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Abstract. We describe the Reveal formal functional verification system
and its application to four representative hardware test cases. Reveal em-
ploys counterexample-guided abstraction refinement, or CEGAR, and is
suitable for verifying the complex control logic of designs with wide dat-
apaths. Reveal performs automatic datapath abstraction yielding an ap-
proximation of the original design with a much smaller state space. This
approximation is subsequently used to verify the correctness of control
logic interactions. If the approximation proves to be too coarse, it is au-
tomatically refined based on the spurious counterexample it generates.
Such refinement can be viewed as a form of on-demand “learning” sim-
ilar in spirit to conflict-based learning in modern Boolean satisfiability
solvers. The abstraction/refinement process is iterated until the design is
shown to be correct or an actual design error is reported. The Reveal sys-
tem allows some user control over the abstraction and refinement steps.
This paper examines the effect on Reveal’s performance of the various
available options for abstraction and refinement. Based on our initial ex-
perience with this system, we believe that automating the verification
for a useful class of hardware designs is now quite feasible.

1 Introduction

The paradigm of iterative abstraction and refinement has gained momentum
in recent years as a particularly effective approach for the scalable verification
of complex hardware and software systems. Dubbed counterexample-guided ab-

straction refinement (CEGAR), its power stems from the elimination (i.e., ab-
straction) of details that are irrelevant to the property being checked and from
analyzing any spurious counterexamples to pinpoint and add just those details
that are needed to refine the abstraction, i.e., to make it more precise. Origi-
nally pioneered by Kurshan [13], it has since been adopted by several researchers
as a powerful means for coping with verification complexity. In particular, the
use of abstraction-based verification has been thoroughly studied in the context
of model checking by Clarke et al. [6] and Cousot and Cousot [7] for over two
decades. Later methods by Clarke et al. [5], Das et al. [8] and Jain et al. [12]
have successfully demonstrated the automation of abstraction and refinement in
the context of model checking for safety properties.



Whereas such a verification paradigm is appealing at a conceptual level,
its success in practice hinges on effective automation of the abstraction and
refinement steps, as well as the various checking steps requiring sophisticated
reasoning. In this paper, we describe how these issues are addressed by Reveal,
an automatic CEGAR-based verification system. Reveal is used to formally ver-
ify complex hardware designs, including pipelined microprocessors whose RTL
descriptions have tens of thousands of HDL source lines, thousands of signals,
and hundreds of thousands of state bits.

Below, we will describe Reveal’s CEGAR flow and analyze its behavior and
performance by way of four representative test cases. For each test case, we
compare a number of methods to model and check the desired properties on
the abstract design, including the use of a Satisfiability Modulo Theories (SMT)
solver [9]; we study trade-offs between various refinement options; we highlight
the types of lemmas generated in the refinement stage and analyze the idiosyn-
crasies leading to them; we show how genuine bugs were discovered using Reveal;
we provide experimental evidence that demonstrates the importance of datapath
abstraction for the scalability of formal verification; and, finally, we compare the
performance of Reveal against a number of existing automatic tools that per-
form formal verification of hardware, such as VCEGAR [12], BAT [15], UCLID
[3], and VIS [10].

The rest of the paper is organized in four sections. Section 2 reviews Reveal’s
CEGAR framework, and Sections 3 and 4 describe our benchmark test cases and
how they were verified using the Reveal system. Finally Section 5 summarizes
the paper’s conclusions.

2 The Reveal Verification System

Figure 1 depicts the flowchart of the reveal system. Reveal performs checks of
safety properties on hardware designs described in the Verilog hardware descrip-
tion language (HDL). A typical usage scenario involves providing two Verilog
descriptions of the same hardware design, such as a high-level specification and
a detailed implementation, and checking them for functional equivalence. Reveal
adopts the CEGAR-based approach of Andraus et al. [1], mainly involving:

Abstraction. The goal of abstraction is to obtain a compact representation of
the design for which formal property checking is more likely to terminate (i.e.,
to scale both in time and space) than if applied directly on the original de-
sign. Reveal performs datapath and memory abstraction by replacing datapath
units with uninterpreted functions and predicates, while leaving the control logic
unabstracted. This allows reasoning about the complex control of the design,
while avoiding the complexity introduced by datapath elements. Previous work
(e.g. [4]) showed that it is possible to prove many useful (equivalence) properties
if the abstract model is expressed in the logic of Equality with Uninterpreted
Functions (EUF), a quantifier-free fragment of first order logic. Scalability can
be further improved by abstracting to CLU, which extends EUF with counting
arithmetic and lambda expressions for memories [3].
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Fig. 1: The Reveal Flow

Table 1: Benchmark Statistics

Name
Verilog

Lines

Verilog

Signals State Bits

Sorter 79 30 35 to 1027

DLX 2.4x10
3

399 1.0x10
11

Risc16F84 1.2x10
3

169 1.0x10
5

X86 1.3x10
4

1.0x10
3

5.8x10
3

Property Checking. Formal reasoning in the EUF or CLU logics determines if
the abstracted design satisfies the specified property. Early EUF/CLU solvers
convert the formula to an equi-satisfiable propositional formula and use an off-
the-shelf Boolean solver to check for satisfiability. In contrast, Satisfiability Mod-
ule Theories (SMT) solvers (e.g. YICES [9]) operate on these formulas directly
by integrating specialized theory solvers within a backtrack propositional solver.
SMT solvers, thus, are able to take advantage of the high-level semantics of the
non-propositional constraints, while at the same time benefiting from the pow-
erful reasoning capabilities of modern propositional SAT solvers. Reveal uses the
YICES solver [9][17] in the property checking step, allowing the integration of
the empty theory (consistency of term equality), UF theory, and integer theories

(for counting).

Refinement. An abstract counterexample, demonstrating that the property is
violated by the abstract model, has to be checked for feasibility on the concrete
model. If feasible, a concrete counterexample trace is generated. If not, the coun-
terexample is spurious, and is refuted in the abstract model by adding a blocking
clause, similar to learning in SAT, and the process iterates. Reveal avoids the
näıve refutation of one counterexample at a time, which usually leads to very
slow convergence, rendering the approach impractical. Instead, one or more suc-
cinct explanations are used in each iteration to explain infeasibility and refine
the abstraction for the next round of checking. These explanations, referred to as
lemmas, are universal facts extracted from the concrete model to refute current
or future spurious counterexamples and can thus be stored in a lemma database
and re-used across invocations of Reveal on the same (family of) design(s). Pre-



liminary results of this scheme [2] show that the convergence of the refinement
loop is contingent upon the way these lemmas are derived. Reveal employs a
reasoning engine that combines YICES with CAMUS [14] during feasibility and
refinement. The CAMUS tool can derive one, multiple, or all minimally unsatisfi-
able subsets (MUSes for short) of constraints from a set of infeasible constraints.
Finding MUSes allows for trimming the infeasibility explanations, effectively en-
larging their footprint in the abstract solution space. Finding multiple MUSes
means learning multiple lemmas in each refinement iteration and yielding a sig-
nificant speedup in the convergence of the refinement loop. Finally, scalability
is further improved by finding MUSes with the use of the bit-vector theory in
YICES. Earlier methods (e.g. [1]) use a bit-blasting approach in which the ab-
stract counterexample is encoded with propositional constraints and passed to a
propositional solver. In contrast, reasoning at the word-level with the bit-vector
theory in YICES allows much more efficient derivation of MUSes (i.e., lemmas).

3 Case Studies

We performed our experiments on the four designs which we briefly describe in
this section. Table 1 summarizes the design statistics. Interested readers can find
more details in [2].

Sorter Case Study. The Sorter design implements two versions of an algorithm
that sorts four bit-vectors. The computation delay in both versions is 3 cycles.
The property we verified is the equality between corresponding outputs in the
two versions. All the bit-vectors in the two units, including the inputs and the
outputs, have bit-width W, which we vary from 2 to 64 to see the effect of
the datapath width on the scalability of each tool. Reveal’s performance on the
Sorter is presented in Figure 2, and will be analyzed in Section 4.

DLX Case Study. DLX is a 32-bit RISC microprocessor [11]. Its salient features
include a 32-bit address space with separate instruction and data memories, a
32-word register file with two read ports and one write port, and 38 op-codes for
arithmetic, logical, and control operations. Our case study involved proving the
equivalence of two versions of DLX [18]. The first version, which we will refer to
as DLXSpec, is a single-cycle implementation of the instruction set architecture
(ISA) and serves as the architectural specification of the microprocessor. The
second version, labeled DLXImpl, is a standard 5-stage pipeline.

RISC16F84 Case Study. This design is an implementation of the Risc16F84
microcontroller [20]. It has a 213x14-bit instruction memory, a 29x8-bit data
memory, 34 op-codes, and a 4-stage pipeline. Similarly to the DLX case, we de-
note the implementation and specification by OCImpl and OCSpec respectively.
OCImpl processes one instruction every four cycles, while OCSpec needs one
cycle to process each instruction.



X86 Case Study. The X86 design is an open source RTL Verilog model de-
veloped at IIT Madras that implements Intel’s IA-32 ISA [19]. The design’s
Decoder module is responsible for fetching an instruction prefix from memory,
finding the total length of the instruction, and fetching and decoding the rest
of the instruction. We verified the property that the Decoder activates the cor-
responding decode unit (Integer versus Floating Point) when the instruction is
confined to a set of 6 integer and floating point op-codes.

4 Results and Analysis

We verified a number of buggy and bug-free variations of each of the aforemen-
tioned designs. The buggy versions were obtained by injecting errors in the RTL
description. These variations are described in Table 2. Columns labeled T, I, and
L, describe, respectively, total run-time (seconds), number of iterations, and to-
tal number of refinement lemmas (when applicable). ‘TO’ stands for ”Time Out”
(600s). Finally, the smallest run-time is highlighted in bold in each row; there
can be multiple in each row when the difference is insignificant.
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Fig. 2: Runtime Graphs for Sorter

// DLX

define BEQ 4

define op 31:26

initial OR3 = 32'd0

case IR3[`op] `BEQ: ... 

// X86

op2 = 32'd0;

if (…) op2[16:0] =

     instrSeq[31:16];

Fig. 3: Verilog Code Fragment
from DLX and X86

Reveal’s modes were classified by a one-, two-, or three-letter code that in-
dicates the abstraction and refinement options used. Abstraction options are
labeled B (bit-level, i.e., no abstraction), C (CLU abstraction), and E (EUF
abstraction). Refinement options are labeled V (refinement via refuting the ab-
stract violation) and L (refinement with lemmas). For lemma refinement, S de-
notes refinement with a single lemma per iteration, while M denotes refinement
with multiple lemmas. For example, the label CLM means CLU abstraction and
refinement with multiple lemmas, whereas EV means EUF abstraction and re-



finement with the negation of the abstract violation.

Our empirical case study compares the performance of Reveal against the ver-
ification systems UCLID, BAT, VCEGAR, and VIS on a 2.2 GHz AMD Opteron
processor with 8GB of RAM running Linux. UCLID [3] allows modeling of the
datapath with abstract terms, and memories with Lambda expressions. BAT [15]
models memories with set and get functions for reads and writes, respectively,
but models the datapath with finite-length bit-vectors. VCEGAR [12] performs
word-level predicate abstraction on the Verilog input but does not abstract mem-
ory arrays. Finally, VIS [10] uses, by default, bit-level reachability analysis to
verify invariants. It can also be used in two special modes: one that performs
bounded model checking of safety properties (denoted herein by VIS(BMC)),
and another that performs invariant checking with a CEGAR algorithm based
on hiding registers [16] (denoted by VIS(AR)).

B

T I T I T I T I L T I L T

D1 Bug-free DLX TO >1507 1.92 9 1.8 8 0.6 4 8 1.0 6 12 TO

D2 Pipeline "Stall" s-a-1 0.11 1 0.15 1 0.12 1 0.11 1 0 0.1 1 0 0.21

D3 Incorrect 'jump' address 3.16 45 2.22 11 1.16 5 1.13 3 5 1.1 4 8 6.7

R1 Bug-free RISC16F84 TO >1767 TO >1204 TO >1085 257 93 185 148 68 170 209

R2 Floating "carry-in" signal 0.79 8 56 20 TO >1881 72 44 13 40 33 39 15.2

R3 "aluout_zero_node" s-a-1 115 654 50 123 121 311 2.6 5 15 27.3 40 73 11.6

X1 Bug-free X86 TO >388 TO >1158 TO >945 36.5 40 104 60.4 19 96 TO

X2 enInt and enFP swapped TO >461 TO >1062 TO >1046 30.5 78 161 103 24 86 TO

X3 Wrong FSM transitions 1.98 2 1.95 2 1.96 2 2.0 2 6 2.1 1 0 2.72

X4 CMP activates the FP unit TO >308 TO >847 TO >1252 23 12 41 58.7 7 43 TO

# Test Case/Version
CLMCV ELS CLS ELM

Fig. 4: Verification results for the DLX, RISC16F84, and X86 variations

4.1 Datapath Abstraction

The merits of datapath abstraction are evident in all verification runs. In particu-
lar, the performance of Reveal(C) and UCLID on the Sorter example is oblivious
to the datapath bit-width W (Figure 2). In both cases, the abstract model is
unaltered when the datapath bit width is changed; thus, the time needed to
verify the abstract model is constant. Furthermore, the only interaction between
the datapath and the control logic in this design involves bit-vector inequali-
ties, allowing the CLU logic to prove the property without any refinement. The
performance of the remaining tools degrades as W increases:

– VCEGAR takes 6.1 seconds to prove the property for W=2 as it incremen-
tally discovers between 33 and 40 predicates within 58 to 130 iterations.
Additionally, run-time grows exponentially with W. We suspect that the
reason behind this is the expense of simulating the abstract counterexample



on the concrete design in each refinement iteration, as well as the repeated
generation of the abstract model each time a new predicate is added.

– The run-times of Reveal(B), VIS, and VIS(BMC) degrade rapidly as the bit
width is increased. The run-times of VIS(AR) are similar to those of VIS
and were removed from the graph to avoid clutter.

– BAT’s performance degrades with increasing W, but BAT’s reduction of the
verification formulas to CNF appears to play an important role in keeping
the run-time low.

Note that Reveal(B) (in Table 2) has the worst performance, though surpris-
ingly it is able to terminate on a number of buggy versions. This is attributed
to the ability of the bit-vector solver in YICES to efficiently find a satisfying
assignment and thus its ability to find abstract counterexamples. However, the
rest of the cases confirm that proving that a property holds is intractable without
abstraction.

Finally, comparing Reveal(C) and Reveal(E) sheds some light on the dif-
ference between abstraction to EUF or CLU. In particular, Reveal(C) con-
verges faster than Reveal(E) in terms of refinement iterations in the X86 and
RISC16F84 cases. This is attributed to the heavy use of counters in these de-
signs. Still, Reveal(E) outperforms Reveal(C) in most cases since the latter uses
an integer solver which impacts overall performance.

4.2 Refinement Convergence

The performance of the various options in Reveal demonstrate the role of au-
tomatic refinement. In particular, Table 2 shows that the use of lemmas for
refinement (modes ELS, CLS, ELM, and CLM) is far superior to refuting one
counterexample at a time (mode CV). Also, using multiple lemmas in each re-
finement iteration (modes CLM and ELM) outperforms refinement with a single
lemma at a time (modes ELS and CLS). The R2 case shows an interesting out-
lier; Reveal(CV) is significantly faster than any version that refines with lemmas.
This is due to the heuristic nature of the satisfiability search for finding a bug.
Any search, regardless of the refinement used, could ”get lucky” and find a bug
early, though only rarely.

To further assess the effect of lemmas on the convergence of the algorithm,
we ran Reveal(C) on a version that combines the three bugs present in X2, X3,
and X4. This was an iterative session, in which Reveal was re-invoked after cor-
recting each reported bug. We tested Reveal in two modes: a mode in which
learned lemmas are discarded after each run and a mode in which learned lem-
mas are saved and used across runs. The total run-time for the first mode was
232 seconds, whereas the run-time in the second mode was 166 seconds, a 40%
improvement in speed. This confirmed our conjecture that lemmas discovered in
one verification run can be profitably used in subsequent runs. The verification
of real-life designs involves tens to hundreds of invocations of the tool, thus a
significantly larger speed-up could be seen in practice.



4.3 Refinement Lemmas

We traced the source of refinement lemmas back to the original Verilog code
involving control/datapath interactions. For example, most of the lemmas in the
DLX example were related to the pipeline registers and control logic in DLXImpl,
such as the lemma (IR3 = 32′d0) → (IR3 [31 : 26]) 6= 6′d4, which states that
it’s not possible to extract a non-zero field from a zero bit-vector. The source of
the lemma is in Figure 3 and it involves IR3; the initial abstraction lost the fact
that IR3[31:26] can not be equal to 4, and it found a spurious counterexample
that executed the BEQ instruction. Another example is the set of lemmas in
the RISC16F84, most of which are due to the variable opcode width feature,
wherein the opcode field can be k-bits wide for any k ∈ K = {2, ..., 7, 14}.
For instance, the opcode of the goto instruction is IR[13:11]=3’b101, while the
opcode for addlw is IR[13:9]=5’b11111. The encoding guarantees that only one
opcode is active at any given time. This information is lost when abstracting
the bit-vector extraction operation. This results in the occurrence of lemmas of
the form (IR [13 : k1] = v1) → (IR [13 : k2] 6= v2) for values v1 6= v2 and distinct
indices k1, k2 ∈ K.

It is worth mentioning that our experience with this flow shows that refine-
ment lemmas can be very simple, or very complex, depending on the design and
the property. In either case, the automatic discovery and (on-demand) refine-
ment of only those relevant ones is an important enabler for the scalability of
this approach.

4.4 Discovering Genuine Bugs

In addition to discovering artificially introduced bugs (e.g. those described in
Table 2), Reveal was able to discover a number of genuine bugs. In particular,
the RISC16F84 design includes the Verilog expression {1’b0,aluinp2 reg,c in} in
OCImpl, which uses a floating signal c in as the carry-in bit to an 8-bit adder.
In contrast, OCSpec performs addition without any carry-in bit. Reveal thus
produces a counterexample showing the deviation with c in assigned to 1. The
unit designer acknowledged this problem and asserted that the simulation carried
out for this design assumed c in=0. An additional coding problem was discovered
in X86; the RTL description includes the code given in Figure 3, which extracts
a 16-bit displacement value from the instruction stream and assigns it to a 17-bit
register. Most synthesis tools will zero-extend the RHS expression to make the
sizes consistent, in which case the resulting model is still correct. Nonetheless,
such an error may indicate additional problems in other units of the design.

4.5 Performance of VIS, VCEGAR, and UCLID

VIS, VCEGAR, and UCLID were not able to successfully terminate on the DLX,
RISC16F84, or X86 designs. In some cases, the tool times out or exceeds available
memory, and in others, an internal error causes unexpected termination. Details
of these experiments can be found in [2].



5 Conclusions

We examined the performance of Reveal, a CEGAR-based formal verification
system for safety properties in general, and equivalence in particular. Reveal is
particularly suited for the verification of designs with wide datapaths and com-
plex control logic. Datapath abstraction allows Reveal to focus on the control
interactions making it possible to scale up to much larger designs than is possible
if verification is carried out at the bit level. Additionally, Reveal’s demand-based
lemma generation capability eliminates one of the obstacles that had complicated
the deployment of formal equivalence tools in the past. From a practical per-
spective, hands-free operation and support of Verilog allow Reveal to be directly
used by designers. These capabilities were demonstrated by efficiently proving
the existence of bugs, or proving the lack thereof, in four Verilog examples that
emulate real-life designs both in terms of size and complexity.
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