
Identifying Conflicts in Overconstrained Temporal Problems

Mark H. Liffiton, Michael D. Moffitt, Martha E. Pollack, and Karem A. Sakallah
Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor 48109-2122
{liffiton, mmoffitt, pollackm, karem}@eecs.umich.edu

Abstract

We describe a strong connection between maxi-
mally satisfiable and minimally unsatisfiable sub-
sets of constraint systems. Using this relation-
ship, we develop a two-phase algorithm, employ-
ing powerful constraint satisfaction techniques, for
the identification of conflicting sets of constraints in
infeasible constraint systems. We apply this tech-
nique to overconstrained instances of the Disjunc-
tive Temporal Problem (DTP), an expressive form
of temporal constraint satisfaction problems. Us-
ing randomly-generated benchmarks, we provide
experimental results that demonstrate how the algo-
rithm scales with problem size and constraint den-
sity.

1 Introduction
Many AI problems can be cast in terms of Constraint-
Satisfaction Problems (CSPs), and a large number of systems
have been developed to efficiently compute solutions to sets
of constraints. However, not every set of constraints is satis-
fiable. This paper reports on a technique for efficiently iden-
tifying sets of conflicting constraints in an overconstrained
problem. We focus on temporal constraint problems, which
play a prominent role in planning, scheduling, and other ap-
plications of interest in AI. Our approach is particularly well-
suited to temporal problems, in which conflicts among con-
straints can be resolved by weakening, rather than completely
abandoning, constraints.

We build on our previous work[Liffiton and Sakallah,
2005] on identifying Minimally Unsatisfiable Subsets of con-
straints (MUSes). Given a set of constraintsC, an MUS of
C is a subset ofC that is (1) unsatisfiable and (2) minimal,
in the sense that removing any one of its elements makes the
rest of the MUS satisfiable. Each MUS thus provides infor-
mation about a conflict that must be addressed to solve the
given CSP. In general, an arbitrary CSP may contain multiple
MUSes, and all of them must be resolved by constraint relax-
ation before the CSP can be solved. Identifying the MUSes
of a CSP makes it possible to reason about how to weaken
conflicting constraints to make a solution feasible.

Prior work on MUSes has largely been restricted to al-
gorithms for finding a single MUS. In addition, these algo-

rithms have been specific to particular types of constraint sys-
tems, e.g., Boolean satisfiability ([Bruni and Sassano, 2001;
Zhang and Malik, 2003; Ohet al., 2004] and others) or lin-
ear programming[Chinneck, 1996], and the techniques de-
veloped often cannot be readily generalized to other types of
constraints. In contrast, we explore a deep connection be-
tween maximal satisfiability and minimal unsatisfiability to
develop techniques that can be used to findall MUSes of a
constraint system, regardless of constraint type. In this paper,
we demonstrate the approach by applying it to Disjunctive
Temporal Problems (DTPs)[Stergiou and Koubarakis, 1998],
a particularly expressive form of temporal constraints. Our
previous work focused on finding MUSes of Boolean satisfia-
bility instances, which have applications in circuit design and
verification. DTPs provide a richer space for using MUSes,
specifically because their constraints can be relaxed without
any change in structure, something that is not possible with
Boolean variables and constraints.

In Section 2 of the paper, we define DTPs and discuss the
motivation for finding their MUSes further. Section 3 de-
scribes the relationship between maximal satisfiability and
minimal unsatisfiability. Section 4 contains the specific al-
gorithms we employed to exploit this relationship for finding
MUSes of DTPs. Empirical results are given in Section 5,
and Section 6 closes with conclusions and directions for fu-
ture work.

2 Disjunctive Temporal Problems
A Disjunctive Temporal Problem(DTP) is a constraint satis-
faction problem defined by a pair〈X, C〉, whereX is a set of
real variables, designating time points, andC is a set of con-
straints of the form:ci1∨ci2∨...∨cin, where eachcij is of the
form x − y ≤ b; x, y ∈ X andb ∈ <. DTPs are thus a gen-
eralization of Simple Temporal Problems (STPs), in which
each constraint is limited to a single inequality[Dechteret
al., 1991]. A solution to a DTP is an assignment of values to
time points such that all constraints are satisfied.

Several algorithms have been developed for solving DTPs
[Stergiou and Koubarakis, 1998; Armandoet al., 1999;
Oddi and Cesta, 2000; Tsamardinos and Pollack, 2003]. Typ-
ically, these algorithms transform the problem into ameta-
CSP, in which the original DTP is viewed as a collection of
alternative STPs. Using this approach, the algorithm selects
a single disjunct from each constraint of a given DTP. The re-

sulting set forms an STP, called acomponent STP, which can
then be checked for consistency in polynomial time using a
shortest-path algorithm. Clearly, a DTPD is consistent if and
only if it contains at least one consistent component STP. Fur-
thermore, any solution to a consistent component STP of DTP
D is also a solution toD itself. Consequently, it is standard in
the DTP literature to consider any consistent component STP
to be a solution of the DTP to which it belongs.

A number of pruning techniques can be used to fo-
cus the search for a consistent component STP of a DTP.
These include conflict-directed backjumping, removal of
subsumed variables, and semantic branching. The DTP
solver Epilitis[Tsamardinos and Pollack, 2003] integrated all
these techniques, in addition to no-good recording. Epilitis
(and other traditional DTP solvers) perform total constraint
satisfaction—that is, their objective is to find a solution that
satisfies all the constraints of a DTP. In the event that a DTP is
inconsistent, these solvers are capable of detecting such infea-
sibility, but incapable of providing partial solutions that come
close to satisfying the problem. In response, the DTP solver
Maxilitis [Moffitt and Pollack, 2005] was designed to find so-
lutions that maximize the number of satisfied constraints.

Sometimes the number of satisfied constraints is not the
best measure of a solution; it may instead be important to
reason about exactly which constraints are violated, as well as
the extent to which they have been violated. We illustrate with
the following very small DTP, which we use as an example
throughout the paper:

C1 : {c11 : (x− y ≤ 1)}
C2 : {c21 : (y − x ≤ −2)}
C3 : {c31 : (y − x ≤ −3)} ∨ {c32 : (z − y ≤ 1)}
C4 : {c41 : (y − z ≤ −2)}

Note that this DTP is unsatisfiable. The set of con-
straints{C1, C2} is inconsistent, and the same is true for
{C1, C3, C4}. A standard DTP solver would simply report
that the problem was unsatisfiable, while a system like Max-
ilitis would find a solution that maximizes the number of
satisfied constraints—in this case, a solution that satisfies
{C2, C3, C4} and notC1. But for many applications, it might
be important instead to maintain some control over the rela-
tionship betweenx andy that is expressed inC1. If we knew
the source of the conflict involvingC1, we could reason about
how to weakenC1 and the constraints with which it conflicts.
For example, we could decide to change the bound onC1 to 2,
or to change the bounds on bothC1 andC2 to 1.5. We could
reason about similar relaxations ofC1, C3, andC4 to make
them jointly feasible. But in order to do this, we must have
identified which constraints are in conflict with one another,
and this is precisely what the MUSes tell us.

This ability to relax constraints without completely remov-
ing them makes DTPs a much more interesting domain for
finding MUSes than, for example, systems of Boolean con-
straints. An infeasible Boolean satisfiability instance may
be made feasible by completely removing constraints, and
such changes are indicated directly by techniques that iden-
tify a maximal satisfiable subset of constraints. An infeasible
DTP, however, can be made consistent by altering the bounds

of inequalities, without modifying the structure of the prob-
lem. MUSes provide information needed to determine these
changes.

3 Maximal Satisfiability and Minimal
Unsatisfiability

Our techniques for extracting MUSes are derived from a deep
relationship between maximal satisfiability and minimal un-
satisfiability. The Maximal Constraint Satisfaction problem
(Max-CSP) is an optimization problem on a constraint sys-
temC that has the goal of finding an assignment to the vari-
ables ofC that satisfies as many constraints as possible; this
is the solution that Maxilitis finds (e.g.,{C2, C3, C4} for our
example problem).

While Max-CSP is defined in terms of the cardinality
of a satisfiable subset of constraints, the definition can
be relaxed to haveinaugmentabilityas the goal instead.
Thus, while we can define Max-CSP(C) as {m ⊆ C :
|m| is maximal, m is satisfiable}, we can define a new prob-
lem, Maximally Satisfiable Subset(MSS). The definition of
the set of MSSes follows, with the set of MUSes defined sim-
ilarly for comparison:

MSSes(C) =
{

m ⊆ C : m is satisfiable, and
∀c ∈ (C\m), m ∪ {c} is unsatisfiable

}
MUSes(C) =

{
m ⊆ C : m is unsatisfiable, and
∀c ∈ m, m\{c} is satisfiable

}
Each MSS is a subset ofC that is satisfiable and inaug-

mentable; adding any other constraints inC to such a subset
will render it unsatisfiable. Notice from the definition that
MSSes(C) and MUSes(C) are essentially duals of one an-
other! An MSS is satisfiable and cannot be made larger, and
an MUS isunsatisfiable and cannot be madesmaller. This
relationship is more than cosmetic; we will show how one set
is actually an implicit encoding of the other. Note also that
any Max-CSP solution is also an MSS; maximal cardinality
implies inaugmentability. However, MSSes may not all have
maximal cardinality, as illustrated in the example DTP. One
MSS of the example is{C2, C3, C4}, corresponding to the
Max-CSP solution.{C1, C4} is another MSS (adding either
C2 or C3 makes it unsatisfiable), though smaller.

Now considerC1, the constraint not included in the Max-
CSP solution to our example. RemovingC1 from the DTP
makes the remaining system satisfiable. In general, given any
MSS, the set of constraints not included in that MSS provides
an irreducible “fix” for the original infeasible system; remov-
ing these constraints makes it satisfiable. Therefore, we de-
fine a “CoMSS” as the complement of an MSS, and the set
CoMSSes(C) as:

CoMSSes(C) = {m ⊆ C : (C\m) ∈ MSSes(C)}

This complementary view of MSSes(C) reveals a more
meaningful connection between maximal satisfiability and
minimal unsatisfiability. Recall that the presence of any MUS
in a constraint systemC makesC infeasible. Therefore, to
makeC feasible, every MUS inC must be neutralized by
relaxing or removing at least one constraint from it. Any

CoMSSes(C) C1 C2 C3 C4

{C1} X

{C2, C3} X X

{C2, C4} X X

MUSes(C) C1 C2 C3 C4

{C1, C2} X X

{C1, C3, C4} X X X

MUSes(C) = (C1)(C2 ∨ C3)(C2 ∨ C4) CoMSSes(C) = (C1 ∨ C2)(C1 ∨ C3 ∨ C4)
= C1C2 ∨ C1C3C4 = C1 ∨ C2C3 ∨ C2C4

= {{C1, C2}, {C1, C3, C4}} = {{C1}, {C2, C3}, {C2, C4}}

Figure 1: Covering Problems Linking CoMSSes(C) and MUSes(C)

CoMSS is one such set: a CoMSSm is an irreducible set
of constraints whose removal makesC satisfiable. Thus, ev-
ery CoMSS contains at least one constraint from every MUS
of C. For temporal problems, achieving satisfiability may not
require removing every constraint in a CoMSS, but it does re-
quire relaxing all of them. Of course, removing a constraint
is equivalent to extreme relaxation, in which the bound of an
inequality in the constraint is set to infinity.

Every CoMSS is inherently a solution to a covering
problem on MUSes(C). Specifically, it is a solution to
the HITTING-SET problem[Garey and Johnson, 1990] on
MUSes(C). Given a setC, and a collection of subsets of
C, a hitting set of the collection is a subset ofC that contains
at least one element from each subset in the collection. In this
case, the setC is the set of constraints in a constraint system,
the collection of subsets ofC is the set MUSes(C), and the
hitting set of MUSes(C) is a CoMSS ofC.

Additionally, in line with the “duality” of MSSes and
MUSes, every MUS is a hitting set of the set of CoMSSes.
This is the key to extracting all MUSes of a constraint sys-
tem: first compute the set of CoMSSes ofC, then extract
MUSes by finding hitting sets of the CoMSSes.

Figure 1 illustrates the relationship with covering prob-
lems that link CoMSSes(C) and MUSes(C) for our example
DTP. The left table represents the covering problem of find-
ing MUSes that cover the CoMSSes to generate MUSes(C).
Each column is a constraint from the DTP, and each row is
a single CoMSS. We can say that a constraint “covers” a
CoMSS (marked with an ‘X’ in that row) if it is contained
in the CoMSS. Each MUS is then an irreducible subset of the
columns that covers all of the rows. In the example, these are
found in a manner similar to Petrick’s Method from Boolean
logic minimization: each row becomes a disjunction of the
columns that cover that row, and the disjunctions are con-
joined and simplified by the distributive rule. The right half
of the figure shows how CoMSSes(C) can be generated in the
exact same manner from MUSes(C).

If we are interested primarily in finding an arbitrary set of
constraints to relax in order to make an overconstrained setC
feasible, then we could simply compute CoMSSes(C): each
element of CoMSSes(C) represents one set of constraints
that, if sufficiently relaxed, will result inC being feasible.
But if we instead want to reason about how to weaken par-
ticular constraints, we need to identify the individual sets of
conflicting constraints, i.e., MUSes(C). In practice, it is eas-

Simplified-Musilitis-CoMSSes(A, U)

1. If (U = �)
2. newCoMSS← {C|(C ← ε) ∈ A}
3. CoMSSes← CoMSSes∪ {newCoMSS}
4. backjump-to-ε← true
5. Return
6. C← Select-Constraint(U), U’ ← U – {C}
7. For all valuesc∈ d(C)
8. A’← A∪ {C← c}
9. If consistent(A’)

10. Simplified-Musilitis-CoMSS(A’, U’)
11. If (backjump-to-ε = true) Return
12. A’← A∪ {C← ε}
13. Unless (Assignment-Subsumed(A’,CoMSSes))
14. Simplified-Musilitis-CoMSS(A’, U’)
15. backjump-to-ε← false

Figure 2: A simplified version of an algorithm for finding the
CoMSSes of a DTP

ier to find maximally satisfiable subsets (and thus, CoMSSes)
than to find MUSes directly. This follows from the relative
simplicity of problems in NP (i.e., SAT) as compared to those
in Co-NP (i.e., UNSAT). Thus, our approach will be to com-
pute CoMSSes(C) and then find its irreducible hitting sets.

4 Algorithm Details
We now describe the details of our algorithm for finding
MUSes. We use a serial decomposition of the task. First
we find all of the CoMSSes of a DTP using an algorithm
that borrows heavily from Maxilitis; this algorithm could be
readily generalized for other types of constraints. Second, we
use techniques for extracting MUSes that operate completely
independently of how the CoMSSes were generated and the
types of constraints involved. The two phases combine to
form a solver, which we name Musilitis, that is capable of
diagnosing the infeasibility of any given DTP. The solver is
both sound, in that the sets of constraints it returns are all
MUSes, and complete, in that it will find all MUSes of the
given constraint system.

4.1 Finding CoMSSes(C)
In Figure2, we present a simplified version of an algorithm
for finding the set of all CoMSSes of a DTP. This backtrack-

ing search resembles in many ways the branch-and-bound al-
gorithm employed by Maxilitis, in that it effectively searches
through the space of all partial assignments of disjuncts to
constraints. (Recall that we convert each disjunctive con-
straint in the original DTP into a meta-level variable, whose
domain is the set of disjuncts.) The setA contains the current
partial assignment, and the setU contains those constraints
that have not yet been instantiated. Whenever a constraint is
instantiated with an empty assignment (i.e., it is purposefully
chosen to be left unsatisfied), such an assignment is labeled
by the symbolε.

To understand the algorithm, consider an example with 50
constraints. Suppose that we begin the search and find a solu-
tion in which two constraints, sayC6 andC28, have been left
unsatisfied. At this point, the search can prune any other solu-
tions that would necessarily leaveC6 andC28 unsatisfied, as
such candidates would be incapable of leading to an irredun-
dant CoMSS. We handle this in our algorithm by means of
a backjump flag that causes the search to immediately back-
jump to the deepest point at which the assignment to one of
the unsatisfied constraints was made.

Lines 1 through 5 handle the case when a particular solu-
tion with all constraints instantiated has been found. The set
of unsatisfied constraints (those assignedε) is a CoMSS, and
it is added to a global list of CoMSSes (initialized to�). At
this point, the flagbackjump-to-ε is toggled to avoid any fur-
ther search within the current subtree whose solutions would
be subsumed by the CoMSS just found.

If one or more constraints remain uninstantiated, line 6 se-
lects a constraint to satisfy, and lines 7 – 11 attempt various
disjuncts with which to satisfy it. However, if one of the re-
cursive calls finds a solution, thebackjump-to-ε flag may be
enabled, causing the algorithm to bubble up the search tree
until the deepest assignment ofε is reached.

Line 12 is where the algorithm attempts the empty assign-
ment. If this assignment is not subsumed by any CoMSSes
found in prior solutions (line 13), the algorithm will pur-
sue this partial assignment (line 14), afterwards resetting the
backjump flag in the event that a solution below was discov-
ered (line 15). It should be noted that this version of the al-
gorithm is not guaranteed to find only irredundant CoMSSes,
but any redundancies can be easily removed in a postprocess-
ing step.

A slight variation on this approach is to find CoMSSes in
increasing order of size. By blocking CoMSSes found in
increasing order, the algorithm ensures that all subsequent
CoMSSes found are irredundant. Such an incremental al-
gorithm can easily be achieved by setting an upper bound
on the number of constraints violated, and repeatedly calling
the given algorithm, each time increasing the upper bound
by 1 until the problem is no longer satisfiable. While many
searches are performed, the pruning allowed by the smaller
CoMSSes may potentially save time otherwise spent finding
redundant CoMSSes. This incremental algorithm proved to
be extremely effective in Maxilitis, where the goal was sim-
ply that of maximal constraint satisfaction.

If implemented exactly as shown, the algorithm shown
in Figure 2 would perform rather poorly. The pseudocode
does not illustrate the use of forward checking, a vital tech-

Musilitis-ExtractMUS (CoMSSes)

1. MUS←�
2. While (CoMSSesis not empty)
3. curCoMSS← pop(CoMSSes)
4. newConstraint← pop(curCoMSS)
5. MUS←MUS∪ newConstraint
6. For alltestConstraint∈ curCoMSS
7. For alltestCoMSS∈ CoMSSes
8. If testCoMSScontainstestConstraint
9. removetestConstraintfrom testCoMSS

10. For alltestCoMSS∈ CoMSSes
11. If testCoMSScontainsnewConstraint
12. removetestCoMSSfrom CoMSSes
13. ReturnMUS

Figure 3: Extracting a single MUS from CoMSSes(C)

nique used in all DTP solving algorithms. It also does not
demonstrate the use of two pruning techniques calledremoval
of subsumed variablesandsemantic branching[Armandoet
al., 1999] that are known to greatly improve the power of
DTP solvers. Luckily, these methods remain available when
finding CoMSSes of a DTP, and they are integrated into our
Musilitis solver. Other common issues, such as variable and
value ordering heuristics, also play a large role in guiding the
search, although we do not discuss them here due to space
limitations.

4.2 Obtaining MUSes(C)
Every MUS ofC is an irreducible hitting set of CoMSSes(C).
The decision version of the HITTING-SET problem (deciding
if there exists a hitting set of cardinality less than or equal to
k) is NP-Complete[Karp, 1972], but in this case we are in-
terested in irreducibility, not cardinality. Combined with the
property that no CoMSS is a subset of any other, this allows
us to extract a single MUS via a greedy approach in poly-
nomial time, without resorting to search. Figure 3 provides
pseudocode for the algorithm.

The construction works by sequentially adding constraints
to a forming MUS. Intuitively, an MUS is a set of constraints
containing at least one constraint from every CoMSS such
that every constraint is an essential element of the set. By “es-
sential” we mean that removing a constraint from the MUS
will leave at least one CoMSS unrepresented. Thus, every
time a constraint is added, the remaining problem is modi-
fied to enforce the requirement that the constraint be essen-
tial. This is done by ensuring that the new constraint is the
only representative of at least one CoMSS.

Lines 3 and 4 ofMusilitis-ExtractMUS choose a CoMSS
from the set and a single constraint,newConstraint, from that
CoMSS.newConstraintis added to the MUS, and the re-
maining lines ensure that it is essential. Lines 6 through 9
remove the remaining constraints in the chosen CoMSS from
all other CoMSSes in the input set. This prevents any of those
constraints from being added in later iterations, which could
make newConstraintnon-essential. Then, lines 10-12 re-
move any CoMSSes containingnewConstraint, because they
are now represented inMUS. Following the modifications to

CoMSSes, the algorithm iterates. WhenCoMSSesis empty,
the constructed set of constraints is a complete, exact MUS.

Extracting all of the MUSes from CoMSSes(C) requires
searching for all irreducible hitting sets of CoMSSes(C).
Due to the potential combinatorial explosion, the number of
MUSes may be impractically large; however, in many cases
the result is tractable.

One method for generating the complete set of MUSes
from CoMSSes(C) uses the general form of theMusilitis-
ExtractMUS algorithm in Figure 3. The particular MUS
generated by that algorithm depends on the order in which
CoMSSes and constraints are selected from CoMSSes(C);
thus, by branching on those two decisions (lines 3 and 4),
all possible MUSes can be generated. This can be accom-
plished with a recursive function that takes as input a) the
remaining set of CoMSSes and b) the MUS currently being
constructed in each branch of the recursion (these are initial-
ized to CoMSSes(C) and the empty set, respectively). The
branching is not ideal, and duplicate branches are both possi-
ble and quite common in practice, so pruning heuristics can
be employed to reduce the search space.

5 Experimental Results
We benchmarked both phases of the MUS generation pro-
cess (finding CoMSSes(C) and extracting MUSes(C) from
it) using DTPs created by a random DTP generator used
in testing previous DTP solvers[Stergiou and Koubarakis,
1998]. We collected performance data and analyzed the sets
of CoMSSes and MUSes for DTPs over a range of DTP gen-
erator parameters.

The test case generator takes as arguments the parameters
〈k, N, m,L〉, wherek is the number of disjuncts per con-
straint,N is the number of time points,m is the number of
constraints, andL is the constraint width, i.e., a positive in-
teger such that for each disjunctx − y ≤ b, b ∈ [−L, L]
with uniform probability. In our experiments, we setk = 2,
N ∈ {5, 6, 7}, andL = 100. A derived parameterR (the ra-
tio of constraints over variables,m/N) was varied from 6 to
11. For each setting ofN andR, 50 random problems were
generated. (For example, we generated 50 problems for the
case whereN is 7 andR is 7; those problems have 7 tem-
poral variables and 49 constraints each). These problems are
likely to be highly overconstrained, with 30-77 constraints on
only 5-7 time points. The size of these problems is dwarfed
somewhat by those which Maxilitis can solve (e.g.,N = 20),
although one must keep in mind that the objective of max-
imal constraint satisfaction is much easier to achieve. The
domains of the variables are integers instead of reals, which
again is standard in DTP literature. Our implementation of
Musilitis was developed in Java (finding CoMSSes) and C++
(extracting MUSes), and our experiments were conducted in
Linux on a 2.2GHz Opteron processor with 8GB of RAM.

First, we compared the runtime of the two versions of the
Musilitis-CoMSS algorithm described in Section 4.1—one
which uses a single backtracking search to find all CoMSSes,
and another which does so incrementally. The former re-
quires an additional postprocessing step to remove all redun-
dant CoMSSes, a procedure whose runtime was found to be

6 7 8 9 10 11
10

−2

10
−1

10
0

10
1

10
2

10
3

R

S
ec

on
ds

N = 7, Incremental
N = 7, Backtracking
N = 6, Incremental
N = 6, Backtracking
N = 5, Incremental
N = 5, Backtracking

Figure 4: Median runtimes for finding CoMSSes(C)

0 5 10 15 20 25
0

50

100

150

200

250

300

CoMSS size

Fr
eq

ue
nc

y
A

ve
ra

ge
d

ov
er

 5
0

In
st

an
ce

s

R = 11
R = 10
R = 9
R = 8
R = 7
R = 6

Figure 5: Distribution of CoMSS sizes (N = 6)

negligible. Figure 4 shows the median runtimes for both al-
gorithms on all problem parameters. Not surprisingly, run-
time increases both with size (N) and density (R). How-
ever, notice that the times for the single backtracking algo-
rithm (labeled ‘Backtracking’) tend to be roughly an order
of magnitude faster than those for the incremental method
(labeled ‘Incremental’). This contrasts with the results re-
ported in[Moffitt and Pollack, 2005], where the opposite ef-
fect was observed. The difference is that Maxilitis can stop
at any iteration where a solution is found, as only a single
solution of maximal cardinality is needed. Even though mul-
tiple searches are performed in the incremental mode, sub-
stantially more is pruned than in a single search that has no
upper bound. In our case, iteration must continue untilall
CoMSSes of any size have been found. The combined run-
time of these separate searches can easily exceed that of a
single backtracking search.

Figure 5 shows the distribution of sizes of CoMSSes found
by theMusilitis-CoMSS algorithm for the cases whereN =
6 and R ranges from 6 to 11. Because our DTPs were
randomly generated, these results are not particularly useful
alone; however, they do provide valuable information when
one considers the runtime of the MUS extraction phase of

0.001

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000 100000 1000000
Number of MUSes

S
ec

on
ds

Figure 6: Runtimes of extracting MUSes(C) vs |MUSes(C)|

the Musilitis algorithm, since the set of CoMSSes is the in-
put to this procedure. In the graph, we have taken the total
frequency of each size of CoMSS found in all instances and
divided this count by 50 (the number of problem instances).
As one would expect, both the number and size of CoMSSes
increases with the constraint densityR.

The runtime of extracting all MUSes depends mainly on
the number of MUSes present. In the extremely overcon-
strained benchmarks used here, this number is often very
high, reaching into the hundreds of thousands. Figure 6
shows the runtime of the MUS extraction algorithm versus
the number of MUSes found for instances withN = 5. Run-
times for any given number of MUSes are clustered within an
order of magnitude of each other.

In some benchmarks, the MUS extraction reached a 30-
minute timeout without finishing. In that time, however, it
found as many as one million MUSes. The algorithm for ex-
tracting MUSes is inherently an anytime algorithm; MUSes
are output as they are found, and if not all MUSes are re-
quired, it can be stopped at any time. Our experiments
showed that the algorithm has reasonably good anytime prop-
erties: in one typical highly-constrained instance withN = 6
andR = 9, it generated more than 70,000 MUSes in the first
minute, and the rate then gradually slowed. This property
could be exploited in a system that interleaves MUS iden-
tification with constraint relaxation. Generally, if the con-
straint system is highly overconstrained, resolving one MUS
is likely to resolve many others, since the same constraints
are likely to appear in multiple MUSes.

6 Conclusions and Future Work
We have presented algorithms for deriving minimally unsat-
isfiable subsets of constraints in any infeasible constraint set,
building on a strong relationship between maximal satisfiabil-
ity and minimal unsatisfiability. The techniques are general,
in that they are applicable to any type of constraint, and we
have implemented them for Disjunctive Temporal Problems.
The flexibility permitted by the constraints involved in these
problems presents the opportunity for relaxation to be more
fine-grained than simple constraint elimination, and MUSes
provide the information needed to support this type of relax-
ation.

The connection between maximal satisfiability and mini-
mal unsatisfiability we describe has been independently noted
by [Bailey and Stuckey, 2005], who applied it to the problem
of type-error diagnosis in software verification. Their imple-
mentation, however, differs from ours, in that they employ
different algorithms in an interleaved approach as compared
to our serial, two-phase algorithm. In[Liffiton and Sakallah,
2005], we performed an experimental comparison of their ap-
proach, adapted to Boolean satisfiability, with our own. We
found that ours was consistently faster, and we identified sev-
eral ways to combine ideas from both techniques for further
improvements.

Further work also includes enhancing the efficiency of our
algorithms. One possible direction would be to investigate
tradeoffs between runtime and completeness or correctness.
The requirements of finding all MUSes or of finding exact
MUSes could be relaxed to decrease the runtime of the algo-
rithms. Techniques exploiting domain knowledge or features
of particular types of constraints could help improve the effi-
ciency as well. More generally, it will be important to conduct
studies that examine the performance of Musilitis on DTPs
representing real-world problems, as opposed to the random
problems studied in this paper. We currently have experi-
ments underway to evaluate Musilitis on job-shop scheduling
problems, and we will also be studying problems taken from
the domains of schedule management and medical protocols.

The relationship between maximal satisfiability and mini-
mal unsatisfiability is deserving of further attention. Our al-
gorithms for extracting all MUSes are just one way of exploit-
ing this relationship. Further understanding of infeasibility in
constraint satisfaction problems, such as rich links between
conflicts in basic constraints and in the high-level problem
they represent, could result from additional research.

Finally, an important future goal is to employ the algo-
rithms developed in this paper in a mixed-initiative constraint
relaxation system that provides a user with the information
needed to make principled decisions about how to weaken
constraints so as to achieve feasibility.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under ITR Grant No. 0205288, the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. NBCHD030010, and the Air Force Office of
Scientific Research under Contract No. FA9550-04-1-0043.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the view of the National Science Foun-
dation (NSF), DARPA, the Department of Interior-National
Business Center, or the United States Air Force.

References
[Armandoet al., 1999] Alessandro Armando, Claudio

Castellini, and Enrico Giunchiglia. SAT-based proce-
dures for temporal reasoning. InProceedings of the 5th
European Conference on Planning, pages 97–108, 1999.

[Bailey and Stuckey, 2005] James Bailey and Peter J.
Stuckey. Discovery of minimal unsatisfiable subsets of

constraints using hitting set dualization. InProceedings of
the 7th International Symposium on Practical Aspects of
Declarative Languages, volume 3350 ofLecture Notes in
Computer Science. Springer-Verlag, 2005.

[Bruni and Sassano, 2001] Renato Bruni and Antonio Sas-
sano. Restoring satisfiability or maintaining unsatisfiabil-
ity by finding small unsatisfiable subformulae. InLICS
2001 Workshop on Theory and Applications of Satisfiabil-
ity Testing (SAT 2001), Electronic Notes in Discrete Math-
ematics volume 9. Elsevier Science Pub., 2001.

[Chinneck, 1996] John W. Chinneck. An effective
polynomial-time heuristic for the minimum-cardinality
IIS set-covering problem. Annals of Mathematics and
Artificial Intelligence, 17:127–144, 1996.

[Dechteret al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks.Artificial Intelli-
gence, 49(1-3):61–95, 1991.

[Garey and Johnson, 1990] Michael R. Garey and David S.
Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[Karp, 1972] Richard M. Karp. Reducibility among combi-
natorial problems. InComplexity of Computer Computa-
tions, pages 85–103. Plenum Press, 1972.

[Liffiton and Sakallah, 2005] Mark H. Liffiton and Karem A.
Sakallah. On finding all minimally unsatisfiable subfor-
mulas. InProceedings of the 8th International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT 2005), Lecture Notes in Computer Science. Springer-
Verlag, 2005.

[Moffitt and Pollack, 2005] Michael D. Moffitt and
Martha E. Pollack. Partial constraint satisfaction of
disjunctive temporal problems. InProceedings of the
18th International Florida Artificial Intelligence Research
Society Conference (FLAIRS-2005), 2005.

[Oddi and Cesta, 2000] Angelo Oddi and Amedeo Cesta. In-
cremental forward checking for the disjunctive temporal
problem. InProceedings of the 14th European Confer-
ence on Artificial Intelligence (ECAI-2000), pages 108–
112, 2000.

[Ohet al., 2004] Yoonna Oh, Maher N. Mneimneh, Za-
her S. Andraus, Karem A. Sakallah, and Igor L. Markov.
AMUSE: a minimally-unsatisfiable subformula extractor.
In Proceedings of the 41st annual conference on Design
automation (DAC’04), pages 518–523. ACM Press, 2004.

[Stergiou and Koubarakis, 1998] Kostas Stergiou and Mano-
lis Koubarakis. Backtracking algorithms for disjunctions
of temporal constraints. InProceedings of the 15th Na-
tional Conference on Artificial Intelligence (AAAI-98),
pages 248–253, 1998.

[Tsamardinos and Pollack, 2003] Ioannis Tsamardinos and
Martha E. Pollack. Efficient solution techniques for dis-
junctive temporal reasoning problems.Artificial Intelli-
gence, 151(1-2):43–90, 2003.

[Zhang and Malik, 2003] Lintao Zhang and Sharad Malik.
Extracting small unsatisfiable cores from unsatisfiable
boolean formula. Presented at the Sixth International Con-
ference on Theory and Applications of Satisfiability Test-
ing (SAT 2003), 2003.

