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Abstract. Much research in the area of constraint processing has recently been
focused on extracting small unsatisfiable “cores” from unsatisfiable constraint sys-
tems with the goal of finding minimal unsatisfiable subsets (MUSes). While most
techniques have provided ways to find an approximation of an MUS (not necessarily
minimal), we have developed a sound and complete algorithm for producing all
MUSes of an unsatisfiable constraint system. In this paper, we describe a useful
relationship between satisfiable and unsatisfiable subsets of constraints that we
subsequently use as the foundation for MUS extraction algorithms, implemented for
Boolean satisfiability constraints. The algorithms provide a framework with which
many related subproblems can be solved, including relaxations of completeness to
handle intractable instances, and we develop several variations of the basic algo-
rithms to illustrate this. Experimental results demonstrate the performance of our
algorithms, showing how the base algorithms run quickly on many instances, while
the variations are valuable for producing results on instances whose complete results
are intractably large. Furthermore, our algorithms are shown to perform better than
the existing algorithms for solving either of the two distinct phases of our approach.

1. Introduction

While a great deal of research has been done on solving constraint
satisfaction problems (CSPs), far less attention has been paid to un-
derstanding an instance when it is unsatisfiable. A large portion of
artificial intelligence research has been devoted to techniques for de-
ciding whether a given CSP is satisfiable, almost all presenting a short
proof in the form of a satisfying assignment when it is. But because
deciding a general CSP is in the complexity class NP, no such short
proof or other explanation is known for unsatisfiable instances. On
unsatisfiable instances, most available solvers provide nothing more
than a one word response: “Unsatisfiable.”

In the past few years, there has been an upswing of interest and
research in one particular mechanism for providing information beyond
that opaque response: extraction of Minimal Unsatisfiable Subsets of
constraints (MUSes), also called “unsatisfiable cores.” Given an un-
satisfiable system of constraints C, an MUS of C is a subset of those
constraints that is (1) unsatisfiable and (2) minimal, in the sense that
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removing any one of its elements makes the remaining set of constraints
satisfiable. MUSes can be seen as compact, irreducible explanations of
a CSP’s infeasibility.

Most experimental research on MUSes has focused on algorithms
for extracting a single unsatisfiable subset or “core,” often not even
minimal, from infeasible constraint systems (see Section 9 for details).
But a minimal core (a single MUS) may not provide complete infor-
mation about a constraint system’s infeasibility. Unsatisfiable systems
of constraints often contain many MUSes, and the presence of any one
makes the system unsatisfiable. Finding a single MUS is like pointing to
a single hole to explain why a sieve doesn’t hold water, and “plugging”
a single MUS (e.g., by relaxing constraints in the MUS to make it
satisfiable) will not necessarily affect other MUSes, leaving the instance
infeasible. Finding all MUSes has found practical application for various
constraint types in formal verification systems, including both hardware
[2, 1] and software [4] verification. In the former, MUSes are used to
refine an abstraction of a hardware design, and finding all MUSes is
necessary to produce the best refinement. In the latter, the MUSes
are explanations of type errors, and again all MUSes are required to
generate the best explanation of the errors.

We have developed sound and complete algorithms for comput-
ing all MUSes of an unsatisfiable constraint system, dubbed CAMUS
(Compute All Minimal Unsatisfiable Subsets - pronounced “ka-moo”
after the French writer), as well as an implementation for Boolean satis-
fiability instances. In this paper, we present and explain the theoretical
basis of our work, algorithms for finding all MUSes of an infeasible
constraint system, and empirical results showing the performance of
CAMUS on a variety of Boolean satisfiability instances.

Our algorithms provide a general framework on which different sys-
tems for finding MUSes can be built with small modifications. For
example, because the problem of finding all MUSes is generally in-
tractable, due to the potentially exponential size of the result, we have
developed a modification of CAMUS that relaxes the completeness
criterion to return several, but not all, MUSes. We discuss this and
another modification to illustrate the flexibility of our algorithms and
of the underlying theory.

The remainder of this paper is organized as follows. Section 2 lays
out some background with formal definitions and introduces an exam-
ple formula. The fundamental concept underlying our work is developed
in Section 3. We introduce our approach to finding all MUSes in Section
4, followed by details of the algorithms that make up CAMUS and
several variations in Sections 5, 6, and 7. Experimental results are

CAMUS.tex; 10/10/2007; 11:40; p.2



3

presented in Section 8. Finally, we discuss related work in Section 9
and conclude in Section 10.

2. Background

2.1. Boolean Satisfiability and CNF

While the ideas in this work are applicable to any type of constraint
system, in this paper we use Boolean satisfiability constraints to de-
scribe and explain our ideas and algorithms (we have also implemented
related systems for finding all MUSes of Disjunctive Temporal Problems
(DTPs) [26] and Satisfiability Modulo Theories (SMT) instances [2]).
Boolean satisfiability instances are generally expressed as a conjunction
of disjunctions called Conjunctive Normal Form (CNF): Formally, a
CNF formula ϕ is defined as follows:

ϕ =
∧

i=1...n

Ci

Ci =
∨

j=1...ki

aij

where each literal aij is either a positive or negative instance of some
Boolean variable (e.g., x3 or ¬x3), ki is the number of literals in the
clause Ci (a disjunction of literals), and n is the number of clauses
in the formula. In more general terms, each clause is a constraint
of the constraint system ϕ. A CNF instance is said to be satisfiable
if there exists some assignment to its variables that makes the for-
mula evaluate to TRUE, otherwise it is unsatisfiable. The problem of
deciding whether a given CNF instance is satisfiable is the canoni-
cal NP-Complete problem to which many other constraint satisfaction
problems can be polynomially reduced.

The following unsatisfiable CNF instance will be used as an example
throughout this paper. We will refer to individual clauses as Ci, where i
refers to the position of the clause in the formula (e.g., C3 = (¬x1∨x2)).

C1 C2 C3 C4 C5 C6

ϕ = (x1) ∧ (¬x1) ∧ (¬x1 ∨ x2) ∧ (¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x3)
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2.2. Clause-Selector Variables

Some of our algorithms use clause-selector variables, which can be used
to augment a CNF formula in such a way that standard Boolean sat-
isfiability (SAT) solvers can manipulate and, in effect, reason about
the formula’s clauses without any modification to the solver itself. This
type of augmentation has also been used in other algorithms such as
those in [28] and [30].

Every clause Ci in a CNF formula ϕ is augmented with a negated
clause-selector variable yi to give C ′

i = (¬yi ∨ Ci) in a new formula
ϕ′. Notice that each C ′

i is an implication, C ′
i = (yi → Ci). Assigning

a particular yi the value TRUE implies the original clause, essentially
enabling it. Conversely, assigning yi FALSE has the effect of disabling
or removing Ci from the set of constraints, as the augmented clause
C ′

i is satisfied by the assignment to yi. This change gives a standard,
unmodified SAT solver the ability to enable and disable constraints
as part of its normal search, checking the satisfiability of the enabled
subsets of constraints within a single backtracking search tree.

For our example formula, the augmented formula ϕ′ created by
adding these clause-selector variables is:

ϕ′ =(¬y1 ∨ x1) ∧ (¬y2 ∨ ¬x1) ∧ (¬y3 ∨ ¬x1 ∨ x2)∧
(¬y4 ∨ ¬x2) ∧ (¬y5 ∨ ¬x1 ∨ x3) ∧ (¬y6 ∨ ¬x3)

2.3. AtMost Constraints

One of our algorithms employs AtMost constraints, a type of counting
constraint that can be constructed from many types of constraints or
added to a constraint solver with few modifications. Given a set of n
literals {l1, l2, . . . , ln} and a positive integer k, an AtMost constraint is
defined as

AtMost({l1, l2, . . . , ln}, k) ≡
n∑

i=1

val(li) ≤ k

where val(li) is 1 if li is assigned TRUE and 0 otherwise. This constraint
places an upper bound on the number of literals in the set assigned
TRUE.

Though this constraint can be encoded into Boolean CNF using
encodings such as in [33], the encodings are unnecessarily complex.
In practice (and in the solver we use specifically), an efficient imple-
mentation of the AtMost constraint “watches” the assignments to the
included variables and immediately propagates the negation of each
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remaining literal once k of them have been assigned TRUE. This is
implemented with exactly n watched literals and a counter that is
incremented or decremented whenever one of them is assigned or unas-
signed. The encodings presented in [33] require the use of additional
variables and either O(n · k) or 7n− 3blog nc − 6 additional clauses. In
modern SAT solvers that use watched literals, each additional clause
adds two “watches,” and the trigger action of each is more complex
than a simple counter increment. A CNF encoding would of course be
needed if CAMUS were implemented on a closed SAT solver that did
not allow implementing the AtMost constraint internally.

2.4. Hitting Sets

Given a collection Ω of sets from some finite domain D, a hitting set of
Ω is a set of elements from D that “hits” every set in Ω by having at
least one element in common with it. Formally:

Definition 1. A hitting set H of Ω is H ⊆ D such that ∀S ∈ Ω, H ∩
S 6= ∅.

In this paper, we refer to minimal or irreducible hitting sets, which
are hitting sets from which no element can be removed without losing
the property of being a hitting set. For example, {1, 2, 3} and {1, 2} are
both hitting sets of {{1, 4}, {2, 3, 4}}, but only the latter is irreducible.
Note that we are not necessarily referring to the smallest hitting set,
which for this example is {4}.

The problem of deciding whether a given collection of sets has a
hitting set of size k or smaller is NP-Complete [23]. This makes the
problem of finding the smallest hitting set of a collection NP-Hard, but
it does not place any such complexity bounds on the problem of finding
a minimal hitting set.

The hypergraph transversal problem [16] is equivalent to the hitting
set problem. Given a hypergraph G = (V,E), a transversal of G is a
set of vertices in V that touches every edge in E. (The equivalence
to hitting sets equates the domain with V and the collection of sets
with E.) In this paper, we will mostly use the hitting set terminology
because sets give a more natural representation for our problems than
hypergraphs do. The main exception to this is in the related work
section; most work on the problem has been done in the context of
hypergraph transversals.
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2.5. Useful Subsets of Constraint Systems

The definition of a Minimal Unsatisfiable Subset of constraints (MUS)
is fundamental to this work, as is the closely related concept of a
Minimal Correction Subset (MCS). As mentioned earlier, an MUS is
a subset of the constraints of an infeasible constraint system which is
both unsatisfiable and cannot be made smaller without becoming satis-
fiable. An MCS is a subset of the constraints of an infeasible constraint
system whose removal from that system results in a satisfiable set of
constraints (“correcting” the infeasibility) and which is minimal in the
same sense that any proper subset does not have that defining property.
Any infeasible constraint system can have multiple MUSes and MCSes,
potentially exponential in the number of constraints. Formally, given
an unsatisfiable constraint system C, its MUSes and MCSes are defined
as follows:

Definition 2. A subset U ⊆ C is an MUS if U is unsatisfiable and
∀Ci ∈ U, U\{Ci} is satisfiable.

Definition 3. A subset M ⊆ C is an MCS if C\M is satisfiable and
∀Ci ∈M, C\(M\{Ci}) is unsatisfiable.

To aid understanding, we also introduce the Maximal Satisfiable
Subset (MSS), defined similarly:

Definition 4. A subset S ⊆ C is an MSS if S is satisfiable and ∀Ci ∈
(C\S), S ∪ {Ci} is unsatisfiable.

The MSS is a generalization of a solution to the well-known MaxSAT
(or MaxCSP) problem, which is concerned with maximum cardinality
satisfiable subsets. MSSes are defined in terms of inaugmentable subsets
of constraints; the largest satisfiable subset is a special case of this.
Thus, any MaxSAT/MaxCSP solution is an MSS, but the converse
is not necessarily true.

The MUSes, MCSes, and MSSes of our example formula are shown
here (in general, we will use MUSes(C), MCSes(C), etc. to refer to the
complete collections of each subset type for any given constraint system
C):

MUSes(ϕ) Clauses (for reference)
{C1, C2} {(x1), (¬x1)}
{C1, C3, C4} {(x1), (¬x1 ∨ x2), (¬x2)}
{C1, C5, C6} {(x1), (¬x1 ∨ x3), (¬x3)}
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MCSes(ϕ) MSSes(ϕ)
{C1} {C2, C3, C4, C5, C6}

{C2, C3, C5} {C1, C4, C6}
{C2, C3, C6} {C1, C4, C5}
{C2, C4, C5} {C1, C3, C6}
{C2, C4, C6} {C1, C3, C5}

Note that any MCS is the complement of some MSS, and vice versa1.
Removing an MCS from an infeasible constraint system “corrects” the
system by turning it into an MSS.

3. MUS/MCS Duality

Recently, an important connection between MUSes and MCSes has
been noted independently by Bailey and Stuckey [4], Birnbaum and
Lozinskii [6], and Liffiton, et. al. [26]. This relationship is the foundation
of the work we present in this paper. We describe here the relationship
and a general approach for finding all MUSes of a constraint system
that follows from it.

This relationship can be stated simply: The set of MUSes of a con-
straint system C and the set of MCSes of C are “hitting set duals” of
one another. The set of MUSes is equivalent to the set of all irreducible
hitting sets of the MCSes, and the MCSes are likewise all the irreducible
hitting sets of the MUSes. This is stated formally in the following
theorem, whose proof appears in [6] as Theorem 4.5 (c) and (d). We
provide a more intuitive explanation and an example in this section.

Theorem 1. Given an unsatisfiable constraint system C:

1. A subset M of C is an MCS of C iff M is an irreducible hitting
set of MUSes(C);

2. A subset U of C is an MUS of C iff U is an irreducible hitting set
of MCSes(C).

Recall that the presence of any MUS in a constraint system C makes
C infeasible. By nature of its minimality, an MUS can be made sat-
isfiable by removing any one constraint from it. Therefore, one way
to make C feasible is to “neutralize” its MUSes by removing at least
one constraint from each. An MCS of C provides a set of constraints

1 In [26, 27], we referred to MCSes as “CoMSSes,” the complements of MSSes;
we use the name MCS now because it is simpler and more descriptive.
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C1 C2 C3 C4 C5 C6

ϕ = (x1) ∧ (¬x1) ∧ (¬x1 ∨ x2) ∧ (¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x3)

MCSes(ϕ) C1 C2 C3 C4 C5 C6

{C1} X

{C2, C3, C5} X X X

{C2, C3, C6} X X X

{C2, C4, C5} X X X

{C2, C4, C6} X X X

MUSes(ϕ) = (C1)(C2 ∨ C3 ∨ C5)(C2 ∨ C3 ∨ C6)(C2 ∨ C4 ∨ C5)(C2 ∨ C4 ∨ C6)
= C1C2 ∨ C1C3C4 ∨ C1C5C6

= {{C1, C2}, {C1, C3, C4}, {C1, C5, C6}}

MUSes(ϕ) C1 C2 C3 C4 C5 C6

{C1, C2} X X

{C1, C3, C4} X X X

{C1, C5, C6} X X X

MCSes(ϕ) = (C1 ∨ C2)(C1 ∨ C3 ∨ C4)(C1 ∨ C5 ∨ C6)
= C1 ∨ C2C3C5 ∨ C2C3C6 ∨ C2C4C5 ∨ C2C4C6

= {{C1}, {C2, C3, C5}, {C2, C3, C6}, {C2, C4, C5}, {C2, C4, C6}}

Figure 1. Covering Problems Linking MCSes(ϕ) and MUSes(ϕ)

whose removal will accomplish this: an MCS M is an irreducible set of
constraints whose removal makes C satisfiable. Thus, every MCS con-
tains at least one constraint from every MUS of C. So almost directly
from the definition of MCS we can see that MCSes and minimal hitting
sets of the MUSes are equivalent: both are minimal sets of constraints
whose removal makes C satisfiable. A similar argument goes the other
way to show that MUSes are irreducible hitting sets of the MCSes, but
it is not as intuitive.

This relationship is depicted in Figure 1 for our example formula.
The first table corresponds to the problem of finding hitting sets of
the MCSes to generate MUSes(ϕ), while the second table corresponds
to the dual problem of finding hitting sets of the MUSes to generate
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MCSes(ϕ). In the first table, each column corresponds to a clause from
the formula, and each row represents a single MCS. We say that a clause
“covers” an MCS (marked with an ‘X’ in that row) if it is contained
in the MCS. Each MUS is then an irreducible subset of the columns
that covers all of the rows. The table below represents the MUSes
in the same fashion, and every MCS is an irreducible subset of the
columns that covers all of its rows. Underneath each table, we show
how the MUSes can be found from the table of MCSes (and the MCSes
from the table of MUSes) in a straightforward, though computationally
inefficient, manner: each row becomes a disjunction of the columns that
cover that row, and the disjunctions are multiplied out and simplified
by removing subsumed terms to produce the minimal hitting sets.

4. Our Approach

In practice, it is easier to find satisfiable subsets of constraints than
unsatisfiable subsets; thus, finding MCSes (equivalent to finding their
complementary MSSes) is easier than finding MUSes directly. This
follows from the relative simplicity of problems in NP (e.g., Sat) as
compared to those in Co-NP (e.g., Unsat). Therefore, our approach for
generating all MUSes of a constraint system C is to first find MCSes(C)
and then to compute the irreducible hitting sets of MCSes(C), which
are all MUSes of C.

Our implementation of this approach for Boolean satisfiability finds
MUSes of unsatisfiable CNF instances in two distinct phases, using an
independent algorithm for each. The first phase, computing MCSes, is
built on top of a constraint solver and requires few changes, if any,
to the underlying solver. This makes our approach easily generalizable
and simple to build on top of other solvers, for example to immediately
exploit advances in constraint solver technology or to provide the func-
tionality of finding MUSes for new types of constraints. The second
phase, computing MUSes from the MCSes, uses a recursive branching
algorithm we have developed to efficiently compute irreducible hitting
sets, and it operates independently of the source of the MCSes.

Recall that both computing MUSes and computing MCSes are cases
of computing irreducible hitting sets of some collection of sets. Why
then do we use such different methods for the two phases of CAMUS?
The methods contrast because in the first phase we are finding hitting
sets of the MUSes, but the collection of MUSes is hidden from us. It is
“encoded” within the constraints. We use a constraint solver to work
with the information given and provide hitting sets (MCSes) without
ever revealing the underlying MUSes themselves. In the second phase,
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MCSes(ϕ)

1. ϕ′ ← AddYVars(ϕ)
2. MCSes ← ∅
3. k ← 1
4. while (SAT(ϕ′))
5. ϕ′

k ← ϕ′ ∧ AtMost({¬y1,¬y2, . . . ,¬yn}, k)
6. while (newMCS ← IncrementalSAT(ϕ′

k))
7. MCSes ← MCSes ∪ {newMCS}
8. ϕ′

k ← ϕ′
k ∧ BlockingClause(newMCS)

9. ϕ′ ← ϕ′ ∧ BlockingClause(newMCS)
10. end while
11. k ← k + 1
12. end while
13. return MCSes

Figure 2. Algorithm for finding all MCSes of a formula ϕ

all of the information we need is given explicitly in the set of MCSes,
and so we can use a more direct, efficient method to compute irreducible
hitting sets.

In this light, the method employed by CAMUS for computing MUSes
of a constraint system may seem roundabout and unnecessary; it seems
a more direct algorithm, which extracts the “hidden” information of
the MUSes without going through the intermediate stage of MCSes,
should exist. At this time, we are unaware of any technique that utilizes
the hitting set duality efficiently without generating MCSes or their
equivalent. The question of whether any such technique exists remains
open for further research.

5. Computing MCSes

The first phase of CAMUS finds MCSes by successively solving an
optimization problem similar to the MaxSAT problem. The goal is to
find minimal sets of clauses whose removal renders the given formula
satisfiable. As noted above, this is equivalent to finding maximal satisfi-
able subsets (MSSes) because the complement of any MCS (resp. MSS)
is an MSS (resp. MCS). CAMUS finds MSSes by iteratively finding
the largest satisfiable subset that has not been found in a previous
iteration. Essentially, it solves a set of consecutive MaxSAT problems,
each with the added restriction of excluding previously found results,
until no satisfiable sets of clauses (modulo the restriction) remain.
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Solving independent sequential optimization problems of that sort is
very expensive, however; we avoid some of this expense by utilizing
an incremental solver and retaining some information, such as learned
clauses, between solutions. The pseudocode for the algorithm CAMUS
uses to find every MCS of a formula ϕ is shown in Figure 2.

Our implementation for Boolean satisfiability is integrated directly
with a modern SAT solver (specifically MiniSAT [15] version 1.12b
in the current implementation), exploiting its efficient pruning and
variable ordering heuristics. Satisfiable subsets are found in a standard
SAT backtracking search after augmenting the input CNF instance ϕ
with clause-selector variables to create ϕ′ (line 1 of the pseudocode) as
described in Section 2.2.

Using these clause selector variables does significantly increase the
number of variables in the instance, and the search space grows corre-
spondingly to the set of assignments to the original variables variables
for any subset of the original clauses. This is the exactly the space
we wish to search, however, and the increased instance complexity is
unavoidable in this domain2. Furthermore, the clause-selector variables
are added in a structurally very simple way. Along with the fact that
learned clauses can now record interactions between original variables
and clause activation, this leads to a tractable increase in complexity.

MCSes are obtained by finding assignments that satisfy ϕ′ with a
minimal set of yi variables assigned FALSE, which ensures that as few
constraints as possible are disabled. The set of yi variables assigned
FALSE indicates the clauses in an MCS. Solving multiple optimization
problems of this sort separately would involve a great deal of duplicate
work, so CAMUS utilizes a sliding objective approach that enables
a more efficient incremental search, avoiding much redundancy. CA-
MUS finds all MCSes of a particular size within a single search tree,
efficiently reusing information such as learned clauses and variable or-
dering. Specifically, each iteration of the outer while loop (lines 4–12)
finds all MCSes of size k, which is incremented by 1 after each iteration.

Line 5 places an AtMost bound on the number of clause-selector vari-
ables that may be assigned FALSE by adding a constraint of the form
AtMost({¬y1,¬y2, . . . ,¬yn}, k) to ϕ′, creating ϕ′

k. Then, the while
loop on lines 6–10 exhaustively searches for all satisfiable assignments to
the augmented formula ϕ′

k, thus finding all MCSes of size k. The call to
IncrementalSAT on line 6 uses MiniSAT’s incremental solving ability
to find a solution to the formula augmented with selector variables and
the AtMost bound (ϕ′

k). Each satisfying assignment produces an MCS
2 As opposed to, for example, linear constraints over the reals such as in [20],

where the slack variables already used by the SIMPLEX algorithm can be used to
similarly deactivate constraints.
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from the set of yi variables assigned FALSE. We made one small change
to MiniSAT’s ordering heuristics to better suit this problem: The de-
fault variable ordering was changed to always try the positive polarity
of a variable first (the original code always tries the negative value
first). This matches the general variable-ordering heuristic of aiming for
solutions, as our solutions will have most clause-selector variables set
TRUE, and those make up the majority of the variables. This change
also performed better empirically than the original ordering. Future
work can investigate more complex variable and value orderings crafted
for this particular problem.

Each new MCS is recorded (line 7), and a blocking clause is added
to both ϕ′ and ϕ′

k to block that solution (lines 8 and 9). The block-
ing clause asserts that at least one of the clauses in the MCS must
be enabled in any future solution. For example, if the MCS consists
of clauses C2, C3, and C6 (i.e., y2, y3, and y6 are all FALSE in the
satisfying assignment), the blocking clause will be (y2 ∨ y3 ∨ y6). This
forces at least one of the yi variables to be true, excluding the MCS
and any of its supersets from any future solutions.

Finding MCSes in order of increasing size (i.e., MSSes in order of
decreasing size) and excluding supersets from future solutions ensures
that all MCSes found are irreducible. Incrementing by 1 after exhaust-
ing all solutions with a bound of k forces any solutions then found with
k + 1 disabled clauses to be irreducible, because any potential subsets
would have been found earlier and blocked. Within a search with a
given bound, the incremental SAT solver can utilize learned clauses
and dynamic variable ordering heuristics to full effect.

An incremental search only works if changes to the constraint system
do not create new solutions in previously explored portions of the search
tree; as long as CAMUS adds constraints (the blocking clauses), it can
use an incremental search. Incrementing the bound, however, relaxes
a constraint, potentially creating new solutions where there were none
before and invalidating much of the learned clause database. When
that occurs, the search starts over for solutions of ϕ′ augmented with
all blocking clauses created thus far and the new AtMost bound.

The condition of the outer while loop on line 4) checks that ϕ′

augmented with all collected blocking clauses is still satisfiable without
any bound on the yi variables. If there is no satisfying assignment, even
with no AtMost constraint on the yi variables, then this indicates that
we have found and blocked all possible ways of removing clauses to yield
a satisfiable set. Thus, the entire set of MCSes has been found, and the
algorithm terminates.

Consider the execution of MCSes on our example formula. In its
first iteration, it will add an AtMost bound with k = 1, and it will find
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the only one-clause MCS {C1}, corresponding to the MaxSAT solu-
tion. After adding the blocking clause, (y1), the incremental solver will
be unable to find any further solutions with the same AtMost bound
in place. There is no other way to remove one clause to satisfy ϕ, no
other single clause covers all of its MUSes. After exiting the inner while
loop, the bound is increased to 2, and the search continues, because the
augmented formula ϕ′ (without the AtMost bound) is still satisfiable.
This iteration will not find any new MCSes, however, because without
being able to remove the first clause, there is no set of two clauses
that covers all of the MUSes (i.e., there are no two-clause MCSes).
After incrementing the bound once more to 3, the remaining MCSes
will all be found within the next iteration. When all of the 3-clause
MCSes are found, the main while loop will exit, because ϕ′ with all of
the blocking clauses added is no longer satisfiable; there is no way to
choose one yi (enabling one original clause) from each blocking clause
without enabling an entire MUS.

6. Computing MUSes

Once the entire collection of MCSes has been computed, the second
phase of CAMUS produces all MUSes of the given instance by finding
all irreducible hitting sets of the MCSes. This problem is equivalent to
computing all minimal transversals of a hypergraph, for which many
algorithms have been developed. We developed a new algorithm from
first principles, as described below, that performs better experimentally
in the specific application of CAMUS, i.e., on collections of MCSes, than
any other algorithm of which we are aware (an experimental comparison
is presented in Section 9.3).

The following subsections describe our algorithms for finding all ir-
reducible hitting sets of any collection of sets. They are independent of
the first phase of CAMUS in that they do not depend on the semantics
of the inputs as MCSes, and they can be applied to any minimal hitting
set or hypergraph transversal problem. We present the algorithms in
terms of their inputs being MCSes and their outputs MUSes, however,
to maintain a stronger connection with the other concepts in this paper.

6.1. Computing a Single MUS

Consider the problem of computing a single MUS. Given a collection
of sets of clauses, the MCSes, the goal is a set of clauses that “hits”
every set in that collection and is irreducible. The first criterion, that of
hitting each set, could be met by iteratively choosing arbitrary clauses
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PropagateChoice(MCSes, thisClause, thisMCS)

1. for each clause ∈ thisMCS

2. for each testMCS ∈ MCSes

3. if (clause ∈ testMCS)
4. testMCS ← testMCS - {clause}
5. end if
6. end for
7. end for
8. for each testMCS ∈ MCSes

9. if (thisClause ∈ testMCS)
10. MCSes ← MCSes - {testMCS}
11. end if
12. end for
13. MaintainNoSupersets(MCSes)

Figure 3. Algorithm for altering MCSes to make the choice of thisClause irredun-
dant as the only element hitting thisMCS

from MCSes that have not yet been hit until we have hit each MCS
at least once. This alone does not guarantee an irreducible solution,
however.

Notice that for a solution to be irreducible, each element must be
irredundant. In the case of generating MUSes, this means that every
clause in the solution must be the sole “representative” of at least
one MCS. For example, given a collection {{C1, C2, C3}, {C2, C4}}, one
could generate a hitting set by the simple algorithm described above:
{C1, C2}. But the element C1 is redundant, because there is no set
for which it is the sole representative; the trivial algorithm will not
produce irreducible hitting sets. One potential solution to this problem
is to filter redundant clauses out of every candidate MUS, but this will
not scale.

The approach that we have taken is to force every selected clause
to be irredundant by altering the remaining problem after each selec-
tion. Given some clause Ci and a particular MCS in which it appears,
removing the other clauses in that MCS from the remaining problem
ensures that Ci will not be redundant in the solution. For example,
given a set of MCSes {{C1, C2, C3}, {C2, C4}, {C2, C5}}, we can select
C3 to be contained in a growing MUS. It appears only in the first MCS
of the set, so we will alter the remaining MCSes to enforce that C3 is
irredundant by removing C1 and C2 entirely. This leaves {{C4}, {C5}}
as the remaining subproblem.
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SingleMUS(MCSes)

1. MUS ← ∅
2. while (MCSes 6= ∅)
3. selClause ← SelectRemainingClause(MCSes)
4. selMCS ← SelectMCSContaining(MCSes,selClause)
5. MUS ← MUS ∪ {selClause}
6. PropagateChoice(MCSes, selClause, selMCS)
7. end while
8. return MUS

Figure 4. Algorithm for computing a single MUS from a set of MCSes

Figure 3 contains pseudocode for a subroutine that propagates a
choice of clause and MCS containing it in this way. Lines 1–7 make the
choice of thisClause irredundant as described, preventing any of the
other clauses in thisMCS from being added in later iterations. Lines
8–12 remove any other MCSes hit by choosing thisClause, because
they have now been “satisfied” by the partial solution. Line 13 calls
a subroutine that removes any set in MCSes that is now a superset
of some other. This last step is needed because our algorithm requires
that no MCS is a superset of any other (which is by definition the case
for the initial set of “real” MCSes, but must be maintained manually
in the induced subproblems).

Computing a single MUS from the collection of MCSes is shown in
pseudocode in Figure 4. It follows the simple method outlined above, us-
ing the PropagateChoice subroutine to modify the remaining MCSes
after selecting a clause for inclusion in the MUS and some MCS con-
taining that clause. The choice of clause and MCS can be arbitrary.
When MCSes is empty, the set MUS contains an irreducible hitting set of
MCSes; every MCS has been hit by some selection, and each selection
was forced to be irredundant.

6.2. Computing All MUSes

We developed our algorithm for computing all MUSes from the algo-
rithm for finding a single MUS above. Notice that the selections of a
clause and an MCS in which it appears (on lines 3 and 4 in Figure 4)
are arbitrary. Different MUSes can be computed by making different
choices at those two points. Therefore, we generate the complete set of
MUSes with a recursive algorithm that branches at those two points
and tries all possible choices for each. The pseudocode for this algorithm
is shown in Figure 5.
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AllMUSes(MCSes, currentMUS)

1. if (MCSes = ∅)
2. print(currentMUS)
3. return
4. end if
5. for each selClause ∈ RemainingClauses(MCSes)
6. newMUS ← currentMUS ∪ selClause

7. for each selMCS ∈ MCSes such that selClause ∈ selMCS

8. newMCSes ← MCSes

9. PropagateChoice(newMCSes, selClause, selMCS)
10. AllMUSes(newMCSes, newMUS)
11. end for
12. end for
13. return

Figure 5. Algorithm for computing the complete set of MUSes from a set of MCSes

AllMUSes takes as input (1) the remaining set of MCSes and
(2) the MUS currently being constructed in each branch of the re-
cursion (initialized at the root of the recursion to the complete set of
MCSes and the empty set, respectively). The recursion terminates in
the conditional on lines 1–4 when no MCSes remain, at which point
it outputs the MUS constructed in the current recursion branch and
returns to explore other branches. Lines 5–12 iterate through all possi-
ble choices of a clause (selected on line 5) that is added to the growing
MUS and an MCS (line 7) in which it appears. For every such choice,
PropagateChoice is called to modify a copy of the current MCSes.
The recursion then descends into another call to AllMUSes with the
new MCSes and the current MUS. In terms of the matrix represen-
tation of a set of MCSes depicted in Figure 1, the nested for loops
can be thought of as iterating over every single X in the matrix of the
current MCSes. The selection order does not affect correctness, and
what we show here is just one possible ordering that works well in
our implementation. Other orderings can be explored in future work,
mainly with regards to their interplay with the optimizations discussed
below and their effect on runtime.

We have presented the algorithm in its most basic form to illustrate
the fundamental concepts behind its operation. We made a number of
additions and optimizations to increase the performance well beyond
that of the basic algorithm, though the overall operation remains the
same.
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The first optimization addresses the fact that this algorithm can
produce duplicate outputs. While the selections made on lines 5 and
7 determine which MUS is produced, the result for a given set of
selections is not unique. For example, given a partial set of MCSes,
{{C1, C2}, {C1, C3}}, the simple algorithm will return {C1} as a solu-
tion twice, because there are two MCSes from which to chose C1, both
leading to that solution. Reporting duplicate results can be eliminated
by recording visited states and pruning portions of the recursion tree
that match any stored state. The saved state could be as simple as the
final MUSes output (in which case nothing is pruned, but duplicate
outputs are avoided) or as complex as the complete input to the re-
cursive AllMUSes procedure. In our implementation, we use a hash
table to store an intermediate state (based on the currentMUS input
and the set of removed clauses) at each call to AllMUSes, returning
immediately from AllMUSes if the current state matches an entry
already in the table. This prunes a large portion of the recursion tree,
yielding considerable speedups in our experience: up to an order of
magnitude in the automotive benchmarks reported in Section 8.

An ordering heuristic provides the second major optimization. Though
we are using a complete search, which will have the same number of
solution leaf nodes regardless of order, the ordering does affect the num-
ber of redundant nodes and interacts with the pruning from the first
optimization to change the size of the recursion tree. We impose a static
ordering of the clauses that is used by the for each loop on line 5 to
select the next remaining clause in each iteration. We order the clauses
by their frequency, i.e., the number of MCSes in which they appear.
Selecting clauses in order of increasing frequency experimentally yields
the best performance overall, though the opposite ordering performs
better in some instances.

Other important optimizations are a subroutine that immediately
includes the clauses in any single-element MCSes (similar to unit-clause
propagation in Boolean satisfiability solvers [13, 12]) when they appear
due to modifications made by PropagateChoice; explicitly removing
a clause from the remaining MCSes after it has been tried in an iteration
of the for each loop starting on line 5; and carefully optimizing the
MaintainNoSupersets subroutine, as well as how it is called, to avoid
redundant work.

7. Variations

Several variations of these algorithms can be used to suit particular
classes of instances or to achieve different goals. In this section, we
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first present modifications that combat intractability by relaxing the
completeness criteria without sacrificing correctness. Another variation
involves grouping constraints for greatly improved performance and
more meaningful results when dealing with constraints encoded from a
higher-level language.

7.1. Relaxing Completeness to Combat Intractability

In addition to the fact that the set of MUSes can be exponentially large,
the complete set of MCSes is potentially exponential in the size of the
original instance as well. For example, an instance with n pairwise dis-
joint MUSes each having k clauses (e.g., {{C1, C2, C3}, {C4, C5, C6}, . . .})
will have kn MCSes with n clauses each. The second phase of CAMUS
can be stopped at any time to deal with massive sets of MUSes, but
for those cases with intractably large sets of MCSes, the completeness
criterion of the first phase of CAMUS must be relaxed. While the
MCSes algorithm in Figure 2 is technically an anytime algorithm in
that it returns results as they are found during search, one cannot
generate MUSes by halting MCSes early and passing a subset of the
MCSes to the AllMUSes algorithm. Hitting sets of any proper subset
of the collection of MCSes may not be unsatisfiable.

Therefore, we have developed a modification of the MCSes al-
gorithm that produces an output smaller than the complete set of
MCSes while still guaranteeing that irreducible hitting sets of its output
will be MUSes. It is not possible to generate all MUSes from this
smaller first stage result, but that is a direct consequence of relaxing
the completeness criterion of the first phase.

As presented, the first phase of CAMUS computes all of the MCSes
and the second builds MUSes by branching on which clauses will be in-
cluded in each resulting MUS. Clearly, by pruning some of the branches
in the second phase (i.e., eliminating some choices from each branch-
ing point), we can greatly reduce the number of MUSes returned by
the algorithm. And in fact that pruning can be done earlier, within
the first phase, to reduce the number of MCSes computed as well.
Just as the AllMUSes algorithm removes clauses from the problem
when descending into a branch, so too can we remove clauses from
the remaining problem at any point during the search for MCSes.
By doing this, we can reduce the size of the results of both phases,
reducing the complexity and effectively overcoming intractability by
returning a portion of the complete results. Note that this does not
relax correctness at all; all of the outputs of the second phase will still
be minimal.
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PCSes(ϕ)

1. ϕ′ ← AddYVars(ϕ)
2. k ← 1
3. PCSes ← ∅
4. while (SAT(ϕ′))
5. ϕ′

k ← ϕ′ ∧ AtMost({¬y1,¬y2, . . . ,¬yn}, k)
6. while (newMCS ← IncrementalSAT(ϕ′

k))
?7. (keptClauses,removedClauses) ← Truncate(newMCS)
?8. newPCS ← keptClauses

?9. ϕ′
k ← RemoveClauses(ϕ′

k, removedClauses)
?10. ϕ′ ← RemoveClauses(ϕ′, removedClauses)
11. PCSes ← PCSes ∪ {newPCS}
12. ϕ′

k ← ϕ′
k ∧ BlockingClause(newPCS)

13. ϕ′ ← ϕ′ ∧ BlockingClause(newPCS)
14. end while
15. k ← k + 1
16. end while

?17. PCSes ← RemoveSubsumed(PCSes)
18. return PCSes

Figure 6. A generalization of MCSes(), capable of finding PCSes (Partial Correc-
tion Subsets) of a formula ϕ [A ? indicates a line not in MCSes()]

Figure 6 contains pseudocode for a modified MCSes algorithm,
which we call PCSes (Partial Correction Subsets), that accomplishes
the described relaxation. Lines 7–10 and 17, marked with ? symbols,
have been added, while the remaining lines are not significantly changed
from MCSes. The major change in this algorithm is that we are now
interested in subsets of MCSes, found by truncating MCSes, which are
still computed in the same way as in MCSes. We refer to a truncated
MCS as a Partial Correction Subset (PCS):

Definition 5. A subset P ⊆ C is a PCS if there exists some MCS M
such that P ⊆M .

Lines 7–10 accomplish this truncation in three main steps: First,
each computed MCS is split into two subsets via a Truncate sub-
routine, keptClauses and removedClauses; second, a PCS is created
that contains only keptClauses; and third, the clauses in the set
removedClauses are removed entirely from the instance. Overall, this
is equivalent to pruning any branches of the AllMUSes algorithm in
which any clause from removedClauses is selected; it can reduce the
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number of MUSes computed in the second phase, and it has an added
benefit of reducing the size of the first phase’s output as well (each
PCS “represents” all of the MCSes that are supersets of it, so fewer are
needed to form a complete set).

The internals of Truncate are left unspecified because the subrou-
tine can be implemented in different ways to achieve numerous different
goals. The only requirements are that 1) it splits the given MCS into two
subsets, keptClauses and removedClauses, such that keptClauses is
non-empty, and 2) any clauses that were included in keptClauses in
a previous call to Truncate are again in keptClauses. The latter
requirement, crucial for correct operation, arises from the idea that
any earlier split into keptClauses and removedClauses was making
a decision about which clauses to consider, and removing a previously
kept clause would conflict with that decision3.

Line 17 adds a call to a subroutine that removes subsumed PCSes,
that is, PCSes that are supersets of others in the collection. We did
not need this in the earlier MCSes algorithm because the technique of
computing (and blocking) MCSes in increasing order of size precluded
finding spurious supersets. In PCSes, the Truncate subroutine may
invalidate the condition that results are found in this order. To have any
real control over the size of the output, Truncate must be able to limit
the size of keptClauses as much as possible. Yet the requirement that
it include any clauses kept in previous calls could force it to return
more than the desired limit. For example, while in the main loop of
PCSes with an AtMost bound of k = 3, it could be forced to include
four clauses in one PCS because all four have been included in previous
PCSes. When it returns to the prescribed limit of three clauses per PCS
in later iterations, it could produce PCSes that are subsets of the one
that was forced to be larger. This would cause the larger PCS to be
subsumed and redundant. In the pseudocode, we have placed the call to
RemoveSubsumed at the end of the entire process, though it could
be somewhat more efficiently implemented within the main loop.

Whenever Truncate returns a non-empty removedClauses set, those
clauses are removed from the problem entirely. The final result is equiv-
alent to pruning any branches of AllMUSes in which one of those
clauses is chosen. Removing the clauses from the problem in the first
phase has the added benefit of reducing the size of the first phase’s
output as well. The following examples should aid in understanding
how the addition of MCS truncation affects the performance and the
results of the PCSes algorithm. Many different useful behaviors can be

3 Another way to handle this conflict is to remove any clauses in the
removedClauses set from any previously computed PCSes as well. We have
implemented the approach that prevents previously kept clauses from being removed.
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built from these examples, and the variety of possible implementations
is quite large.

Example 1. The behavior of the original MCSes algorithm is con-
tained within PCSes in the case where Truncate always returns the
entire MCS in keptClauses and the empty set for removedClauses.

Example 2. Consider the variant of PCSes in which Truncate re-
turns only a single clause in keptClauses every time it is called. This
variant (the most extreme possible in terms of number of clauses re-
moved) finds a single MUS of the original instance. The final set of
PCSes will be a collection of single-element sets, whose only irreducible
hitting set is the union of those sets. Compare this result to a single
path to a leaf node in the AllMUSes algorithm. For every MCS under
consideration, we chose one clause to represent it and removed the
others from the problem; we essentially moved the decisions made along
one path of AllMUSes into the first phase of CAMUS. This method
can generate any of the MUSes of a given instance, depending only on
the clause chosen by Truncate to be kept in each iteration.

Example 3. PCSes can be used to heuristically obtain a diverse sam-
pling of the space of MUSes by attempting to find dissimilar MUSes.
This is useful in systems with goals of correcting or acting on knowledge
of all causes of the infeasibility. Just as eliminating one MUS may not
be enough to eliminate infeasibility, it is also unlikely that removing
a cluster of similar MUSes would. Furthermore, interactive systems
presenting MUSes to users, for example to explain the infeasibility of
a scheduling problem, are more useful if they present a diverse set of
MUSes, as this will provide a more comprehensive set of explanations
than one MUS or several similar MUSes.

This variant operates in a greedy fashion by iteratively finding a
single MUS with the approach in Example 2 while biasing the clause
selection within Truncate each time towards keeping clauses that were
not included in a previous iteration’s result. That is, a counter is kept
for every clause, and a clause’s counter is incremented when that clause
is included in one of the MUSes returned. Truncate takes the clauses
in newMCS and sorts them in increasing order of that count, taking the
clause with the smallest count for keptClauses each time it is called.
This will produce a sampling of the MUSes biased towards including
“underrepresented” clauses in each new result. It can be extended
to more complex biases, such as looking at the actual structure of
the MUSes found thus far and biasing the search away from those
structures, as opposed to just the contents of previous MUSes.

Figure 7 shows the execution of this variant of PCSes on our exam-
ple formula. The algorithm is run three times with a truncation limit
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C1 C2 C3 C4 C5 C6

ϕ = (x1) ∧ (¬x1) ∧ (¬x1 ∨ x2) ∧ (¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x3)

Execution Clause Counts
Initialization [0,0,0,0,0,0]
1st Run Find MCS {C1} [0,0,0,0,0,0]

Keep PCS {C1}
Find MCS {C2, C3, C5} [0,0,0,0,0,0]

Keep PCS {C2}
Final MUS {C1, C2} [1,1,0,0,0,0]

2nd Run Find MCS {C1} [1,1,0,0,0,0]
Keep PCS {C1}

Find MCS {C2, C3, C5} [1,1,0,0,0,0]
Keep PCS {C3}

Find MCS {C4} [1,1,0,0,0,0]
Keep PCS {C4}

Final MUS {C1, C3, C4} [2,1,1,1,0,0]
3rd Run Find MCS {C1} [2,1,1,1,0,0]

Keep PCS {C1}
Find MCS {C2, C3, C5} [2,1,1,1,0,0]

Keep PCS {C5}
Find MCS {C6} [2,1,1,1,0,0]

Keep PCS {C6}
Final MUS {C1, C5, C6}

Figure 7. Running PCSes on the example formula ϕ – three separate runs with the
truncation limit set to 1 kept clause, biasing clause selection by previous selection
frequency

of 1 clause, keeping a count for each clause of how many times it has
been in some resulting MUS. The clause counts guide the truncation
in each run.

An adaptive implementation of Truncate can provide more complex
behaviors, such as enabling rough limits on runtime or output size
without sacrificing correctness. Its implementation is left for future
work, but we present important considerations here. Each clause re-
moved by Truncate directly impacts the runtime and output size of
the first phase of CAMUS, so both can be controlled to some degree
by controlling the frequency of removing clauses. For example, one
could set a rough runtime limit and gradually (or sharply) increase the
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frequency of removing clauses as the limit is approached. This cannot
immediately halt execution – recall that previously kept clauses must
be kept in each new PCS, so several more PCSes may be generated even
after setting a truncation limit to remove as many clauses as possible
– but it can drastically reduce the remaining runtime; hence it can
provide a rough limit on runtime.

A rough limit can be placed on the size of the generated MUS set in
the same way. However, knowing when to increase the clause removal
frequency requires a means of estimating the number of MUSes that
will be produced by the final set of PCSes at any point as they are
generated. One such estimation function approximates a maximal in-
dependent set (MIS) of the current PCSes; multiplying the cardinalities
of the PCSes included in the MIS estimate gives an estimate of how
many MUSes would be produced from the PCSes. Unfortunately, this
is neither a strict upper nor lower bound on the actual size, and in
practice it can be off by several orders of magnitude. Other inaccurate
yet simple estimates could be produced from the number of PCSes of
each size, using the idea that each PCS of size k will generally increase
the number of MUSes by a factor proportional to k – such factors could
be determined experimentally for any given class of problems. These
estimates will function if the goal is to differentiate between, say, 100
and 100,000 MUSes, but not for fine-grained estimation.

7.2. Constraint Grouping

In many applications of constraint solvers, including Boolean satisfia-
bility solvers, instances are created by encoding constraints from some
higher level language. For example, several model checking systems
take problems specified in expressive first-order logics such as Alloy
[22] and the CLU logic [9] and encode them as Boolean CNF instances
which are passed on to standard SAT solvers. In these cases, knowledge
about which low-level constraints are generated from which high-level
statements can be used to greatly increase performance and produce
MUSes of the high-level statements directly. Instead of assigning a
single clause-selector variable yi per low-level constraint, one yi variable
is created per high-level statement, and it is added to every constraint
generated from that statement.

With these selector variables, the search for satisfiable subsets (in
MCSes) can now enable or disable entire statements from the origi-
nal problem at once; the MCSes and MUSes generated are subsets of
those high-level statements. In addition to providing directly meaning-
ful results (not requiring a mapping back from low-level constraints),
this greatly improves performance by reducing the size of the search
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space exponentially (because the size of the search space is exponential
in the number of selector variables). Additionally, a single MUS of
the high-level statements may lead to several MUSes in its low-level
encoding (potentially exponential in the size of the high-level MUS),
and the grouping eliminates this added complexity as well. Grouping
constraints in this way proved to be valuable when applying CAMUS
in [1] (which uses the CLU logic), because the running time of CAMUS
was unusably high without this optimization.

8. Experimental Results

Here, we report empirical results demonstrating the performance of
CAMUS on a variety of benchmarks and with a variety of configura-
tions. We aim to show both the general performance of our algorithms
as well as the effectiveness of certain implementation choices we made.
As mentioned earlier, our implementation of the first phase of CAMUS
is based on MiniSAT [15] version 1.12b. The entire implementation is
written in C++, compiled for the x86-64 instruction set by the g++
compiler with the -O3 optimization flag. All experiments were run in
Linux on a 2.2GHz AMD Opteron processor with 8GB of RAM.

8.1. General Performance

Table I contains experimental data produced from a set of CNF bench-
marks from an automotive product configuration domain [32, 34]. Each
instance encodes a set of available configurations for a product, along
with constraints enforcing a specific property to be checked. We ob-
served that the encodings contained numerous duplicate clauses, which
can yield a combinatorial explosion of MUSes; we removed the duplicate
clauses from each instance before gathering data. There are a total of 84
benchmarks in the set, each with around 1500–1800 variables and 4000–
8000 clauses (after removing duplicate clauses). We set a 600 second
timeout on each phase of CAMUS. It was able to complete the stage
of finding all MCSes within this timeout for 49 of the 84 instances.
Table I reports on 39 of these 49 instances4. On the 35 instances for
which CAMUS did not find all MCSes in 600 seconds, it did output
an average of 26,000 MCSes per instance within that time, indicating

4 The 10 instances excluded from this table were left out for space reasons, and all
matched very closely in terms of runtimes and output to at least one instance that
is included in the table. The results for the excluded instances, as well as additional
data such as MUS sizes and results for other benchmarks, are available online at:
http://www.eecs.umich.edu/%7Eliffiton/camus/results.php
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Table I. Experimental results for automotive product configuration benchmarks

Runtime (sec) MCS sizes

Name MCSes MUSes #MCSes Min Max #MUSes

C168 FW UT 851 0.301 0.001 30 1 8 102

C170 FR RZ 32 0.269 0.486 242 1 2 32768

C170 FR SZ 58 0.341 7.18 177 1 8 218692

C170 FR SZ 92 0.141 0 131 1 1 1

C170 FR SZ 95 0.218 − 175 1 3 > 2 · 107

C170 FR SZ 96 4.19 − 2605 1 22 > 1 · 107

C202 FS RZ 44 5.93 − 2658 1 48 > 7 · 106

C202 FS SZ 121 0.101 0.001 24 1 2 4

C202 FS SZ 122 0.109 0 33 1 1 1

C202 FS SZ 95 448 − 59307 1 51 > 6 · 106

C202 FS SZ 97 20.6 − 7823 1 46 > 5 · 106

C202 FW RZ 57 0.434 0.001 213 1 1 1

C202 FW SZ 118 0.5 − 257 1 2 > 1 · 107

C202 FW SZ 123 0.174 0 38 1 2 4

C208 FA RZ 43 6.66 − 4317 1 20 > 8 · 104

C208 FA RZ 64 0.215 0.001 212 1 1 1

C208 FA SZ 120 0.076 0 34 1 2 2

C208 FA SZ 87 0.309 0.545 139 1 12 12884

C208 FA UT 3254 0.387 0.349 155 1 4 17408

C208 FC RZ 70 0.229 0.001 212 1 1 1

C208 FC SZ 127 0.067 0 34 1 1 1

C210 FS RZ 38 113 − 12715 1 141 > 5 · 106

C210 FS RZ 40 0.275 0.002 212 1 2 15

C210 FS SZ 107 163 − 16511 1 141 > 2 · 106

C210 FS SZ 123 0.526 − 363 1 3 > 1 · 107

C210 FS SZ 129 0.088 0 33 1 1 1

C210 FW RZ 57 337 − 20007 1 213 > 4 · 106

C210 FW RZ 59 0.374 0.001 212 1 2 15

C210 FW SZ 111 374 − 23625 1 179 > 6 · 106

C210 FW SZ 129 1.13 − 584 1 5 > 7 · 106

C210 FW SZ 135 0.138 0.001 33 1 1 1

C220 FV RZ 12 0.253 1.4 150 1 6 80272

C220 FV RZ 13 0.199 0.118 76 1 6 6772

C220 FV RZ 14 0.085 0.001 20 1 3 80

C220 FV SZ 114 10.8 − 5654 1 55 > 1 · 106

C220 FV SZ 121 0.163 0.001 102 1 3 9

C220 FV SZ 46 4.44 − 1533 1 52 > 1 · 107

C220 FV SZ 55 18.1 − 3974 1 22 > 2 · 106

C220 FV SZ 65 0.524 2.66 198 1 26 103442
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Figure 8. Anytime graph of computing MUSes from MCSes for instance
C208 FA RZ 43

that the output size was the primary factor in the hardness of those
instances.

The first column of Table I gives the instance name. The next two
columns contain the CPU time (in seconds) used by each phase of
CAMUS; an entry of “-” indicates that the timeout for that phase was
reached. The next group of columns lists the number of MCSes in each
instance as well as the size of the smallest and largest MCS, and the
final column reports the number of MUSes found. A number of MUSes
preceded by a “>” indicates the number output before reaching the
timeout.

Though all of the instances were generated in the same manner and
have the same general size, the number and size of MCSes and MUSes
in each instance vary widely. Some have a single MUS, while others
have millions; runtimes can range from less than a millisecond to days
or longer. This is to be expected, because either the number of MCSes
or MUSes can potentially be exponential in the size of the original
instance. One set can also provide an exponential “compression” of the
other. C202 FW SZ 118, for instance, has structured MCSes that can
be analyzed to find that the instance has 2127 (approximately 1.7×1038)
MUSes.

Because of these potential output sizes, the best complexity one can
hope to achieve for finding all MUSes is polynomial in the size of the
output. In these benchmarks, both phases of CAMUS certainly do scale
with the size of their outputs, though neither has theoretical guarantees
that their runtimes will be sub-exponential in the size of the output.
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When faced with exponential output, an anytime algorithm is es-
sential. While we have not formulated the entirety of CAMUS as such,
the second phase does provide good anytime performance. It guarantees
that the initial output will come in polynomial time, and the remaining
results are returned at a high rate. Comparing the number of MUSes
found to the runtime of the second phase of CAMUS (including the
partial results for instances that timed out) in Table I shows that,
for these instances, the second phase of CAMUS generated close to
26,000 MUSes per second on average. Figure 8 shows an anytime curve
(cumulative number of MUSes returned over time) for C208 FA RZ 43,
the slowest of the instances that timed out in the second phase. In this
benchmark, there are some periods during which little is produced,
but the overall rate of output remains relatively constant. Given some
target number of MUSes, one could predict with reasonable accuracy
how long the algorithm would take to generate it.

One interesting result is that the smallest MCS in every one of
these instances contains a single clause. This indicates that all of the
MUSes in each instance share at least one common clause, often more,
because the only way to “hit” such a singleton MCS is to include its
sole clause. Along with the fact that the largest MCS is usually a small
percent of the clauses in each instance, this supports our technique of
searching for MCSes by size incrementally. The MCSes are generally
found within a small number of sizes, and the time spent searching
empty “size blocks” is very small on average. We have observed the
same characteristics in many other benchmark suites as well, though
we can generate pathological cases for which they do not hold (such as
the class of instances mentioned earlier with n pairwise disjoint MUSes
of k clauses each and kn MCSes with n clauses each).

8.2. Variations

8.2.1. PCSes
To demonstrate the value of the PCSes algorithm, we used it to find
MUSes of the automotive benchmark instances for which MCSes timed
out in our earlier experiments. We ran PCSes with a simple implemen-
tation of Truncate that takes a bound on the number of clauses to
keep in each PCS and attempts to match it (it will at times be forced to
keep more clauses if they were all kept previously). Table II lists results
on the 35 automotive benchmark instances that timed out in MCSes
during the earlier experiment. We report the runtime of PCSes in
seconds and the number of MUSes constructed from the PCSes found
for two different truncation bounds. We have not reported the runtime
of the AllMUSes algorithm in this case; we have already established
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Table II. Using PCSes to compute MUSes of the more difficult product
configuration benchmarks

Size limit = 2 Size limit = 3

Name PCSes
(sec)

#MUSes PCSes
(sec)

#MUSes

C168 FW SZ 107 29.6 2136 124 > 1.4 · 107

C168 FW SZ 128 3.02 6268144 7.32 > 2.2 · 107

C168 FW SZ 41 2.9 118 10.1 4500

C168 FW SZ 66 4.16 248 13.1 434035

C168 FW SZ 75 2.39 824 6.69 418463

C168 FW UT 2463 6.14 1152 38.1 > 8.3 · 105

C168 FW UT 2468 5.66 13184 9.28 409509

C168 FW UT 2469 5.43 1792 30.9 403392

C168 FW UT 714 0.397 2 0.38 3

C202 FS SZ 74 0.408 16 0.388 60

C202 FS SZ 84 32.6 > 1.3 · 106 138 > 4.0 · 106

C202 FW SZ 100 3.78 267 13.9 1105768

C202 FW SZ 103 115 > 1.2 · 105 273 > 4.1 · 106

C202 FW SZ 61 12.3 314 31.7 43238

C202 FW SZ 77 0.826 64 0.727 144

C202 FW SZ 87 101 > 8.5 · 104 −
C202 FW SZ 96 35.2 > 4.3 · 104 339 > 5.6 · 106

C202 FW SZ 98 1.66 123 9.38 37718

C202 FW UT 2814 43.1 1198 267 4869852

C202 FW UT 2815 43 1198 262 4869852

C208 FC RZ 65 0.335 48 1.12 2494

C208 FC SZ 107 1.74 400 4.5 32718

C210 FS RZ 23 3.19 15406 3.59 474404

C210 FS SZ 103 1.9 > 1.4 · 107 6.42 > 1.5 · 107

C210 FS SZ 55 2.43 42608 4.93 14589828

C210 FS SZ 78 1.17 48 1.35 432

C210 FW RZ 30 8.03 58842 10.8 > 1.6 · 107

C210 FW SZ 106 11.2 > 4.2 · 106 29.8 > 1.8 · 107

C210 FW SZ 128 1.03 28672 2.66 493568

C210 FW SZ 80 2.53 16 2.74 440

C210 FW SZ 90 35.1 > 3.7 · 104 101 > 1.6 · 106

C210 FW SZ 91 34.5 > 2.3 · 106 112 > 2.4 · 106

C210 FW UT 8630 15.8 16016 65.7 4192496

C210 FW UT 8634 6.08 20480 68.9 5207976

C220 FV SZ 39 12.6 > 1.3 · 104 30 > 2.7 · 106
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the strong correlation between its runtime and the number of MUSes
produced. Cases in which this algorithm timed out (again, with a 600
second timeout) are noted by a “> n” number of MUSes, indicating
roughly how many MUSes were generated before the timeout.

The results show that the PCSes algorithm allows us to overcome
the intractability of instances with massive numbers of MCSes by re-
laxing the requirement that we find all of them. Take the results of
truncating every MCS found to a PCS of size 2 (or larger only in cases
where it is forced as explained earlier), for example. With this setting,
we can find a complete set of PCSes, allowing us to generate correct
MUSes, in under two minutes – most under ten seconds – for all of
the instances which timed out at 600 seconds in the complete MCSes
algorithm. Even with this rather strict limitation on the size of the
PCSes, we still compute very many MUSes for most instances, timing
out after computing millions of MUSes in some.

At a PCS size “limit” of 3, we see that we have substantially higher
runtimes. Related to this, we also generate much larger sets of PCSes;
the median size of the set of PCSes is 185 for a size limit of 2, and
this increases to 369 for a size limit of 3. These larger sets of PCSes
produce many more MUSes, however, and thus there is a correlation
between the runtime of PCSes and the number of MUSes the PCSes
produce. This motivates the adaptive implementation of Truncate
discussed in Section 7.1, which could provide a way to roughly aim
for a certain number of MUSes within the execution PCSes. Along
with the anytime nature of AllMUSes, this gives us a quasi-anytime
algorithm for generating multiple exact MUSes. The runtime of the
first phase, employing PCSes, can manipulated by controlling the fre-
quency of removing clauses from the remaining problem. Furthermore,
this can be adjusted based on an estimate of how many MUSes will be
produced in the second phase. The second phase, as mentioned earlier,
produces MUSes rapidly and can be stopped at any point, based on
either reaching output goals or hitting limits on time or other resources.

Notice that with a PCS size limit of 1 clause, CAMUS will produce a
single, exact MUS, as described in Example 2 in Section 7.1. CAMUS is
not intended to compete with algorithms for finding a single MUS, and
indeed it does not. The runtimes for a size limit of 1 over the instances
in Table II range from 0.077 to 31.1 seconds, with a median runtime
of 1.06 seconds, which is not competitive with existing algorithms for
finding single unsatisfiable cores of CNF instances (e.g., [30] and [35]).
However, with the generality of the algorithms in CAMUS, such that
they can be easily built on top of any existing constraint solver, this
provides a simple way to produce single MUSes in cases where no single-
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MUS algorithm exists for a particular type of constraint (with the bonus
of guaranteeing minimality).

8.2.2. Constraint Grouping
We demonstrate the effectiveness of constraint grouping (as described
in Section 7.2) using a set of benchmarks taken from a hardware design
verification task. The Reveal flow [1] performs equivalence checking of
hardware designs including, but not limited to, microprocessors. The
flow uses counterexample-guided abstraction refinement, in which ab-
stractions of the input designs are checked for equivalence, and if a
counterexample (indicating a difference) is found to be spurious (due
to the abstraction over-approximating the designs’ behaviors), then
MUSes are used to refine the abstractions.

Specifically, abstract counterexamples are written as constraints in
a first-order logic. These high-level constraints are encoded into CNF
to find corresponding concrete, bit-level counterexamples. If the CNF
instance is UNSAT, then no such concretization exists and the ab-
stract counterexample is spurious. MUSes of this instance represent
generalizations of the infeasibility, each essentially saying “This coun-
terexample is spurious because [x, y, and z] can never occur together,”
where x, y, and z are some subset of the complete counterexample.
Using this information, new facts can be added to the abstractions to
avoid this counterexample, and due to the generalizations provided by
the MUSes, a large class of related spurious counterexamples will be
removed as well. Using all MUSes provides the best refinement of the
abstraction, eliminating the largest set of spurious counterexamples.

The desired generalizations are actually MUSes of the high-level con-
straints. These can be obtained by mapping an MUS of the individual
CNF clauses back to their corresponding high-level constraints or by
using the constraint grouping described in Section 7.2 and computing
MUSes of the high-level constraints directly. Table III contains results
for using both approaches on benchmarks taken from the abstraction
refinement phases of Reveal running on three different microprocessor
designs.

The first four columns list the instance name and its size in terms
of CNF variables, CNF clauses, and clause groups (equal to the num-
ber of high-level constraints). The following pairs of columns list the
runtime in seconds of the first phase of CAMUS, the number of MCSes
produced, and the number of MUSes (the runtime of the MUS phase
is negligible in all of these instances). Each metric is reported both
for the case of ignoring the constraint grouping information (“noG”)
and for the case of using the groups and finding MCSes and MUSes in
terms of those groups (“G”). A 600 second timeout was used for these

CAMUS.tex; 10/10/2007; 11:40; p.30



31

Table III. Computing MCSes for a hardware verification task using constraint
groups (“G”) and without (“noG”)

Name Vars Clauses Groups Runtime (sec) #MCSes #MUSes

noG G noG G noG G

dlx 1 6804 78364 25 - 0.720 >795 3 - 5

dlx 2 6268 98290 23 - 0.664 >15196 2 - 2

dlx 3 5976 139141 18 - 1.160 >8172 2 - 4

dlx 4 12428 161242 16 15.7 1.120 327 2 3 2

dlx 5 17951 54212 21 - 0.428 >145 3 - 3

dlx 6 30852 92213 54 - 1.500 >0 9 - 9

dlx 7 36315 138197 15 2.27 0.716 39 2 1 1

int 1 1756 4634 7 - 0.232 >882 7 - 2

int 2 3512 4634 7 - 0.148 >1413 6 - 2

int 3 1704 4222 7 0.076 0.020 39 2 1 1

int 4 3886 5402 9 0.084 0.024 39 2 1 1

int 5 6291 5976 10 - 0.028 >62056 2 - 1

int 6 9481 8174 13 - 0.268 >1143 7 - 2

int 7 12671 8174 13 - 0.208 >978 6 - 2

oc 1 6129 14717 25 - 0.104 >12268 4 - 2

oc 2 12124 17500 24 - 0.100 >5420 3 - 1

oc 3 18436 18162 25 - 0.112 >5559 3 - 1

oc 4 23959 13405 23 - 0.124 >10882 3 - 2

oc 5 30271 18162 25 - 0.120 >4970 3 - 1

oc 6 5093 18129 19 - 0.124 >7563 2 - 2

oc 7 11277 17696 24 - 0.168 >7 3 - 4

oc 8 17374 14685 25 - 0.128 >10830 4 - 2

oc 9 23898 18762 26 - 0.164 >2130 2 - 2

oc 10 29421 13405 23 - 0.140 >10727 3 - 2

oc 11 32089 6197 10 0.288 0.052 38 2 1 1

oc 12 38401 18162 25 - 0.124 >5530 3 - 1

oc 13 44396 17500 24 - 0.132 >5458 3 - 1

oc 14 50708 18162 25 - 0.136 >5002 3 - 1

oc 15 54039 10834 12 - 0.092 >1760 2 - 1

oc 16 58995 14916 19 - 0.116 >13646 2 - 1

oc 17 63153 12853 17 - 0.108 >639 2 - 1
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experiments. For those instances that timed out, we report the runtime
as “-” and the #MCSes column contains the number of MCSes found
before the timeout was reached.

These instances are all much larger than the others used in this
paper, some reaching above 100,000 clauses. For this reason, running
the first phase of CAMUS on them almost always times out. However,
using the clause groups imposed by the higher level constraints results
in greatly reduced runtime; all instances finished in under 2 seconds,
most in a few hundred milliseconds. The number of MCSes found in
both cases illustrates the source of the difference. The bare CNF in-
stances tend to have several thousand MCSes (and quite likely several
orders of magnitude more in many cases), and the size of the result
set is simply too large. But when mapped to the high-level constraints,
nearly all of these MCSes are redundant, in that they all map to just a
few MCSes of the original constraints from which they were generated.
The only instances on which the algorithm can complete without using
the grouping information have very few MUSes (even in the raw CNF)
and a structurally simple set of MCSes. Any application in which CNF
clauses are generated from higher-level constraints will see the same
benefits from this simple modification of the algorithm: markedly de-
creased runtime and direct applicability of the results. Another option
is to use an implementation of CAMUS for the high-level constraints
using a suitable solver. This is a good option if the constraint solver is
more efficient than a modern SAT solver on the CNF encoding, and we
have used this approach to good effect for the Reveal system with an
implementation of CAMUS for SMT [2].

9. Related Work

The related research can be investigated in three separate areas. First,
there is work on finding a minimal unsatisfiable subset of a constraint
system in general as well as that on specifically finding all MUSes of
a given system. Second, we look at research related specifically to the
first half of CAMUS: finding the set of all MCSes. Finally, we present
existing work related to the second half of CAMUS: the problem of
finding all minimal hypergraph transversals or hitting sets.

9.1. MUSes

The problem of finding minimal unsatisfiable subsets of constraints
has been studied mainly for Boolean satisfiability problems. Most tech-
niques find a single unsatisfiable subset (US) or core, often not guar-
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anteeing it to be minimal. For example, AMUSE [30], Bruni and Sas-
sano’s algorithm [8], and zCore [35] all use information from a SAT
solver’s resolution procedure to find a single US, but none guarantee
its minimality. The work by Gershman, et. al. [17] further uses the
resolution graph to aim for small cores, and an algorithm by Goldberg
and Novikov [18] uses it to produce a core as a byproduct of verifying a
proof of unsatisfiability; again, neither guarantees minimality. For all of
these, a “Minimal Unsatisfiability Prover” [21] can be used to minimize
the US into an MUS. Lynce and Marques-Silva [28] and Mneimneh,
et. al. [29] both developed algorithms for finding the smallest MUS
of a formula exactly, with the latter being far more efficient. Extend-
ing the work using SAT solvers’ resolution procedures, Cimatti, et.
al. produced an algorithm for finding small (not necessarily minimal)
unsatisfiable cores of SMT instances [11]. Chinneck and Dravnieks [10]
studied MUSes in the domain of linear and integer programs, calling
them Irreducible Infeasible Subsets. Their algorithms return multiple,
but not all, MUSes.

The work that is most relevant to ours, and the only that we know
of that addresses the problem of finding all MUSes, is that by Bailey
and Stuckey [4]. They developed an algorithm for finding all MUSes of
a constraint system and applied it to the problem of type-error diag-
nosis in software verification. Their implementation differs from ours
in that they employ different algorithms in an interleaved approach as
compared to our serial, two-phase algorithm. In [27], we performed an
experimental comparison of their approach, adapted to Boolean satis-
fiability, with CAMUS. We found that CAMUS was consistently faster
by several orders of magnitude (and we have improved it since then).
We have since learned that further improvements could be made to
the published description of Bailey and Stuckey’s algorithm (personal
communication, J. Bailey, October 2005), but we do not believe they
would completely erase the performance gap.

9.2. MSSes and MCSes

Maximal satisfiable subsets have been studied apart from their ap-
plication to finding MUSes by Birnbaum and Lozinskii [6]. They are
concerned with using MSSes (which they call maximally consistent sub-
sets or mc-subsets) in knowledge systems, specifically to reason about
inconsistent knowledge. As stated earlier, they noted the connection
to MUSes (minimally inconsistent subsets in their paper), but they
did not explore it further. They describe two algorithms, AMC1 and
AMC2, for finding all MSSes (hence all MCSes) of a given CNF formula
using a much different approach than that employed in CAMUS.
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Figure 9. Comparing AMC1 and the first phase of CAMUS (3SAT instances have
30 variables)

We were unable to obtain Birnbaum and Lozinskii’s implementa-
tions of their algorithms, so a direct comparison of their results with
ours is difficult. To perform a limited comparison, we implemented
AMC1, the faster of the two in their results, on top of the same SAT
solver infrastructure used for our implementation of CAMUS. We im-
plemented the algorithm exactly as shown in the paper, along with the
suggested variable ordering, optimizing as much as we could without
altering the algorithm5. Figure 9 contains a comparison of the runtimes
of our implementation of AMC1 with the first phase of CAMUS on
random 3SAT instances (each with 30 variables and clause/variable
ratios (r) as indicated in the legend) and unsatisfiable instances from
the AIM benchmarks (a set of small benchmarks often used in MUS
papers – part of the DIMACS suite). Even taking the implementation
differences into account, it is clear that the first phase of CAMUS is
faster than AMC1 by several orders of magnitude.

AMC1 is a DPLL-style algorithm, searching through the space of
variable assignments. It essentially enumerates complete variable as-
signments, checking the set of clauses satisfied by each to see if it is
an MSS. Its only pruning rule is the pure literal rule; otherwise, it
searches the entire space. This leads to very poor scaling; it even finds

5 Comparing the runtime of our implementation of AMC1 to their reported re-
sults for random 3SAT instances and correcting for processor differences, we estimate
that the runtimes of our implementation of AMC1 are approximately 3 times those
of their implementation – not enough to significantly affect the orders of magnitude
result in Figure 9.
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each solution multiple times, equal to the number of different complete
assignments that satisfy the corresponding MSS.

AMC2 performs more poorly than AMC1 in Birnbaum and Lozin-
skii’s results. It is similar to the first phase of CAMUS in that it
searches subsets of clauses for satisfiability, but as with AMC1 it has
limited pruning abilities. It also has a less sophisticated search than
CAMUS, which searches subsets of clauses implicitly within a standard
SAT search, exploiting the SAT solver’s pruning and dynamic ordering
heuristics automatically.

9.3. Hypergraph Transversals / Hitting Sets

As noted earlier, the second phase of CAMUS consists of computing
minimal hypergraph transversals (also known as hitting sets), a general
graph problem (resp. set covering problem) with a long history in math-
ematics and computer science research. See [16] for an overview of ap-
plications of hypergraph transversals and some theoretical complexity
results.

The minimal hypergraph transversal algorithm we developed for
computing MUSes was created from first principles independently of
existing algorithms. Since creating this algorithm for our purposes, we
have looked for other algorithms for learning and comparison purposes.
Of the other algorithms we have found, those with the most efficient
implementations are Partition, by Bailey, et. al. [3]; an algorithm by
Kavvadias and Stavropoulos [24, 25] (KS); and another by Boros, et.
al. [7] (BEGK). The three algorithms were experimentally compared in
[25], and while KS generally performed well, it did not entirely dominate
the results over either of the other two. We obtained executables for
all three algorithms6 to compare their performance to that of CAMUS’
second phase on sets of MCSes.

Figure 10 compares the runtimes of Partition, KS, and BEGK against
our algorithm on the sets of MCSes from the product configuration
benchmarks. We have only included benchmarks for which at least one
of the algorithms finished within the 600 second timeout. Each point
plots the runtime in seconds of our algorithm (y-axis) against either
Partition, KS, or BEGK (x-axis); points below the diagonal indicate
CAMUS outperforming the other algorithm for that point. To preserve
results measured as zero seconds on the logarithmic scales, zero second
runtimes have been changed to 0.0002 seconds. In all but two bench-
marks, our algorithm either matches or outperforms the others: on

6 James Bailey sent us an executable for Partition, while KS and BEGK
were downloaded from http://lca.ceid.upatras.gr/∼estavrop/transversal/

and http://paul.rutgers.edu/∼elbassio/dual.html, respectively.
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Figure 10. Comparing Partition, KS, and BEGK to the second phase of CAMUS on
MCSes from automotive product configuration benchmarks

the MCSes of C202 FS SZ 104, KS completed in 70 seconds while our
algorithm (as well as the other two) timed out; the other point above
the diagonal is a result that is below the threshold of timing accuracy
in our experiment.

This is not meant to be a complete comparison of these algorithms,
but rather it serves to motivate ours as a good choice for the types
of hypergraphs (the MCSes) seen in CAMUS. In fact, the Partition
algorithm is faster than ours on the machine-learning datasets for which
it was developed (personal communication, J. Bailey, October 2005).
Likewise, the results in [25] indicate that all three of the other algo-
rithms have mixed performance rankings on different types of problems.
Though it was not targeted directly, it is likely that the hypergraph
transversal algorithm we developed for CAMUS is suited particularly
well for some structural characteristic of sets of MCSes.

The algorithm most similar to ours is KS. It is similar to that in
CAMUS in that it generates transversals (hitting sets) incrementally in
a tree with complete transversals at the leaves. The algorithm therefore
has the same good anytime properties as the second phase of CAMUS,
taking negligible time to produce the first output and little time be-
tween each successive output. KS employs the concept of “generalized
nodes,” which treats sets of nodes that appear in the same set of hy-
peredges as a single generalized node to increase efficiency and reduce
the size of the tree (each solution containing a generalized node may
be expanded into several real solutions). Generalized nodes could be
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implemented in our algorithm for a likely increase in efficiency. KS also
employs a node-selection technique when adding nodes incrementally to
prune redundant branches from the tree, as opposed to our algorithm,
which accomplishes similar pruning by modifying the remaining sub-
problem at each point in the tree and storing “seen” branches in a hash
table. This latter difference gives KS polynomial memory requirements
as compared to the exponential memory requirements of our hash table.
The memory usage of our algorithm has never presented a problem in
practice, however, with experiments reaching practical timeouts well
before practical memory limits were reached.

The hypergraph transversal / hitting set problem is also equivalent
(with minor translation) to set covering, which has been studied exten-
sively in the field of operations research (OR). Specifically, the problem
we solve is closest to the unicost set covering problem; we have no
weights or costs on the elements we are choosing. OR is mainly con-
cerned with optimization problems, however, and any OR approaches of
which we are aware are geared towards producing the smallest hitting
set. For a recent example of one such approach to the unicost set cover-
ing problem and references to related techniques in OR, refer to [5]. OR
approaches like this could be adapted to find all irreducible hitting sets
by utilizing an iterative approach, blocking solutions as they are found
as in the first phase of CAMUS, and this is an interesting direction
for future research. However, preliminary experiments we performed
using a similar incremental approach with MaxSAT to find all minimal
hitting sets showed that it performs much worse than the algorithms
we present in this paper. We believe that any procedure using repeated
search/optimization to find all minimal hitting sets will not scale well.

10. Conclusions and Future Work

We have developed a broadly applicable framework for finding Minimal
Unsatisfiable Subsets of constraint systems. The framework consists
of a set of algorithms that we call CAMUS (Compute All Minimal
Unsatisfiable Subsets). CAMUS is based on a set-covering relationship
between maximal satisfiable subsets (MSSes) and minimal unsatisfiable
subsets (MUSes).

We have shown how the algorithms in CAMUS can be modified
to suit different types of instances and reach different goals. Most
importantly, we described a variation that can avoid the general in-
tractability of finding all MUSes of a constraint system (the output
of which can be exponential in the size of the original problem) by
relaxing the completeness criteria without resorting to approximations
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or sacrificing correctness. We believe that the framework described in
this paper is suited to further modifications and additions like those
we have illustrated, and future work will include improving upon the
efficiency of these algorithms.

One such addition has already been made to the algorithm in the
first phase of CAMUS. Gregoire, et al., have boosted the FindMCSes
algorithm with a local search oracle to increase its performance [19].
They use local search to identify candidate MCSes before the exhaus-
tive search of FindMCSes. The local search is more efficient than the
complete search in terms of the time taken to find candidates, but it
is not guaranteed to be complete or correct (i.e., it may miss MCSes
and some candidates it identifies may not be MCSes), so the search
in FindMCSes is still required to verify candidates and complete the
search.

The relationship between MSSes and MUSes applies to any type of
constraint system, and the algorithms are easily generalized to work
with different types of constraint solvers. In addition to the implemen-
tation for Boolean satisfiability instances that we have focused on in
this paper, we have implemented the algorithms A) on a solver for
Disjunctive Temporal Problems (DTPs) [26] and B) using YICES [14],
an efficient Satisfiability Modulo Theories (SMT) solver which covers a
wide range of constraint types, in a hardware verification system [2]. In
all of these cases, very few, if any, modifications were made to the un-
derlying solver. The algorithms in CAMUS can thus be implemented on
top of new constraint solvers to immediately take advantage of advances
in the field of constraint satisfaction and to provide the functionality
of finding MUSes for new types of constraints.

Experimental results performed with our implementation of CA-
MUS for Boolean satisfiability show that it is suited for use on real-
world problems. We show that even those instances whose complete
results are intractably large can be tackled by the simple algorithm
variants we have presented. Furthermore, we have shown that the algo-
rithms in CAMUS perform better, often by several orders of magnitude,
than existing algorithms for either of its two phases (finding all MCSes
and computing irreducible hitting sets).

One interesting question worth exploring is whether one is more
interested in MCSes or MUSes when faced with unsatisfiable constraint
systems. As discussed, they are each a different “encoding” of the
same information, but one will generally be more directly useful than
the other. Indeed, it depends on the application; we have used the
algorithms in CAMUS in two different hardware verification systems
with exactly this differentiation. In the first, a design debugging /
fault diagnosis system [31], the MCSes of the unsatisfiable instances

CAMUS.tex; 10/10/2007; 11:40; p.38



39

are the desired solutions directly; the first phase of CAMUS is used
in this system with its grouping capability to boost an exact search
by providing over-approximate solutions. The second system is the
Reveal system described earlier, in which MCSes are not directly useful,
while the MUSes provide exactly the information needed for abstraction
refinement.

In the future, we plan to use CAMUS to investigate the structure of
UNSAT instances and their complete sets of MUSes; little experimental
work has looked at MUSes, as they have only recently been found in
practical applications. We will continue to implement CAMUS with
other constraint solvers and new constraint types to apply it in new
domains. Linear programming and operations research is one possible
direction, as the area has some MUS-related research [10] that appears
disconnected from that in the fields of constraint processing, and we
are unaware of any techniques for finding all MUSes of linear programs.

Finally, our experience indicates that the general intractability of the
problem of finding all MUSes presents a real problem in practice, so we
intend to expand on relaxing the completeness criterion. Improvements
to AllMUSes are not as important as work on MCSes and PCSes,
because it has never been the slow phase in practice. Due to the po-
tentially exponential number of MUSes, however, we will investigate
techniques for computing a “useful” subset of the MUSes in the second
phase, where “useful” could mean diverse, containing some desired
structural characteristic, or otherwise based on the application. The
main algorithmic development will further refine PCSes, exploiting
the potential of more complex implementations of the Truncate sub-
routine, because it is the practical way forward due to the intractability
of the first, crucial phase of CAMUS.
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