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Abstract. Recent work has shown the value of using unsatisfiable cores
to guide maximum satisfiability algorithms (Max-SAT) running on in-
dustrial instances [5,9,10,11]. We take this concept and generalize it,
applying it to the problem of finding minimal correction sets (MCSes),
which themselves are generalizations of Max-SAT solutions. With the
technique’s success in Max-SAT for industrial instances, our development
of a generalized approach is motivated by the industrial applications of
MCSes in circuit debugging [12] and as a precursor to computing mini-
mal unsatisfiable subsets (MUSes) in a hardware verification system [1].
Though the application of the technique to finding MCSes is straightfor-
ward, its correctness and completeness are not, and we prove both for
our algorithm. Our empirical results show that our modified MCS algo-
rithm performs better, often by orders of magnitude, than the existing
algorithm, even in cases where the use of cores has a negative impact on
the performance of Max-SAT algorithms.

1 Introduction

In the field of constraint processing, and particularly within the domain of
Boolean Satisfiability (SAT), the analysis of infeasible constraint systems has
become increasingly important. Following the impressive advancements in the
performance of SAT solvers in the past decade, which enable fast answers about
the satisfiability of industrially relevant instances, researchers have begun to
look at analyses beyond the “unsatisfiable” result returned for overconstrained
instances. The work is spurred not only by academic interest but also by novel
industrial applications of these analyses. In this paper, we take one of the re-
cent advances in analyzing infeasible instances, namely unsatisfiable-core-guided
maximum satisfiability (core-guided Max-SAT), and generalize it to solve a re-
lated analysis with direct industrial applications: the identification of minimal
correction sets (MCSes).

The concept of core-guided Max-SAT was first developed by Fu & Malik [5]
and later enhanced and optimized by Marques-Silva and others [9,10,11]; the
algorithms and differences in their approaches are detailed in Section 3. The
technique relies on and exploits one of the relationships between satisfiable and
unsatisfiable subsets of infeasible systems that have been explored in depth in [3]
and [6,7]. Briefly, an unsatisfiable instance will contain one or more unsatisfiable



cores. No satisfiable subset of such an instance can contain any complete cores;
therefore, any Max-SAT solution must must leave unsatisfied at least one clause
from every core. The core-guided Max-SAT approach thus identifies unsatisfiable
cores of an instance and only considers clauses within those cores as potential
“removals,” limiting the search space dramatically.

The use of unsatisfiable cores in solving Max-SAT yields drastically different
performance than other current Max-SAT techniques, which are generally based
on branch-and-bound. In the 2008 Max-SAT Evaluation [2], core-guided Max-
SAT algorithms performed extremely well in the industrial Max-SAT category
(one solving 72 of 112 instances within the timeout, when other approaches
solved 0-3 and, in one case, 10 instances within the timeout), while performing
among the bottom of the pack on random and crafted instances.

The industrial Max-SAT instances in the Max-SAT Evaluation are in fact
produced by the circuit debugging system in [12], in which the desired result
is actually MCSes of the CNF instances. In that work, an algorithm simply
called MCSes [7] is used as a preprocessing step, identifying approximations
of MCSes which are then used to boost a complete SAT-based search. In this
work, motivated by the success of core-guided Max-SAT on these instances,
we generalize the core-guided Max-SAT approach to apply it to the problem of
finding MCSes of CNF instances. Our new algorithm, MCSes-U, is described and
its correctness proven in Section 4, and we present experimental results showing
its improvement over MCSes in Section 5.

2 Preliminaries

Boolean satisfiability (SAT) is a problem domain involving Boolean formulas
in conjunctive normal form (CNF). Formally, a CNF formula ¢ is defined as

follows:
» = /\ CZ CZ = \/ Q;j
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where each literal a;; is either a positive or negative instance of some Boolean
variable (e.g., x3 or —x3, where the domain of x3 is {0,1}), the value k; is the
number of literals in the clause C; (a disjunction of literals), and n is the number
of clauses in the formula. In more general terms, each clause is a constraint of
the constraint system ¢. We will often treat CNF formulas as sets of clauses
(clause sets), so equivalently: o = J,_; , Ci.

A CNF instance is said to be satisfiable if there exists some assignment
to its variables that makes the formula evaluate to 1 or TRUE; otherwise, it
is unsatisfiable. We will use the following unsatisfiable CNF instance ¢ as an
example.

¢ = (a)(=a)(=a V b)(=b)



Mazimum Satisfiability (Max-SAT) is the problem of, given an unsatisfiable
CNF formula, identifying a satisfiable subset of its clauses with maximum cardi-
nality. Alternatively, we can say it is the problem of finding an assignment of the
formula’s variables that satisfies a maximum cardinality subset of the clauses.
The example formula ¢ has a single Max-SAT solution: {(—a), (—a V b), (—b)}
are satisfied by a = F,b=F.

Minimal Correction Sets (MCSes) can be understood as generalizations of Max-
SAT solutions. Given any Max-SAT solution in the form of a satisfiable subset
of clauses, we can look at those clauses left unsatisfied as a correction set (CS),
because removing them from the formula corrects it, making it satisfiable. Due
to the maximum cardinality of a Max-SAT solution, its corresponding correction
set has minimum cardinality; no smaller correction sets exist. We generalize this
to the concept of minimal correction sets: An MCS is a correction set such
that all of its proper subsets are not correction sets. MCSes are minimal, or
irreducible, but not necessarily minimum. Every Max-SAT solution indicates
an MCS, but there can be more MCSes than those that are complements of a
Max-SAT solution. The clause (a), not satisfied in ¢’s Max-SAT solution, is an
MCS, as are {(—a), (—~a V b)} and {(—a), (=b)}.

Unsatisfiable Cores / MUSes: Given an unsatisfiable CNF formula, an unsat-
isfiable core of the formula is any subset of its clauses that is unsatisfiable. A
Minimal Unsatisfiable Subset (MUS) is then an unsatisfiable core that is mini-
mal in the same sense that an MCS is minimal: every proper subset of an MUS
is satisfiable. MUSes are thus minimal/irreducible, but, again, not necessarily
minimum. There are two MUSes in ¢: {(a), (—a)} and {(a), (—a Vv b), (—b)}.

Resolution Proofs: In the process of solving unsatisfiable instances, some SAT
solvers produce resolution proofs (or resolution refutations), directed acyclic
graphs containing the resolution steps used to prove unsatisfiability. As a solver
progresses, it learns new clauses arising from applying resolution to combinations
of existing clauses (e.g., (z2 V x5) A (mx5 V 27) — (22 V 7)), and the “parent”
clauses of each new clause can be stored in a graph structure. With this struc-
ture, the provenance of any learned clause can be traced back to a subset of the
original clauses from which the learned clause can be derived. When a solver
“learns” the empty clause, the instance must be unsatisfiable, and tracing the
empty clause’s parents back to the original clauses identifies an unsatisfiable
core of the instance [17] (the identified core must be unsatisfiable because those
clauses can be used to derive the empty clause).

AtMost Constraints are a type of counting or cardinality constraint. Given a

set of n literals {l1,ls,...,l,} and a positive integer k, s.t. k < n, an AtMost
constraint is defined as

AtMost({l1,la, ..., In}, k) = Y _val(ly) < k
i=1



where val(l;) is 1 if I; is assigned TRUE and 0 otherwise. This constraint places
an upper bound on the number of literals in the set assigned TRUE.

Clause-Selector Variables can be used to augment a CNF formula in such a
way that standard SAT solvers can manipulate and, in effect, reason about the
formula’s clauses without any modification to the solver itself.

Every clause C; in a CNF formula ¢ is augmented with a negated clause-
selector variable y; to give C} = (—y; V C;) in a new formula ¢’. Notice that
each C! is an implication, C} = (y; — C;). Assigning a particular y; the value
TRUE implies the original clause, essentially enabling it. Conversely, assigning
y; FALSE has the effect of disabling or removing C; from the set of constraints,
as the augmented clause C! is satisfied by the assignment to y;. This change
gives a SAT solver the ability to enable and disable constraints as part of its
normal search, checking the satisfiability of different subsets of constraints within
a single backtracking search tree.

3 Use of Cores in Max-SAT

As described in Section 1, unsatisfiable cores can be used to guide Max-SAT
algorithms by limiting the number of clauses they must consider for “removal”
or leaving unsatisfied. Researchers have developed a number of algorithms ex-
ploiting this, all using the inexpensive resolution proof method for generating
unsatisfiable cores.

Fu & Malik first introduced the idea of using unsatisfiable cores to assist
in solving Max-SAT in [5]. They described an algorithm based on “diagnosis”
that repeatedly finds a core by the resolution proof method, adds clause-selector
variables to the clauses in that core, places a one-hot constraint on those clause-
selector variables, and searches for a satisfying solution to the modified problem.
Essentially, the algorithm identifies a core in each iteration that must be neu-
tralized (by the removal of a clause) in any Max-SAT solution.

Marques-Silva, Planes, and Manquinho [9,10,11] improved upon Fu & Malik’s
algorithm, which they dubbed MSU1, with several refinements and optimiza-
tions. In [10] and [11], Marques-Silva and Planes introduce algorithms MSU1.1,
MSU3, and MSU4!. The MSU1.1 algorithm is a variant of MSU1 with three im-
portant modifications. First, it uses a better encoding for the one-hot constraints,
namely a BDD representation of a counter converted to CNF with several op-
timizations. Second, MSU1.1 exploits the authors’ observation that the one-hot
constraints can actually be AtMost(1) constraints, because the identified cores
are unsatisfiable if no clauses are removed. Third, an AtMost(1) constraint is
placed on the clause-selector variables for each clause that has more than one.

The authors also describe MSU3, which avoids some of the size explosion of
the additional variables and clauses created by MSU1 by using a single clause-
selector variable per clause and a single AtMost constraint over all of them. In

1 'We have adopted the algorithm naming from the most recent paper [9], which is
slightly changed from earlier papers.



[11], the authors further introduce MSU4, essentially a modification of MSU3
that exploits relationships between unsatisfiable cores and bounds on Max-SAT
solutions. Finally, Marques-Silva and Manquinho introduce MSU1.2 and MSU2
in [9]. MSU1.2 improves on MSU1.1 using a bitwise encoding, with a logarithmic
number of auxiliary variables, for each cardinality constraint, and MSU2 takes
that a step further, employing a bitwise one-hot encoding on the clause-selector
variables themselves.

Algorithm Cardinality Constraints Cardinality Encoding

MSU1 Per-core One-Hot Adder tree

MSU1.1 Per-core AtMost BDD to CNF
MSU1.2 Per-core AtMost Bitwise on variables
MSU2 Per-core One-Hot Bitwise on clauses
MSU3 Single AtMost BDD to CNF
MSU4-v1 Single AtMost BDD to CNF
MSU4-v2 Single AtMost Sorting networks

Table 1. Comparison of all MSU* algorithms

A parallel development of the concept of using unsatisfiable cores for Max-
SAT was done in the domain of logic circuit debugging/diagnosis by Siilflow, et
al. [15]. Without explicitly noting the connection to Max-SAT, they developed
a new SAT-based debugging framework that exploits unsatisfiable core extrac-
tion. Though the terminology is different and the theories and algorithms are
often described in terms of gates instead of constraints or clauses, SAT-based
debugging is essentially the process of solving Max-SAT for circuit-derived CNF
instances [12].

The primary difference between the work of Siilflow, et al. and the MSU* al-
gorithms is that the debugging framework produces all Max-SAT results (equiv-
alent to finding all minimum-cardinality MCSes) by an iterative solving proce-
dure. Their use of cores is closest to MSU3, with a single cardinality constraint
covering all identified cores; however, non-overlapping cores are given separate
cardinality constraints, as this limits the size of the search space with little over-
head. They do mention alternative approaches for producing cardinality con-
straints, including one which creates a separate constraint for every intersection
of any subset of the cores, but they dismiss these as not outperforming their
chosen approach in most of their experiments.

4 Using Cores to Find MCSes

Our algorithm is a synthesis of 1) the MCSes algorithm for finding all MCSes of
an infeasible constraint system from [7] and 2) the application of unsatisfiable
cores to the Max-SAT problem as first shown by Fu & Malik [5] and refined by



MCSes-U(y)

k—1 < iteration counter
MCSes + () < growing set of results
Corey < Core(yp) < any unsatisfiable core (preferably small) of ¢

while (InstrumentAll(p) + Blocking(MCSes)) is satisfiable

W o=

V clauses contained in Corej are instrumented with clause-selector variables
5. ¢k < Instrument(yp, Cores) + AtMost(Corey, k)

v AlISAT finds all models of ¢ corresponding to MCSes of size k
6. MCSes < MCSes + AIISAT (k)

vV the Core function projects instrumented clauses onto clauses of ¢
7. Coreji1 < Core, + Core(yr + Blocking(MCSes))

k—k+1

9. return MCSes

Fig. 1. The MCSes-U algorithm finds all MCSes of an unsatisfiable formula ¢
using unsatisfiable cores.

Marques-Silva, et al. [9,10,11]. Because finding MCSes is a generalization of the
Max-SAT problem (cf. Section 2), this combination is a natural one. In fact, the
MCSes algorithm is very similar to the MSU3 algorithm described in [10].

Briefly, the overall approach of both MCSes and MSU3 is to instrument
clauses in an unsatisfiable clause set with clause-selector variables, then to use
cardinality constraints on those clause-selector variables to search for small sub-
sets of clauses whose removal leaves the remaining set satisfiable. For Max-SAT,
the goal is to find such a set of the smallest cardinality; finding MCSes requires
finding all such sets that are minimal or irreducible. Therefore, it is reasonable
to assume that an approach used to solve Max-SAT, especially one that has been
paired with a basic algorithm so similar to that used for finding MCSes, could
be applied to an algorithm for finding MCSes.

4.1 Algorithm

Figure 1 contains pseudocode for our algorithm, dubbed MCSes-U (the -U signi-
fies its use of unsatisfiable cores). Two persistent variables, k and MCSes, keep
track of the current iteration and the set of results, respectively. In any particu-
lar iteration of the do/while loop, Corey contains the set of clauses that will be
considered for removal, and thus potentially included in an MCS, in that itera-
tion. The input formula is instrumented with clause-selector variables on those
clauses contained within Corej, and an AtMost constraint is added on those
selector variables with the current bound k. The AIISAT function in MCSes-U
behaves exactly like the incremental solving employed in MCSes: find a solution,



record the MCS, block that MCS from future solutions with a blocking clause
formed from its clause-selector variables, and continue until no solutions remain.

The core extraction in line 7 produces an unsatisfiable core of the combination
of the instrumented formula ¢, with the blocking clauses produced from the set
of MCSes found thus far (py, itself is satisfiable). This core is mapped back to
clauses in the original clause set ¢ and added to Corey to make Corey1 for the
following iteration. The process repeats as long as further MCSes remain, which
can be determined by checking whether there is any way to make ¢ satisfiable
by removing clauses without removing any MCS identified thus far.

For comparison purposes, consider that the previous algorithm MCSes is
equivalent to MCSes-U under the condition that Core always returns the com-
plete set of clauses in ¢. In this situation, the entire formula will be instrumented
with clause-selector variables in each iteration, and the AtMost bound will al-
ways apply to all of the clause-selector variables as well. The primary difference
between MCSes and MCSes-U is that here we are using unsatisfiable cores to
identify subsets of the clause set in which we know the MCSes must be found,
or, conversely, we determine subsets that we know must not contain any MCSes.
In the following subsection, we prove that this use of unsatisfiable cores is correct.

4.2 Completeness/Correctness Proof

Fu and Malik proved that their use of unsatisfiable cores in Max-SAT is correct
in [5]; however, that proof does not carry over to our algorithm other than to
prove that the first result returned will be a Max-SAT solution. We must further
prove both 1) that every result returned by MCSes-U is an MCS (correctness)
and 2) that all MCSes are found by the algorithm (completeness). These two
points are interrelated:

Theorem 1. Given an unsatisfiable clause set @ and a positive integer k:
If all MCSes of ¢ of size less than k are found, then every result of size k
returned by MCSes-U(p) is an MCS of .

This is stated without a formal proof, but it follows from the correctness
of the underlying algorithm for finding MCSes, described fully in [7], that we
have adapted in this work. Briefly, the algorithm finds MCSes in increasing
order of size; as every MCS of a size less than k is found, it is blocked from
future solutions, and any correction set of size k that is found then must be
minimal. With this theorem, we see that the algorithm’s correctness hinges on
its completeness. We shall prove that MCSes-U is complete in the following.

We wish to prove that the algorithm produces all MCSes of an instance.
We will presuppose the completeness of the base algorithm as described in [7]
and focus on the effect of our use of unsatisfiable cores. The base algorithm is
equivalent to that presented in Figure 1 if we take Corej to be the complete
formula ¢ in every iteration of the while loop (i.e., with no limitation on the
clauses considered for finding MCSes). Therefore, we will prove here that the
MCSes-U algorithm is complete in that it does not miss any MCSes due to
restricting the search for MCSes to the clauses in Coreg.



First, we must define a new term, “k-correction,” and present a useful lemma
linking k-corrections to MCSes.

Definition 1. A k-correction of a set of clauses C' is a set of k or fewer clauses
whose removal makes C' satisfiable.

Lemma 1. Given an unsatisfiable subset C of a clause set ¢ and an integer k:
If every (k — 1)-correction of C contains some MCS of ¢, then C' contains
all MCSes of ¢ with size k.

(Proofs of this and the following lemmas are included in Appendix A.)

With this lemma, we can prove the completeness of our algorithm by in-
duction. We wish to prove that the MCSes-U algorithm finds all MCSes of size
k in the &1 iteration of its loop. We will first prove by induction that every
(k —1)-correction of Corey, contains an MCS of . Then, using Lemma 1, we can
directly show that Corej contains all MCSes of size k, for all k. First, we will
prove the base case of the inductive portion of our proof, for k = 1.

Lemma 2. In MCSes-U, every 0-correction of Core; contains an MCS of .

With Lemmas 1 and 2, we see that the algorithm is complete for k = 1. Core;
contains all single-clause MCSes of ¢, and the algorithm produces all MCSes of
size 1. This can be seen from a different perspective by noting that an MCS of
size 1 is a single clause, ¢, contained in every MUS of a formula, and thus Corey,
which is some unsatisfiable core of ¢, must contain every MCS of size 1.

With our base case proven in Lemma 2, we now prove the inductive step.

Lemma 3. Given some positive integer k:
In MCSes-U, if every (k—1)-correction of Corey contains an MCS of ¢, then
every k-correction of Coreri1 contains an MCS of .

With these lemmas, we can prove the completeness of MCSes-U in Theorem
2, which, with Theorem 1, proves that it is correct as well.

Theorem 2. For any positive integer k: the MCSes-U algorithm finds all MCSes
of size k in the kth iteration of its loop.

Proof. By Lemmas 2 and 3, we have that every (k — 1)-correction of Corey
contains an MCS of ¢, for all k. With Lemma 1, then, Core; contains every
MCS of ¢ of size k for all k.

O

5 Experimental Results

Our primary experimental goal was to determine the value of using unsatisfi-
able cores to guide the search for MCSes in practice; specifically, we wished to
compare the performance of MCSes and MCSes-U on industrial instances. In the
course of running these experiments, we noticed an interesting situation in which
using cores was in fact detrimental to the performance of Max-SAT algorithms
but the MCSes-U algorithm still benefited, and we explore this case here as well.



Experimental Setup: All experiments were run in Linux (Fedora 9) on a 3.0GHz
Intel Core 2 Duo E6850 with 3GB of physical RAM. The MCSes and MCSes-U
algorithms were implemented in C++ using MiniSAT version 1.12b [4], which al-
lows “native” AtMost constraints (instead of CNF encodings thereof). We added
unsatisfiable core extraction to this version of MiniSAT using the resolution-
graph method [17], storing the parents of each learned clause in memory. Binaries
for MSU1.1 and MSU1.2 were supplied by Joao Marques-Silva.

Benchmark Families: We selected four sets of unsatisfiable industrial CNF bench-
marks for these experiments:

— Diagnosis: These 108 instances, from the Max-SAT 2008 Evaluation [2], are
generated in a process that diagnoses potential error locations in a physical
circuit that is producing incorrect output(s) [12]. In this application, the
MCSes of each instance directly identify the candidate error locations. (The
set used in the Max-SAT Evaluation has 112 instances, and we removed 4
that are satisfiable.)

— Reveal: Reveal is a system for logic circuit verification that operates on
Verilog code with a counterexample-guided abstraction refinement flow [1].
These 62 instances were generated in the abstraction refinement phase of
Reveal when run on three different designs.

— FVP-UNSAT.2.0: 21 instances, used in previous SAT competitions, ob-
tained from [16], and “generated in the formal verification of correct super-
scalar microprocessors.”

— DC: This is a set of 84 instances from an automotive product configuration
domain [13,14] that have previously been shown to have a wide range of
characteristics with respect to each instance’s MCSes and MUSes. They are
of interest mainly because their diversity of results (from small sets found in
less than a second to intractably large sets) exercises algorithms broadly.

The value of using cores is evident when we look at the results for finding
multiple MCSes across all of these instances. Because the complete set of MCSes
can be intractably large, we look at the wvelocity of finding MCSes: the number
of MCSes found per second until all have been found or until a set timeout (600
seconds, here) has been reached. Many applications do not require the complete
set of MCSes: the diagnosis task in [12] finds MCSes up to a certain cardinality,
and the CAMUS algorithm used in Reveal can use a subset of the MCSes to
find a subset of the MUSes of an instance [7]. Figure 2 compares the velocity
of MCSes (w/o cores) to that of MCSes-U (w/ cores) on these instances. Points
above the diagonal are instances where MCSes-U finds MCSes more quickly.
MCSes-U outperforms MCSes in nearly all cases. With the Diagnosis instances
in particular, we see several benchmarks for which MCSes finds no MCSes within
the timeout, while MCSes-U outputs up to several hundred per second.

An interesting situation is displayed in Figure 3, which compares the runtime
of the MCSes algorithm solving Max-SAT against three Max-SAT algorithms
that use unsatisfiable cores: MCSes-U in the same Max-SAT mode, MSU1.1, and
MSU1.2 (these were the two MSU* algorithms with implementations available to



10000 §
1 o
1000 +
° E o =
g ] 5
2 o
@ 5a)
g 100 ok
g ° |be
g 4
g 10 llln
< S o
o ] D<> S
2 ] o
3 1 & S |
é olo 0@{?@ “A < Diagnosis
5 q o°<> 9 . |
= O Revea
= 01 dg——or—” L -
s ki
] 4 A FVP-UNSAT.2.0
g ]
0.01 ooc ==
0.001 @t
0.001 0.01 0.1 1 10 100 1000 10000

MCSes (w/o Cores): Velocity (#MCSes/sec)

Fig. 2. Comparing the performance of MCSes and MCSes-U on industrial bench-
marks. (600 second timeout, 0 velocity mapped to 0.001.)

1000 1
600 sec. — 8 23 28
timeout A
"
o
100 1 s—8
] =]
g
A
— 0A A
Q
ERET LS
. 3
£
%
& o
@
s 1 4
s iR o © MCSes-U
] 68 0MSUL.1
0.1 4 Oo
R A MSUL.2
0.01
0.01 0.1 1 10 100 1000

MCSes (w/o Cores): Max-SAT Time (sec)

Fig. 3. Comparing the performance of MCSes solving Max-SAT against MCSes-U
MSU1.1, and MSU1.2 on industrial benchmarks. (FVP-UNSAT.2.0 benchmarks.)



us). For MCSes and MCSes-U to solve Max-SAT, they can both return the first
MCS found and stop. Because the algorithms generate MCSes in increasing order
of size, the first result is guaranteed to be an optimal Max-SAT solution; the
complement of the MCS will be a maximum cardinality satisfiable subset of the
constraints. Note that the MSU* binaries had a different implementation, using
a different solver and CNF-encoded cardinality constraints, than MCSes[-U], so
the results are not directly comparing the underlying algorithms.

These results are for the FVP-UNSAT.2.0 benchmarks. For these instances,
we see that all of the algorithms that use cores take about two orders of magni-
tude longer than the vanilla MCSes algorithm. The number of Max-SAT solutions
in each benchmark is large. For example, for each of the three 2pipe* instances
in this set, approximately one quarter of the clauses are single-clause MCSes;
removing any one of them makes the instance satisfiable. Therefore, solving Max-
SAT for these instances is simple, as there are so many solutions, and they will
be found in the first iteration of MCSes. Interestingly, the time taken to run a
solver on each benchmark (in order to extract a core) far outweighs that taken
to identify a single clause whose removal yields satisfiability.

We see that the time used to find a core can outweigh that needed to find a
single MCS or Max-SAT solution in instances like the FVP-UNSAT.2.0 set with
very many, single-clause MCSes. However, when finding MCSes, the overhead
of finding cores is amortized over the large number of results and is outweighed
by the increase in velocity gained from limiting the search space, even in those
instances that appear to be worst-case scenarios for exploiting cores. Therefore,
core extraction appears to be a safe addition to MCS algorithms with potentially
large performance gains in industrial instances.

6 Conclusion

We have presented a generalization of the core-guided Max-SAT approach, ap-
plying it to the more general problem of identifying minimal correction sets
(MCSes). By using unsatisfiable cores to guide the search for MCSes in a similar
manner to their use in Max-SAT [5,9,10,11], we have realized significant perfor-
mance gains in MCSes-U, an enhancement of the algorithm for finding MCSes
in [7]. Experimental results show the value of this approach on a variety of in-
dustrial instances; it is particularly effective on instances generated by a circuit
diagnosis application in which MCSes have a direct application.

Looking forward, we see that there are further ideas from the Max-SAT do-
main that can be applied to MCS algorithms. Notably, the use of one AtMost
constraint per identified core, as in the MSU1.* algorithms, may be applicable
to MCSes-U. For Max-SAT, the MSU1.* approach has shown better performance
than the approach used in MSU3 and MSU4 of creating a single monolithic At-
Most constraint over all extracted cores, and it may be beneficial for MCSes-U as
well. As with the proofs in this paper, determining and proving the correct appli-
cation of the concept to the generalized problem of finding MCSes may require
non-trivial work. We are also interested in investigating the combination and



interplay of the core-guidance technique with autarky pruning, another method
for reducing the search space of the MCS search [8].

Further, the results here motivate applying MCSes-U in circuit debugging /
diagnosis, as MCSes was applied in [12]. While MCSes was used as an approxi-
mating preprocessor for an exact search in that work, the improved performance
of MCSes-U may make it suitable for solving problems directly. A comparison
to the algorithm in [15] could be instructive as well; though it is algorithmi-
cally very similar to MCSes-U, any substantial performance differences would
indicate important implementation details that would aid in engineering future
implementations. Further, [15] is restricted to only find minimum-cardinality so-
lutions, and the more complete view of examining the set of all MCSes in such
instances, which MCSes-U enables, could be beneficial.
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A  Proofs

Lemma 1. Given an unsatisfiable subset C' of a clause set ¢ and an integer k:
If every (k — 1)-correction of C contains some MCS of o, then C contains
all MCSes of ¢ with size k.

Proof. By contradiction: Assume that there exists some MCS M of ¢ with size k
that is not contained entirely within C'. We will denote the subset of M contained
within C' by M’ = M N C. Thus, our assumption requires |M'| < k — 1.

Because M is an MCS of ¢ and C is a subset of ¢, M’ must be a correction
set of C. Formally, if ¢ — M is satisfiable, then C' N (¢ — M) must be as well.
This can be transformed:

Cn(ip—M) = (pNC)—(MNC) = C—-M

And so M’ is a correction set of C, because C — M’ is satisfiable.

Furthermore, M’ is a (k — 1)-correction of C, because |[M'| < k — 1. By
the antecedent of this lemma, we know that M’ must contain some MCS of .
Because M is a proper superset of M’, which contains an MCS, M can not be
a minimal correction set of ¢. This is a contradiction, and therefore we have
proven that any MCS M of ¢ with size k must be contained entirely within C.
O
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Lemma 2. In MCSes-U, every 0-correction of Core; contains an MCS of ¢.

Proof. Unsatisfiable clause sets have no 0-corrections, as removing 0 clauses can
not make them satisfiable. Core; is an unsatisfiable clause set; therefore, Core;
has no O-corrections, and the lemma is trivially true.

O

Lemma 3. Given some positive integer k:
In MCSes-U, if every (k— 1)-correction of Corey, contains an MCS of v, then
every k-correction of Coreri1 contains an MCS of ¢.

Proof. Proof by cases, depending on the k-corrections of Coreg:

Case 1: Corey has no k-corrections.
The algorithm includes Corey, in Coreyy1. Therefore, in this case, Corey1
will have no k-corrections, as it is a superset of Core. Thus, trivially, every
k-correction of Coregy1 contains an MCS of ¢.

Case 2: Every k-correction of Core; contains an MCS of .

Again, due to the fact that Core; C Corej; i, every k-correction of
Coregt1 is also a k-correction of Corey, and thus every k-correction of
Coreyy1 must contain some MCS of .

Case 3: At least one k-correction, d, of Corej contains no MCSes of .

Because § does not contain any MCSes of ¢, the blocking clauses added
to ¢, based on the MCSes of ¢ will all allow the relaxation of the clauses in
0. We will say that 4 is thus an unblocked k-correction. At line 6 of MCSes-U,
there exists a complete assignment for ¢, that relaxes all MUSes contained
within Corey without violating the AtMost bound on relaxed clauses; such
an assignment can relax the clauses in any unblocked k-correction.

However, ¢y, is unsatisfiable at this point, after the addition of all block-
ing clauses for the MCSes found thus far (up to size k). Therefore, for
any complete assignment that satisfies the blocking clauses and relaxes all
MUSes contained in Corey, there must be some MUS of ¢ that is not relaxed
by that assignment. Any unsatisfiable core of ¢, will necessarily include one
MUS of ¢ that is not relaxed for every such assignment. That is, any un-
blocked k-correction ¢ of Corej must be “counteracted” by including in
Corey41 an MUS of ¢ untouched by 4.

Any k-correction of Corey41 must contain a k-correction of Corey, be-
cause Corer C Coreypyi. Any unblocked k-correction of Corejy necessar-
ily leaves at least one MUS in Corej;; untouched (by the construction of
Corey41 described above). Thus, unblocked k-corrections of Corej cannot
be k-corrections of Corey,i. Therefore, the only k-corrections of Coreg
must be “unblocked,” containing an MCS of .

These cases cover all possibilities, and, in every case, every k-correction of
Coreyy1 contains an MCS of ¢.
O
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