
Abstract. Much attention has been given in recent years to the problem of
finding Minimally Unsatisfiable Subformulas (MUSes) of Boolean formulas.
In this paper, we present a new view of the problem, strongly linking it to the
maximal satisfiability problem. From this relationship, we have developed a
novel technique for extracting all MUSes of a CNF formula, tightly integrat-
ing our implementation with a modern SAT solver. We also present another
algorithm for finding all MUSes, developed independently but based on the
same relationship. Experimental comparisons show that our approach is con-
sistently faster than the other, and we discuss ways in which ideas from both
could be combined to improve further.

Many computational problems in a wide range of fields are posed as constraint satisfac-
tion problems, often in the form of Boolean CNF formulas analyzed with satisfiability
(SAT) solvers. While SAT solvers can return a short proof in the form of a satisfying
assignment when a formula is satisfiable, typically no proof or explanation is given
when a formula is found to be unsatisfiable. Explanations of infeasibility are often val-
uable, and techniques for finding them have been developed for use in these problems.
Some techniques have focused on reducing the original set of constraints to produce a
minimal, unsatisfiable core representing a cause of infeasibility. In this paper, we
present a new approach to finding these cores, focusing on a complete method for find-
ing all unsatisfiable cores of any given formula.

Consider an unsatisfiable CNF formula . A Minimally Unsatisfiable Subformula
(MUS) of is a subset of 's clauses that is both unsatisfiable and minimal in the sense
that all of its proper subsets are satisfiable. An MUS can be seen as an irreducible cause
of the infeasibility of the original formula. could have multiple reasons for its infea-
sibility. In this case would contain multiple MUSes, and fixing any single MUS may
not make satisfiable. As long as any MUS is present in the formula, it will remain
infeasible. In many applications, it is valuable to find the set of all MUSes, because di-
agnosing infeasibility is hard, if not impossible, without a complete view of its causes.
Additionally, an algorithm that finds all MUSes provides a basis for approximations
and techniques that find multiple, though not all, MUSes.

Many methods for finding MUSes have been developed in recent years, both for
Boolean satisfiability problems and for other types of constraints. Most techniques find

ϕ
ϕ ϕ

ϕ
ϕ

ϕ

On Finding All Minimally
Unsatisfiable Subformulas

Mark H. Liffiton and Karem A. Sakallah

Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor 48109-2122
{liffiton, karem}@eecs.umich.edu

1 Introduction
F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 173 – 186, 2005.
© Springer-Verlag Berlin Heidelberg 2005

M.H. Liffiton and K.A. Sakallah 174
a single unsatisfiable subformula (US), often not guaranteeing it to be minimal. For ex-
ample, AMUSE [10], Bruni & Sassano’s algorithm [3,4], and zCore [13] all use infor-
mation from a SAT solver’s resolution procedure to find a single US, but none guaran-
tee its minimality. For these, a “Minimal Unsatisfiability Prover” [7] can be used to
minimize the US into an MUS. Chinneck and Dravnieks [5] studied MUSes in the do-
main of linear and integer programs, calling them Irreducible Infeasible Subsets. Their
algorithms return multiple, but not all, MUSes.

Recently, we have developed a sound and complete technique for finding all MUS-
es of a CNF formula [9], based on a strong relationship between maximal satisfiability
and minimal unsatisfiability. The relationship and algorithms derived from it also hold
for any other type of constraint with a strict definition of satisfiability (i.e., they do not
apply directly to “soft” constraints). Independently, Bailey and Stuckey [1] have also
noted this relationship and developed an implementation for a type of constraint used
for type-error debugging in software verification.

While both our work and theirs are based on the same underlying concept, the al-
gorithms we developed to exploit it differ greatly. In this paper, we present a compari-
son of our two approaches, having implemented their algorithm for Boolean con-
straints. We show that, for the case of Boolean constraints, our algorithm outperforms
theirs by one to two orders of magnitude. We further assess the differences between the
two approaches and discuss the strengths and weaknesses of both. (In [1], the authors
compare their algorithm to the best known previous method for finding all MUSes in
[2]. They show that their algorithm is superior to that in [2], so we have not included
that method in our comparison.)

The rest of this paper is organized as follows. Section 2 lays the foundation by de-
scribing the relationship between maximal satisfiability and minimal unsatisfiability
that is the basis for both algorithms. In Section 3, we present our algorithm, and we
present Bailey and Stuckey's algorithm in Section 4. Section 5 contains the experimen-
tal results comparing the two algorithms, with discussion and analysis in Section 6. Fi-
nally, Section 7 contains conclusions and ideas for future work.

Both our technique and Bailey and Stuckey’s algorithm are based on a strong relation-
ship between maximal satisfiability and minimal unsatisfiability. The Maximum Satis-
fiability problem (Max-SAT) is an optimization problem on a CNF formula in which
the goal is to find an assignment to the variables of that maximizes the number of
satisfied clauses. In other words, Max-SAT yields a satisfiable subset of ’s clauses
with maximum cardinality. For example, the formula

has a Max-SAT solution with three satisfied clauses:

.

Whereas the Max-SAT problem has been defined with the cardinality of a subset of
clauses as the optimization goal, the problem can be relaxed to have inaugmentability

ϕ
ϕ

ϕ

ϕ x1() x1¬() x1¬ x2∨() x2¬()∧ ∧ ∧=

x1¬() x1¬ x2∨() x2¬(), ,{ }

2 Maximal Satisfiability and Minimal Unsatisfiability

On Finding All Minimally Unsatisfiable Subformulas 175
(MSS). Each MSS of a formula is a subset of the clauses in that is satisfiable and
inaugmentable; adding any of the other clauses in to an MSS will render it unsatisfi-
able. The definition of the set of MSSes of a formula follows, with the set of MUSes
defined similarly for comparison:

Notice that MSSes() and MUSes() are essentially duals of one another! An
MSS is satisfiable and cannot be made larger, and an MUS is unsatisfiable and cannot
be made smaller. Their relationship is more than cosmetic; the complete set of one type
(i.e., all MSSes or all MUSes) is actually an implicit encoding of the other.

The distinction between Max-SAT and MSS is subtle. Any Max-SAT solution is
also an MSS; the maximal cardinality of the Max-SAT solution entails the inaugment-
ability required to be an MSS. MSSes, however, may be of different sizes, and not all
will necessarily have maximum cardinality, as shown by the earlier example formula.
One MSS of that formula is , which corresponds to the
Max-SAT solution. is another MSS (adding either of the other two con-
straints would make it unsatisfiable), though it is smaller.

Now consider , the clause not included in the Max-SAT solution to our earlier
example. Removing this clause from makes it satisfiable. In general, given any MSS
of an infeasible formula, the clauses not in that MSS describe an irreducible “fix” to the
formula in the sense that removing them will correct the infeasibility. Therefore, we de-
fine a “CoMSS” as the complement of an MSS, and the set of CoMSSes is simply:

This complementary view of MSSes provides the real link to MUSes. Note that the
presence of any MUS in a CNF formula makes that formula unsatisfiable. Therefore, to
correct the infeasibility by removing constraints, at least one constraint from every
MUS must be removed in order to “neutralize” all of the MUSes. A CoMSS of a for-
mula is a set of constraints whose removal renders satisfiable, thus every CoMSS
must contain at least one clause from each MUS of .

This relationship between a CoMSS and the set of MUSes of a formula can be de-
scribed as a solution to a set covering problem. Specifically, a CoMSS is a hitting set of
the set of MUSes. A hitting set of a collection of sets is a set that contains at least one
element from each set in the collection. In this case, the collection is the set of MUSes,
and the CoMSS is a set of clauses that contains at least one clause from every MUS. A
CoMSS is a hitting set of the MUSes with the additional restriction that it cannot be any
smaller without losing its defining property: it is an irreducible hitting set. Figure 1
shows the example formula from above along with its MSSes, CoMSSes, and MUSes
to illustrate the relationship. Notice how each CoMSS is a hitting set of the MUSes.

ϕ ϕ
ϕ

ϕ

: is satisfiable, and
MSSes()

(), { } is unsatisfiable

, is unsatisfiable, and
MUSes()

, { } is satisfiable

m m
c m m c

m m
c m m c

ϕ
ϕ

ϕ

ϕ
ϕ

⊆⎧ ⎫
= ⎨ ⎬∀ ∈ − ∪⎩ ⎭

⊆⎧ ⎫
= ⎨ ⎬∀ ∈ −⎩ ⎭

ϕ ϕ

x1¬() x1¬ x2∨() x2¬(), ,{ }
x1() x2¬(),{ }

x1()
ϕ

{ }CoMSSes() : () MSSes()m mϕ ϕ ϕ ϕ= ⊆ − ∈

ϕ ϕ
ϕ

as the goal instead. For this, we define a new problem, Maximally Satisfiable Subset

M.H. Liffiton and K.A. Sakallah 176
In line with the duality noted earlier, every MUS of a formula is an irreducible hit-
ting set of the CoMSSes of that formula (which also can be seen in Figure 1). The in-
tersection of any CoMSS of a formula with any MUS of that formula must be non-emp-
ty. The duality between CoMSSes and MUSes comes from this commutative relation-
ship between them. The relationship also gives us a way to compute all MUSes of a
formula, and it is the basis for the two algorithms compared in this paper.

In our algorithm for finding all MUSes of a formula , we decompose the process into
two steps: 1) Finding the complete set of CoMSSes of , and 2) Extracting MUSes
from the set of CoMSSes. This decomposition follows naturally from the relationship
described in the previous section. And it has a nice property in that each step is inde-
pendent of the other, which allows different algorithms to be used for each step without
affecting the other.

Every CoMSS is the set of clauses not included in some maximally satisfiable subfor-
mula. To find MSSes, we incrementally solve a Max-SAT problem, removing solutions
as they are found to continue the search until all have been found. Figure 2 provides a
pseudocode outline of the procedure.

Our algorithm is tightly integrated with and takes advantage of a modern SAT solv-
er. We find maximally satisfiable subsets of constraints by giving the solver the ability
to enable and disable constraints and check for the satisfiability of the enabled con-
straints all within a single search tree. Every clause in is aug-
mented with a negated clause selector variable to give in
a new formula . This is accomplished by AddYVars in the pseudocode. While solv-
ing , assigning a certain FALSE has the effect of disabling or removing from
the set of constraints, as the augmented clause is satisfied by the assignment to . Con-
versely, assigning TRUE enables the original clause. An MSS can be obtained by
finding a satisfying assignment with a minimal number of variables assigned
FALSE, which ensures that as few constraints as possible are disabled. The clauses left
unsatisfied, which are a CoMSS, are indicated by the set of variables assigned
FALSE.

MSSes() CoMSSes()

{B,C,D} {A}
{A,D} {B,C}
{A,C} {B,D}

ϕ ϕ MUSes()

{A,B}
{A,C,D}

ϕ

ϕ x1() x1¬() x1¬ x2∨() x2¬()∧ ∧ ∧=
A B C D

ϕ
ϕ

Ci xi
1 … xi

m∨ ∨= ϕ
yi Ci′ yi¬ xi

1 … xi
m∨ ∨ ∨=

ϕ′
ϕ′ yi Ci

yi

yi

yi

yi

3 Finding All MUSes

3.1 Finding CoMSSes(ϕ)

Fig. 1. Example formula with its MSSes, CoMSSes, and MUSes

On Finding All Minimally Unsatisfiable Subformulas 177
Instead of solving an optimization problem for every solution, however, we utilize
a sliding objective approach that allows us to use a more efficient incremental search.
We set a bound on the number of that may be assigned FALSE using an AtMost
bound. Given a set of literals and a positive integer , an AtMost bound
is defined as

where assign() is 1 if is assigned TRUE and 0 otherwise. In practice, an efficient
implementation of this constraint propagates the negation of each of the remaining lit-
erals in its set once of them have been assigned TRUE. Because we only use one such
constraint at a time, the same effect could easily be created by modifying any standard
SAT solver to “watch” the assignments to the variables involved in the constraint and
to force the remaining assignments as necessary once the bound has been reached.

In this application, we add a constraint of the form AtMost()
to place a bound on the number of disabled constraints. For each value of the bound,
starting at 1 and incrementing by 1, we exhaustively search for all satisfiable assign-
ments to the augmented formula , which will find all CoMSSes the size of the bound.
Within this search, the incremental SAT solver can utilize learned clauses and dynamic
variable ordering heuristics to full effect.

When one solution is found, the corresponding CoMSS is recorded, and the search
continues incrementally after adding a blocking clause that forces out that solution. The
blocking clause is a disjunction of the y variables for the clauses in that CoMSS. For
example, if the solution contains , indicating that is a
CoMSS, then we add a blocking clause: . This excludes the CoMSS, and
any supersets of it, from future solutions. Finding CoMSSes in order of increasing size

CoMSSes(formula)
1. // formula is a CNF instance
2. formula ← AddYVars(formula)
3. bound ← 1
4. CoMSSes ← ∅
5. While (Sat(formula))
6. boundedFormula ← AddAtMost(formula, bound)
7. Repeat
8. newCoMSS ← IncrementalSat(boundedFormula)
9. If (newCoMSS = ∅)
10. End Repeat
11. CoMSSes ← CoMSSes ∪ {newCoMSS}
12. boundedFormula ← AddBlocking(boundedFormula, newCoMSS)
13. formula ← AddBlocking(formula, newCoMSS)
14. bound ← bound+1
15. Return CoMSSes

yi

l1 l2 … ln, , ,{ } k

{ }() ()1 2
1

AtMost , , , , assign
n

n i
i

l l l k l k
=

≡ ≤∑…

li li

k

y1¬ y2¬ … yn¬, , ,{ } k,

ϕ′

y2 y4 y7 F= = = C2 C4 C7, ,{ }
y2 y4 y7∨ ∨

Fig. 2. Pseudocode for finding all CoMSSes of a formula

M.H. Liffiton and K.A. Sakallah 178
(i.e., MSSes in order of decreasing size) and excluding supersets from future solutions
ensures that only irreducible CoMSSes are found.

As long as we are adding constraints (the blocking clauses), we can use an incre-
mental search. For each search with a particular AtMost bound, every new solution is
removed with a blocking clause and the search continues until no further solutions exist
for the current bound. Incrementing the bound, however, relaxes a constraint on the sys-
tem, so the search must start over with a new copy of the formula, augmented with all
blocking clauses created thus far.

Before beginning the search with the next bound, the algorithm checks that aug-
mented with all collected blocking clauses is still satisfiable without any bound on the

 variables. If there is no satisfying assignment, even with no restrictions on the var-
iables, the entire set of CoMSSes has been found, and the algorithm terminates.

The set of CoMSSes implicitly encodes the entire set of MUSes of a formula, and in-
formation can be extracted from it in a variety of ways. Here, we focus on methods for
extracting MUSes, though it is likely that other useful data can be obtained by analyzing
the set as well.

Extracting a Single MUS in Polynomial Time
Every MUS of a formula is an irreducible hitting set of the CoMSSes of . Although
MINIMAL-HITTING-SET is an NP-Hard problem [8], irreducibility is a less strict require-
ment than minimal cardinality. Along with the fact that no CoMSS is a subset of any
other, this allows us to find an irreducible hitting set for the set of CoMSSes in polyno-
mial time. We can generate an MUS by a greedy, iterative construction, with no search
necessary. Figure 3 outlines the construction in pseudocode.

ϕ′

yi yi

ϕ ϕ

ExtractMUS(CoMSSes)
1. MUS ← ∅
2. While (CoMSSes ≠ ∅)
3. curCoMSS ← Pop(CoMSSes)
4. newClause ← Pop(curCoMSS)
5. MUS ← MUS ∪ {newClause}
6. // Remove all clauses in curCoMSS from all remaining CoMSSes
7. For Each clause ∈ curCoMSS
8. For Each testCoMSS ∈ CoMSSes
9. If (clause ∈ testCoMSS)
10. testCoMSS ← testCoMSS - {clause}
11. // Remove any CoMSSes containing newClause
12. For Each testCoMSS ∈ CoMSSes
13. If (newClause ∈ testCoMSS)
14. CoMSSes ← CoMSSes - {testCoMSS}
15. Return MUS

3.2 Obtaining MUS(ϕ)

Fig. 3. Pseudocode for extracting a single MUS from a set of CoMSSes

On Finding All Minimally Unsatisfiable Subformulas 179
Intuitively, we want to generate a set of clauses with at least one clause from each
CoMSS, such that every clause is an essential element of the set. By “essential” we
mean that removing a clause will leave at least one CoMSS unrepresented in the gener-
ated MUS; this enforces the irreducibility requirement.

The algorithm works by sequentially adding clauses to a forming MUS. In the main
loop, a clause is selected for inclusion in the MUS, the working set of CoMSSes is al-
tered to force that clause to be essential, and the process iterates with the altered set of
CoMSSes. The first two lines in the loop choose a CoMSS and a clause from that
CoMSS (the choices can be arbitrary). The clause is added to the MUS. Then, all of the
other clauses in the chosen CoMSS are removed from the remaining problem. This pre-
vents any of those clauses from being added to the MUS in later iterations, which could
make the chosen clause non-essential. Next, any CoMSSes containing the chosen
clause are removed, because they are now represented in the MUS. After these modifi-
cations are made, the algorithm iterates with the resulting set of CoMSSes. When no
more CoMSSes remain, the constructed set of clauses is a complete MUS.

Extracting All MUSes
Finding all MUSes involves searching for all irreducible hitting sets of the set of
CoMSSes. In general, this may be impractical due to the possibly exponential number
of MUSes, but in many cases the result is tractable.

Our algorithm for extracting the complete set of MUSes from the CoMSSes uses
the general form of the algorithm in Figure 3. The order in which CoMSSes and clauses
are selected (the choices made in the first two lines of the while loop) determines the
particular MUS created by the algorithm; therefore, by branching on these two deci-
sions, all possible MUSes can be generated. We implemented this with a recursive al-
gorithm that takes as input the remaining set of CoMSSes (initially the entire set) and
the MUS under construction in the given branch of the recursion (initially the empty
set). The branching is not ideal, and many duplicate branches are encountered in prac-
tice. We employ ordering heuristics to prune as many duplicate branches as possible
without missing any MUSes.

The algorithm developed by Bailey and Stuckey in [1] was implemented to find all min-
imally unsatisfiable subsets of systems of Herbrand constraints, used for type-error de-
bugging of Haskell programs. It exploits the same relationship between maximal satis-
fiability and minimal unsatisfiability as ours, however, and so it can be applied to any
type of constraint as well. We present an overview of their algorithm here.

They call the algorithm “Dualize and Advance” (DAA), as it interleaves the use of
the hitting-set duality with the search for what we call CoMSSes. Whereas our tech-
nique finds all CoMSSes before finding hitting sets of them, DAA computes hitting sets
on a partial set of CoMSSes after finding each CoMSS — it outputs any MUSes found
at that stage and also uses the results to direct the search for the next CoMSS. The full
DAA algorithm is presented in pseudocode in Figure 4.

4 Dualize and Advance

M.H. Liffiton and K.A. Sakallah 180
DAA(Constraints)
1. MUSes ← ∅
2. CoMSSes ← ∅
3. Seed ← ∅
4. Repeat
5. MSS ← Grow(Seed, Constraints)
6. CoMSSes ← CoMSSes ∪ {Constraints - MSS}
7. PotentialMUSes ← ExpandHittingSets(MUSes, {Constraints - MSS})
8. Seed ← ∅
9. For Each S ∈ (PotentialMUSes - MUSes)
10. If (Sat(S))
11. Seed ← S
12. Break
13. Else
14. MUSes ← MUSes ∪ {S}
15. Until (Seed = ∅)
16. Return MUSes

Grow(S, Constraints)
1. For Each c ∈ (Constraints - S)
2. If (IncrementalSat(S ∪ {c}))
3. S ← S ∪ {c}
4. Return S

ExpandHittingSets(MUSes, CoMSS)
1. If MUSes = ∅
2. For Each c ∈ CoMSS
3. MUSes ← MUSes ∪ {c}
4. Else
5. // Compute cross product
6. newMUSes ← ∅
7. For Each MUS ∈ MUSes
8. For Each c ∈ CoMSS
9. newMUSes ← newMUSes ∪ {(MUS ∪ {c})}
10. // Perform minimization
11. newMUSes ← Sort(newMUSes)// in order of increasing cardinality
12. MUSes ← ∅
13. For Each testMUS ∈ newMUSes
14. If (∀ m ∈ MUSes. m ⊄ testMUS)
15. MUSes ← MUSes ∪ {testMUS}
16. Return MUSes

Fig. 4. Dualize and Advance pseudocode

On Finding All Minimally Unsatisfiable Subformulas 181
DAA finds MSSes in a straightforward manner by “growing” them. Given a seed
in the form of a satisfiable set of constraints (which is empty in the first iteration), an
MSS is constructed by attempting to add each of the problem's remaining constraints to
the seed, only keeping those which do not create a conflict. After going through all pos-
sible constraints, this process will have collected a maximally satisfiable subset of the
constraints, because those excluded were left out specifically because they would make
it unsatisfiable. This is all contained in the Grow subroutine.

When an MSS is found in this manner, the complement is added to the growing set
of CoMSSes. At this point, the hitting sets of the CoMSSes are computed to potentially
output MUSes and/or create a new seed. Each minimal hitting set that is unsatisfiable
is an MUS (they are all guaranteed to be unsatisfiable only if the complete set of
CoMSSes is used), and if one is found that is satisfiable, then this set is used as a seed
for the next iteration. The seed created in this way is guaranteed to not intersect with
any of the MSSes found thus far because it was created from the CoMSSes. For every
MSS found previously, the seed will contain at least one constraint not in that MSS.
Thus, the MSS grown from the seed is guaranteed to be new.

Bailey and Stuckey mention that there are many ways to compute minimal hitting
sets, noting that the problem is equivalent to the hypergraph transversal problem. For
their implementation, they chose a simple method that “is simple to implement and be-
haves reasonably efficiently.” They compute the hitting sets of a set G by ordering the
sets in G, then computing partial cross products of those sets, minimizing the results at
each step. In the case of the DAA algorithm, the process can be made incremental. At
each iteration, only a single set is added to the set of CoMSSes; by remembering the
hitting sets computed in the last iteration, the hitting sets for the current iteration can be
computed by taking the cross products of the new CoMSS with each of the hitting sets
from the previous iteration. Their paper described the process, including the minimiza-
tion, in mathematical terms, which we interpreted and implemented algorithmically as
shown in Figure 4.

Bailey and Stuckey also discuss an optimization to their algorithm in the form of a
heuristic for the order of adding constraints in the Grow subroutine. They aim to collect
CoMSSes in increasing order of size to optimize the partial hitting set calculations. Us-
ing the constraint interaction graph, they estimate which constraints are most likely to
cause unsatisfiability, ordering the constraints to choose these later in the Grow subrou-
tine. In their results, the heuristic only decreased the runtime by at most half, and in
some cases its use resulted in longer runtimes. Due to this and the lack of details de-
scribing it in the paper, we did not implement this heuristic in our version of DAA.

We evaluated both our own technique and our implementation of Bailey and Stuckey's
DAA algorithm using a large set of unsatisfiable CNF benchmarks from automotive
product configuration [11,12]. Each benchmark encodes a set of available configura-
tions for a product, along with constraints enforcing a specific property to be checked.
We observed that the encodings were not “tight,” in that they contained numerous du-
plicate clauses. Duplicate clauses can yield a combinatorial explosion of MUSes, so

5 Results

M.H. Liffiton and K.A. Sakallah 182
they were removed before gathering data. There are a total of 84 benchmarks in the set,
each with around 1500-1800 variables and 4000-8000 clauses. This set of benchmarks
was chosen because of the range of results it provides. Though all of the instances were
generated in the same manner and have the same general size, the number and size of
CoMSSes and MUSes in each instance vary widely. Some have a single MUS, while
others have millions; runtimes can range from less than a millisecond to days or longer.

All of the algorithms were implemented in C++. Both our algorithm for finding
CoMSSes and our implementation of DAA used MiniSAT [6] as a framework for con-
straint solving. MiniSAT is primarily a SAT solver, but it can be extended to handle oth-
er types of constraints as well. This made it possible to integrate AtMost constraints
alongside the standard Boolean CNF clauses for our CoMSSes algorithm. The data
were collected in Linux on a PC with a 2.2GHz Opteron processor and 8GB of RAM.

We ran every instance against both algorithms, with a 600 second timeout for both.
Of the 84 benchmarks, all MUSes were found for 31 of them within the timeout by at
least one of the two algorithms. The results for these 31 are presented in Table 1. The
first column lists the benchmark name, and columns 2 and 3 give the size of each bench-
mark with the number of variables and clauses, respectively. The following three col-
umns list the time in seconds our algorithm spent in finding the set of CoMSSes, the
time spent on the set of MUSes, and the total time as the sum of both. The seventh col-
umn lists the runtime in seconds of the DAA algorithm for finding the complete set of
MUSes. The “Ratio” column provides the ratio of the runtime of DAA to that of our
algorithm (column 7 divided by column 6). Finally, the last two columns list the number
of CoMSSes and the number of MUSes in each benchmark.

Of the 31 benchmarks for which at least one algorithm completed, ours finished all
31 while DAA reached the 600 second timeout for 6. Additionally, our algorithm is con-
sistently faster than DAA, usually by about one to two orders of magnitude. The bench-
marks which DAA was not able to complete all had more than 10,000 MUSes, indicat-
ing that calculating sets of potential MUSes at each stage was taking most of the time.
Our algorithm is likewise affected by benchmarks with large numbers of MUSes, but
because the set of MUSes is only calculated once, the impact is much smaller.

We should also note that of the 53 benchmarks that neither algorithm completed,
ours was able to find the complete set of CoMSSes for 18. These instances all timed out
in the MUS extraction stage. For each of the 18 instances, many MUSes were generated
(up to 4.5 million) before the 600 second timeout was reached. This illustrates how the
problem can be made intractable by the sheer number of MUSes. In one instance,
C170_FR_SZ_95, our algorithm found the complete set of CoMSSes in just 0.34 sec-
onds, and it had generated more than 1.5 million MUSes by the time the 600 second
timeout was reached.

The performance numbers paint a clear picture that our algorithm is faster than DAA
for Boolean constraints. However, the performance of each algorithm is dependent on

6 Analysis

On Finding All Minimally Unsatisfiable Subformulas 183
Benchmark Our Algorithm DAA Ratio Solutions

Name #V #C CoMSSes
(sec)

MUSes
(sec)

Sum
(sec)

DAA
(sec)

#
CoMSSes

#
MUSes

C208_FC_SZ_128 1513 4469 0.06 0.00 0.06 11.1 201.8 32 1

C208_FC_SZ_127 1513 4469 0.06 0.00 0.06 12.0 206.9 34 1

C208_FA_SZ_121 1516 4247 0.07 0.00 0.07 9.9 135.3 32 2

C208_FA_SZ_120 1516 4247 0.07 0.00 0.07 10.5 141.9 34 2

C202_FS_SZ_122 1556 5385 0.09 0.00 0.09 16.5 189.7 33 1

C170_FR_SZ_92 1528 4195 0.13 0.00 0.13 38.2 293.8 131 1

C202_FW_SZ_124 1561 7435 0.15 0.00 0.15 27.6 190.3 33 1

C210_FS_SZ_130 1607 4894 0.18 0.00 0.18 11.1 61.0 31 1

C210_FS_SZ_129 1607 4894 0.19 0.00 0.19 12.1 63.4 33 1

C210_FW_SZ_136 1628 6384 0.25 0.00 0.25 17.0 67.2 31 1

C202_FW_SZ_123 1561 7437 0.26 0.00 0.26 25.0 96.9 38 4

C210_FW_SZ_135 1628 6384 0.26 0.00 0.26 18.3 70.7 33 1

C168_FW_UT_852 1804 6756 0.45 0.00 0.45 15.1 33.5 30 102

C168_FW_UT_851 1804 6758 0.45 0.00 0.45 15.2 33.6 30 102

C168_FW_UT_854 1804 6753 0.45 0.00 0.45 15.2 33.6 30 102

C168_FW_UT_855 1804 6752 0.47 0.00 0.47 15.3 32.3 30 102

C220_FV_RZ_14 1530 4013 0.57 0.00 0.57 4.3 7.7 20 80

C208_FA_RZ_64 1516 4246 0.61 0.00 0.61 48.0 78.8 212 1

C220_FV_SZ_121 1530 4035 0.65 0.00 0.65 25.3 38.9 102 9

C208_FC_RZ_70 1513 4468 0.67 0.00 0.67 53.9 80.9 212 1

C202_FS_SZ_121 1556 5387 0.83 0.00 0.83 9.5 11.4 24 4

C202_FW_RZ_57 1561 7434 1.11 0.00 1.11 137.0 123.3 213 1

C208_FA_SZ_87 1516 4255 0.46 1.41 1.87 >600 >320.5 139 12884

C170_FR_RZ_32 1528 4067 0.64 1.96 2.60 >600 >230.4 242 32768

C220_FV_RZ_13 1530 4014 1.22 2.34 3.56 47.7 13.4 76 6772

C208_FA_UT_3254 1805 6153 1.63 8.94 10.57 >600 >56.8 155 17408

C208_FA_UT_3255 1805 6156 1.68 18.40 20.08 >600 >29.9 155 52736

C210_FS_RZ_40 1607 4891 0.44 30.10 30.54 73.7 2.4 212 15

C210_FW_RZ_59 1628 6381 0.56 30.40 30.96 114.0 3.7 212 15

C220_FV_RZ_12 1530 4017 1.23 65.20 66.43 >600 >9.0 150 80272

C220_FV_SZ_65 1530 4014 2.05 65.80 67.85 >600 >8.8 198 103442

DAA
Sum

Table 1. Performance Results

M.H. Liffiton and K.A. Sakallah 184
One difference contributing greatly to the performance of our algorithm is its tight
integration with a modern SAT solver. By formulating the problem with clause-selector
variables, we let the SAT solver handle the search for MSSes itself. Additionally, by
finding multiple MSSes (of a single size) within a single search tree, we immediately
take advantage of all of the features of modern SAT solvers, especially learned clauses.
While DAA can use an incremental search within the Grow subroutine, it must restart
the search after any added constraint makes the growing MSS unsatisfiable. It also re-
starts with a new search tree for every MSS, as compared to our algorithm which only
restarts the search after all MSSes of a particular size have been found.

Note that while our approach is more heavily integrated with a SAT solver, it is still
fairly independent of the particular solver itself. It can be implemented with any SAT
solver that provides an incremental solving interface, allows the addition of constraints
mid-search, and supports the AtMost constraint. (While the last requirement is not
standard, its implementation in MiniSAT is quite simple, and as noted earlier, the effect
can be obtained by modifying other SAT solvers with little difficulty.) The DAA algo-
rithm simply calls a standard solver as a subroutine, making it even simpler to imple-
ment with different solvers.

The strength of our algorithm’s integration with the solver is also a drawback, in
that it makes it less immediately applicable to other constraint types. We rely on the
ability to encode constraint enabling and disabling within the syntax of the constraints
themselves. This is easy to do with Boolean disjunctions, but other types of constraints
may not be as suitable. DAA, on the other hand, can immediately be implemented using
a solver of any type of constraint.

Another large difference between our algorithm and DAA is the distinction between
our serial, two-phase algorithm and DAA's interleaved approach. Obtaining MUSes be-
fore computing the entire set of CoMSSes is beneficial in applications that do not re-
quire the complete set of CoMSSes nor all MUSes because it can provide results sooner.
The interleaved approach could easily be adopted in our algorithm. Hitting sets of the
partial set of CoMSSes could be calculated after every CoMSS is found, between stages
of the incremental search (when incrementing the bound on CoMSS size), or at any de-
sired interval. This could add a great deal of overhead, however, especially if every po-
tential MUS had to be checked for unsatisfiability (as opposed to aborting after one set
is found to be satisfiable, as DAA does to use that set as the next seed). This seems to
be the case for DAA, as the instance for which it had its fastest runtime also had the
fewest CoMSSes, and thus the fewest incremental hitting-set calculations. Though our
algorithm could be interleaved to potentially gain efficiency, DAA could not be “de-
interleaved,” as it depends on the set of potential MUSes to provide the seed for the next
iteration and to determine when it has found all CoMSSes.

The process of “growing” an MSS from a seed has potential application within our
algorithm as well. Recall that we restart the search for MSSes after exhausting the
search space for each bound on the CoMSS size. Each restart throws away valuable
learned clauses. We could relax the AtMost constraints to search for CoMSSes of 2, 3,

a number of factors, and in this section we discuss the details behind the performance,
comparing the strengths and weaknesses of each algorithm.

On Finding All Minimally Unsatisfiable Subformulas 185
however, so the Grow subroutine could be used to maximize the corresponding satisfi-
able subset (thus minimizing the CoMSS). When that search tree is exhausted, the
bound could be increased by 3, finding CoMSSes of size 4, 5, and 6 in the next iteration.
In general, the range of sizes covered by each iteration could be extended at the cost of
increased overhead from calls to Grow. The impact of this tradeoff is unclear, and it
should be investigated to determine an optimal range.

Finally, the constraint-graph heuristic used in DAA to guide it towards smaller
CoMSSes could be adapted for our algorithm. For example, the ranking of constraints
generated by the heuristic could be implemented as an influence on the variable order-
ing of the clause-selector variables. In general, heuristics specific to finding CoMSSes
and relevant to the constraints themselves (as opposed to the formula’s variables) could
be effective for both algorithms.

We have presented a relationship between maximal satisfiability and minimal unsatis-
fiability that can be used to find all Minimally Unsatisfiable Subformulas of a Boolean
CNF formula. We experimentally compared two methods that exploit this relationship,
our own algorithm and DAA, developed by Bailey and Stuckey [1]. The results show
that ours is about one to two orders of magnitude faster. We discussed the relative
strengths and weaknesses of each approach, examining the causes of the performance
difference as well as practical implementation details.

There are many possible directions for future improvement. Though ours is the fast-
est known algorithm for finding all MUSes of a Boolean CNF formula, it does not scale
nearly as well as modern SAT solvers. While this is unavoidable due to the much great-
er complexity of the problem, work should be done to make it more efficient and prac-
tically useful. We discussed some ways in which our algorithm could be combined with
ideas from Bailey and Stuckey’s approach which might lead to increased performance.
Additionally, performance may be increased by relaxing optimality constraints.

Finally, we believe that the relationship on which both of the algorithms in this pa-
per are based should be explored further. The relationship between MUSes, CoMSSes,
and the general idea of constraint conflicts could yield further algorithms and practical
applications.

This material is based upon work supported by the National Science Foundation under
ITR Grant No. 0205288. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the view
of the National Science Foundation (NSF).

7 Conclusion and Future Work

Acknowledgement

one search tree. There would be no guarantee that those of size 2 or 3 are irreducible,

or more sizes at one time. For example, by starting with an AtMost bound of 3 on the
clause selector variables, the algorithm would find CoMSSes of size 1, 2, and 3 within

M.H. Liffiton and K.A. Sakallah 186
References

[1] J. Bailey and P. J. Stuckey. “Discovery of Minimal Unsatisfiable Subsets of Constraints
Using Hitting Set Dualization.” In Proc. of the 7th International Symposium on Practical
Aspects of Declarative Languages (PADL05), volume 3350 of Lecture Notes in
Computer Science. Springer-Verlag, 2005.

[2] M. de la Banda, P. Stuckey, and J. Wazny. “Finding All Minimal Unsatisfiable Subsets.”
In Proc. of the Fifth ACM-SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP 2003), pages 32-43, 2003.

[3] R. Bruni and A. Sassano. “Restoring Satisfiability or Maintaining Unsatisfiability by
Finding Small Unsatisfiable Subformulae.” Electronic Notes in Discrete Mathematics,
vol. 9, 2001.

[4] R. Bruni. “Approximating Minimal Unsatisfiable Subformulae by Means of Adaptive
Core Search.” Discrete Applied Mathematics, vol. 130(2), pages 85–100, 2003.

[5] J.W. Chinneck and E.W. Dravnieks, “Locating Minimal Infeasible Constraint Sets in Lin-
ear Programs.” ORSA Journal on Computing, Vol. 3, No. 2, pp. 157-168, 1991.

[6] N. Eén and N. Sörensson. “An Extensible SAT-solver.” In Sixth International Conference
on Theory and Applications of Satisfiability Testing (SAT03), 2003.

[7] J. Huang. “MUP: A Minimal Unsatisfiability Prover.” In Proc. of the Tenth Asia and
South Pacific Design Automation Conference (ASP-DAC), January 2005.

[8] R. M. Karp. “Reducibility Among Combinatorial Problems.” In Proc. of a Symposium on
the Complexity of Computer Computations, pages 85-103, 1972.

[9] M. Liffiton, Z. Andraus, and K. Sakallah. “From Max-SAT to Min-UNSAT: Insights and
Applications.” Technical Report CSE-TR-506-05, University of Michigan, 2005.

[10] Y. Oh, M. Mneimneh, Z. Andraus, K. Sakallah, and I. L. Markov. “AMUSE: A
Minimally-Unsatisfiable Subformula Extractor.” In Proc. of the 41st Annual Conference
on Design Automation, pages 518–523, ACM Press, 2004.

[11] SAT benchmarks from Automotive Product Configuration,
 http://www-sr.informatik.unituebingen.de/~sinz/DC/

[12] C. Sinz, A. Kaiser, and W. Küchlin. “Formal Methods for the Validation of Automotive
roduct Configuration Data.” In Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, vol. 17 no. 1, pages 75-97, 2003.

[13] L. Zhang and S. Malik. “Extracting small unsatisfiable cores from unsatisfiable
Boolean formula.” Presented at the Sixth International Conference on Theory
and Applications of Satisfiability Testing, 2003.

	On Finding All Minimally Unsatisfiable Subformulas
	1 Introduction
	2 Maximal Satisfiability and Minimal Unsatisfiability
	3 Finding All MUSes
	3.1 Finding CoMSSes()
	3.2 Obtaining MUS()

	4 Dualize and Advance
	5 Results
	6 Analysis
	7 Conclusion and Future Work
	8 Acknowledgement
	9 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

