*for gdb*/
1008:     return target;
1009:  }
1010:  
1011:  
1012:  /*find the ttt boards cross lines coordinates*/
1013:  void detect_ttt_board(object board_object, ttt *board_details,
1014:  		      PGMImage *moravec)
1015:  {
1016:     /*copy the corners into the ttt datatype*/
1017:     memcpy(&(board_details->corners), &board_object, sizeof(object));
1018:     
1019:     board_details->side13 = find_side_points(board_object.corner1,
1020:  					    board_object.corner3,
1021:  					    board_object.corner2,
1022:  					    board_object.corner4, moravec);
1023:   
1024:     board_details->side14 = find_side_points(board_object.corner1,
1025:  					    board_object.corner4,
1026:  					    board_object.corner2,
1027:  					    board_object.corner3, moravec);
1028:  
1029:     board_details->side23 = find_side_points(board_object.corner2,
1030:  					    board_object.corner3,
1031:  					    board_object.corner1,
1032:  					    board_object.corner4, moravec);
1033:     
1034:     board_details->side24 = find_side_points(board_object.corner2,
1035:  					    board_object.corner4,
1036:  					    board_object.corner1,
1037:  					    board_object.corner3, moravec);
1038:  
1039:     board_details->side31 = find_side_points(board_object.corner3,
1040:  					    board_object.corner1,
1041:  					    board_object.corner4,
1042:  					    board_object.corner2, moravec);
1043:     
1044:     board_details->side32 = find_side_points(board_object.corner3,
1045:  					    board_object.corner2,
1046:  					    board_object.corner4,
1047:  					    board_object.corner1, moravec);
1048:  
1049:     board_details->side41 = find_side_points(board_object.corner4,
1050:  					    board_object.corner1,
1051:  					    board_object.corner3,
1052:  					    board_object.corner2, moravec);
1053:     
1054:     board_details->side42 = find_side_points(board_object.corner4,
1055:  					    board_object.corner2,
1056:  					    board_object.corner3,
1057:  					    board_object.corner1, moravec);
1058:  
1059:     /*now that the sides are found, find the intersections to find the
1060:       middle points*/
1061:     
1062:     board_details->middle1 = find_intersection(board_details->side14,
1063:  					      board_details->side32,
1064:  					      board_details->side13,
1065:  					      board_details->side42);
1066:  
1067:     board_details->middle2 = find_intersection(board_details->side23,
1068:  					      board_details->side41,
1069:  					      board_details->side24,
1070:  					      board_details->side31);
1071:     
1072:     board_details->middle3 = find_intersection(board_details->side31,
1073:  					      board_details->side24,
1074:  					      board_details->side32,
1075:  					      board_details->side14);
1076:  printf("middle3: (%d, %d)\n", board_details->middle3.x, board_details->middle3.y);
1077:     board_details->middle4 = find_intersection(board_details->side41,
1078:  					      board_details->side23,
1079:  					      board_details->side42,
1080:  					      board_details->side13);
1081:  
1082:  }
1083:  
1084:  /*****Find the pieces***************************************************
1085:  ***********************************************************************/
1086:  
1087:  /*Takes four points that must be in order going around the region.  Also,
1088:    needs a pointer to an image with the moravec filter applied.*/
1089:  int search_area(coord point1, coord point2, coord point3, coord point4,
1090:  		PGMImage *moravec)
1091:  {
1092:     /*The following variables are used to calculate the existence of a marble
1093:       at a location on the board or not.  Uses the following basic formula
1094:          new_point = ((t-1) * 1st point) + (t * 2nd point)
1095:       where the start & end coords are opposite sides of the area being
1096:       searched.  If you take the entire area of a single position on a ttt
1097:       board, the area that is searched is the region that is bouned by the
1098:       points halfway between those passed in to this function.*/
1099:       
1100:     float t, s, r; /*hold values incrementing from 0 to 1*/
1101:     coord t_start, t_end, s_start, s_end;
1102:     coord temp_t, temp_s, temp_r;
1103:     float dist_t, dist_s, dist_r;
1104:  
1105:     /*pixel count of those over the threashhold and total pixels*/
1106:     int pixel_count = 0, moravec_count = 0;
1107:  
1108:     t_start = find_dividers(point1, point2, ONE_HALF);
1109:     t_end = find_dividers(point1, point4, ONE_HALF);
1110:  
1111:     s_start = find_dividers(point3, point2, ONE_HALF);
1112:     s_end = find_dividers(point3, point4, ONE_HALF);
1113:  
1114:     dist_t = findDist(t_start.x, t_start.y, t_end.x, t_end.y);
1115:     dist_s = findDist(s_start.x, s_start.y, s_end.x, s_end.y);
1116:     printf("%f  %f\n", dist_t, dist_s);
1117:  
1118:     /*march two points along that parallel each other in the search area*/
1119:     for(t = 0.0, s = 0.0; t <= 1.0; t += (1.0 / dist_t), s += (1.0 / dist_s))
1120:     {
1121:        temp_t = find_dividers(t_start, t_end, t);
1122:  
1123:  	 temp_s = find_dividers(s_start, s_end, s);
1124:  
1125:  	 dist_r = findDist(temp_t.x, temp_t.y, temp_s.x, temp_s.y);
1126:  
1127:           /*march a single point along that starts at temp_s and ends
1128:  	   at temp_t.  This fills in the region for the search.*/
1129:  	 for(r = 0.0; r <= 1.0; r += (1 / dist_r))
1130:  	 {
1131:  	    temp_r = find_dividers(temp_s, temp_t, r);
1132:  
1133:              /*talley the number of edge points found (rgb. avg. >= 128)*/
1134:  	    if(rgb_avg((*moravec).data[temp_r.y][temp_r.x]) >= 128)
1135:  	    {
1136:  	       setCPixel(temp_r.x, temp_r.y, blue);
1137:  	       moravec_count++;
1138:  	    }
1139:  	    pixel_count++; /*increment the number of pixels*/
1140:  	 }
1141:  
1142:     }
1143:  
1144:     printf("total: %d  edge: %d\n", pixel_count, moravec_count);
1145:     
1146:     /*if the number of edge pixels is greater than 10% of the total, then
1147:       this is an edge of marble.  The percent is there because there could be
1148:       a few small blobs that get counted when the shouldn't that otherwise
1149:       would give a positive hit that a marble was found*/
1150:     if(moravec_count >= (pixel_count / 10))
1151:        return TRUE;
1152:  
1153:     /*otherwise a marble isn't here*/
1154:     return FALSE;
1155:  }
1156:  
1157:  /*takes the object number that is determined to be the board*/
1158:  void detect_pieces(ttt *board_data, PGMImage* moravec)
1159:  {
1160:      if(search_area(board_data->corners.corner1, board_data->side13,
1161:  		 board_data->middle1, board_data->side14, moravec))
1162:      printf("corner 1 has a piece\n");
1163:    else
1164:      printf("corner 1 has no piece\n");
1165:    
1166:    
1167:    if(search_area(board_data->middle1, board_data->middle3,
1168:  		 board_data->middle2, board_data->middle4, moravec))
1169:      printf("middle has a piece\n");
1170:    else
1171:    printf("middle has no piece\n");
1172:    
1173:  
1174:    if(search_area(board_data->corners.corner2, board_data->side23,
1175:  		 board_data->middle2, board_data->side24, moravec))
1176:      printf("corner 2 has a piece\n");
1177:    else
1178:      printf("corner 2 has no piece\n");
1179:  
1180:  setCPixel(board_data->middle1.x, board_data->middle1.y, red);
1181:  setCPixel(board_data->middle2.x, board_data->middle2.y, green);
1182:  setCPixel(board_data->middle3.x, board_data->middle3.y, blue);
1183:  setCPixel(board_data->middle4.x, board_data->middle4.y, yellow);
1184:  }
1185:  
1186:  
1187:  /* =================================================================
1188:   * Callback functions.
1189:   *
1190:   * color = displayed graphics in window
1191:   * menu = menu event handling
1192:   * keyboard = deyboard event handling
1193:   * ----------------------------------------------------------------- */
1194:  void color(void)
1195:  {
1196:    /*glClear (GL_COLOR_BUFFER_BIT);*/
1197:  
1198:    /*show the current image*/
1199:    showColor(img_cur);
1200:  
1201:    /*show the current abstract information*/
1202:    showAbstract(all_objects, ttt_board);   
1203:  
1204:  }
1205:  
1206:  void buffer()
1207:  {
1208:     /*if the drawing state of all objects is enabled, recalculate*/
1209:     if(draw_abstract_lines >= 0)
1210:       draw_abstract_lines = detect_corners(chain_codes, all_objects);
1211:  
1212:     /*if the drawing state of the object most likely to be the board is
1213:       found, recalulate*/
1214:     if(draw_abstract_board >= 0)
1215:        draw_abstract_board = detect_game(chain_codes, all_objects);
1216:  
1217:     glutPostRedisplay();
1218:  }
1219:  
1220:  #define RESTART 0
1221:  #define PERS_CORR 3
1222:  #define COLOR_TO_GRAY 4
1223:  #define MORAVEC 5
1224:  #define EDGES 6
1225:  #define CORNERS 7
1226:  #define BUFFERS 8
1227:  #define GAME 9
1228:  #define PIECES 10
1229:  
1230:  /*this is not a callback function, but is used inside menu() for setting
1231:    new states of execution*/
1232:  void reset_state(PGMImage* new_current)
1233:  {
1234:     img_cur = new_current;
1235:     draw_abstract_lines = -1;
1236:     draw_abstract_board = -1;
1237:     free_chaincodes(&chain_codes);
1238:  }
1239:  
1240:  void menu(int selection)
1241:  {
1242:     if(selection == RESTART)   
1243:     {
1244:        reset_state(img_original);
1245:     }
1246:     if(selection == PERS_CORR)
1247:     {
1248:        pers_corr(img_pers_corr, img_cur);
1249:        reset_state(img_pers_corr);
1250:     }
1251:     if(selection == COLOR_TO_GRAY)
1252:     {
1253:        color_to_gray(img_grayscale, img_cur);
1254:        reset_state(img_grayscale);
1255:     }
1256:     if(selection == MORAVEC)
1257:     {
1258:        moravec(img_moravec, img_cur);
1259:        reset_state(img_moravec);
1260:     }
1261:     if(selection == EDGES)
1262:     {
1263:        /*if there is a chaincode already in memory, free it before a new one
1264:  	is created.*/
1265:        showChain(img_cur, &chain_codes);
1266:     }
1267:     if(selection == CORNERS)
1268:     {
1269:        /*if there are chaincodes already in memory, free it before a new one
1270:  	is created.*/
1271:        showChain(img_cur, &chain_codes);
1272:  
1273:        draw_abstract_lines = detect_corners(chain_codes, all_objects);
1274:     }
1275:     if(selection == BUFFERS)
1276:     {
1277:        if(is_buffered == FALSE)
1278:        {
1279:  	 glutIdleFunc(buffer);
1280:  	 is_buffered = TRUE;
1281:        }
1282:        else
1283:        {
1284:  	 glutIdleFunc(NULL);
1285:  	 is_buffered = FALSE;
1286:        }
1287:     }
1288:     if(selection == GAME)
1289:     {
1290:        /*need an image with the moravec filter applied*/
1291:        /*don't calculating this if it is the current image!!!
1292:  	Bad things happen like memseting to zero the current image.*/
1293:        if(img_cur != img_moravec)
1294:        {
1295:  	 moravec(img_moravec, img_cur);
1296:  	 /*img_cur = img_moravec;*/
1297:        }
1298:  
1299:        /*if there are chaincodes already in memory, free it before a new one
1300:  	is created.*/
1301:        showChain(img_moravec, &chain_codes);
1302:  
1303:        detect_corners(chain_codes, all_objects);
1304:        draw_abstract_board = detect_game(chain_codes, all_objects);
1305:        detect_ttt_board(all_objects[draw_abstract_board], ttt_board,
1306:  		       img_moravec);
1307:  return;
1308:     }
1309:     if(selection == PIECES)
1310:     {
1311:        /*need an image with the moravec filter applied*/
1312:        /*don't calculating this if it is the current image!!!
1313:  	Bad things happen like memseting to zero the current image.*/
1314:        if(img_cur != img_moravec)
1315:        {
1316:  	 moravec(img_moravec, img_cur);
1317:  	 /*img_cur = img_moravec;*/
1318:        }
1319:  
1320:        /*if there are chaincodes already in memory, they are freed before a
1321:  	new one is created.*/
1322:        showChain(img_moravec, &chain_codes);
1323:  
1324:        /*detect the ttt game board*/
1325:        detect_corners(chain_codes, all_objects);
1326:        draw_abstract_board = detect_game(chain_codes, all_objects);
1327:        detect_ttt_board(all_objects[draw_abstract_board], ttt_board,
1328:  		       img_moravec);
1329:  
1330:        /*detect the locations of the pieces*/
1331:        detect_pieces(ttt_board, img_moravec);
1332:  
1333:        glFlush();
1334:        return;
1335:     }
1336:  
1337:     glutPostRedisplay(); /*redraw the image*/
1338:  }
1339:  
1340:  void keyboard(unsigned char key, int x, int y)
1341:  { 
1342:     switch (key)
1343:     {
1344:        case 27: 
1345:           exit(0);
1346:           break;
1347:     }
1348:  }
1349:  
1350:  void mouse(int button, int state, int x, int y)
1351:  {
1352:    char temp[50];
1353:    
1354:    if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
1355:    {
1356:       sprintf(temp, "(x, y): (%d, %d)  red: %d green: %d blue: %d\n",
1357:  	     x, VSIZE - y, (*img_cur).data[VSIZE - y][x].red,
1358:  	     (*img_cur).data[VSIZE - y][x].green,
1359:  	     (*img_cur).data[VSIZE - y][x].blue);
1360:       setCRect(0, 0, 200, 12, black);
1361:       glColor3f(1.0, 0.0, 0.0);
1362:       drawString(0, 0, GLUT_BITMAP_TIMES_ROMAN_10, temp);
1363:       glFlush();
1364:    }
1365:  }
1366:  
1367:    
1368:  /* =================================================================
1369:   * init() & parse_command_line()
1370:   * initalize none-OpenGL related things.
1371:   * ----------------------------------------------------------------- */
1372:  
1373:  /*set global flag variables from things specified at commandline.*/
1374:  /*return the filename specified, if none specified exit().*/
1375:  char* parse_command_line(int argc, char** argv)
1376:  {
1377:     /*parse the command line*/
1378:     if(argc == 1)
1379:     {
1380:        printf("To few parameters.\n");
1381:        printf("Usage: research <file.pgm>\n");
1382:        exit(1);
1383:     }
1384:     else if(argc == 2)
1385:     {
1386:       return argv[1];
1387:     }
1388:     else
1389:     {
1390:        printf("To many parameters.\n");
1391:        printf("Usage: research <file.pgm>\n");
1392:        exit(1);
1393:     }
1394:  }
1395:  
1396:  char* init (int argc, char** argv)
1397:  {
1398:     char* PGMfileName;/*pointer to the string containing the filename*/
1399:  
1400:     /*parse the command line*/
1401:     PGMfileName = parse_command_line(argc, argv);
1402:     
1403:  /*
1404:   * Read in image file. - note: sets our global values, too.
1405:   * ----------------------------------------------------------------- */
1406:        
1407:     /*allocate memory for original image*/
1408:     img_original = (PGMImage*) malloc(sizeof(PGMImage));
1409:     getPGMfile(PGMfileName, img_original);
1410:     HSIZE = (*img_original).width;
1411:     VSIZE = (*img_original).height;
1412:     MVAL = (*img_original).maxVal;
1413:  
1414:     img_cur = img_original; /*VERY IMPORTANT to set this*/
1415:              
1416:     /*allocate memory for pers. corr. image*/
1417:     img_pers_corr = (PGMImage*) malloc(sizeof(PGMImage));
1418:     (*img_pers_corr).width = HSIZE;
1419:     (*img_pers_corr).height = VSIZE;
1420:     (*img_pers_corr).maxVal = 255;
1421:               
1422:     img_grayscale = (PGMImage*) malloc(sizeof(PGMImage));
1423:     (*img_grayscale).width = HSIZE;
1424:     (*img_grayscale).height = VSIZE;
1425:     (*img_grayscale).maxVal = 255;
1426:  
1427:     img_moravec = (PGMImage*) malloc(sizeof(PGMImage));
1428:     (*img_moravec).width = HSIZE;
1429:     (*img_moravec).height = VSIZE;
1430:     (*img_moravec).maxVal = 255;
1431:  
1432:  
1433:     all_objects = (object*) malloc(sizeof(object) * MAX_CHAINS);
1434:     memset(all_objects, 0, sizeof(object) * MAX_CHAINS);
1435:     
1436:     ttt_board = (ttt*) malloc(sizeof(ttt));
1437:     memset(ttt_board, 0, sizeof(ttt));
1438:  
1439:     return PGMfileName;
1440:  }
1441:  
1442:  
1443:  int main(int argc, char** argv)
1444:  {
1445:     char* PGMfileName;
1446:     int WindowID; /*unique window id, there is only one used*/
1447:     int i;  /*looping variable*/
1448:  
1449:  /*  
1450:   * Call our init function to define non-OpenGL related things.
1451:   * Have init return a pointer to the filename, used to display the
1452:   * filename in the titlebar of the window.
1453:   * ----------------------------------------------------------------- */
1454:     PGMfileName = init (argc, argv);
1455:  
1456:  /*
1457:   * Initialize the glut package.
1458:   * ----------------------------------------------------------------- */
1459:     glutInit(&argc, argv);
1460:     glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
1461:  
1462:  /*           
1463:   * Define a new window (its size, position and title).
1464:   * ----------------------------------------------------------------- */
1465:     glutInitWindowSize (HSIZE, VSIZE);  /*size*/
1466:     glutInitWindowPosition (10, 10);    /*position*/
1467:     WindowID = glutCreateWindow (PGMfileName); /*title*/
1468:     glutSetWindow(WindowID);
1469:     glutDisplayFunc(color);
1470:        
1471:  /*
1472:   * select clearing color - white
1473:   */
1474:     glClearColor (1.0, 1.0, 1.0, 0.0);
1475:  
1476:  /*
1477:   * initialize viewport values
1478:   */
1479:     glMatrixMode(GL_PROJECTION);
1480:     glLoadIdentity();
1481:     glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
1482:  
1483:     /*add menus*/
1484:     glutCreateMenu(menu);
1485:     glutAddMenuEntry("Restart", RESTART);
1486:     glutAddMenuEntry("perspective correction", PERS_CORR);
1487:     glutAddMenuEntry("color to gray", COLOR_TO_GRAY);
1488:     glutAddMenuEntry("moravec", MORAVEC);
1489:     glutAddMenuEntry("edges", EDGES);
1490:     glutAddMenuEntry("corners", CORNERS);
1491:     glutAddMenuEntry("detect game", GAME);
1492:     glutAddMenuEntry("detect pieces", PIECES);
1493:     glutAddMenuEntry("toggle buffering", BUFFERS);
1494:     glutAttachMenu(GLUT_RIGHT_BUTTON);
1495:  
1496:     glutMouseFunc(mouse);
1497:     glutKeyboardFunc(keyboard); 
1498:     glutMainLoop();
1499:  
1500:  /*  
1501:   * When we reach here, we've left the event loop and are ready to
1502:   * exit.
1503:   * ----------------------------------------------------------------- */
1504:     return 0;
1505:  }
1506: