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Abstract—We begin a systematic study of how Graph De-
composition problems may be represented using propositional
formulas, and hence solved using SAT-solver technology. By
making use of symmetry breaking techniques we are able to
obtain solutions to several previously unknown cases and to
significantly reduce the time needed to compute decompositions.
However some fairly small instances remain unsolved, and thus
provide an interesting challenge to SAT-solver technology.

I. INTRODUCTION

The study of combinatorial designs is a very active field
in mathematics, with links to geometry, group theory, number
theory and linear algebra [6]. It has applications in many areas
including experimental design, coding theory, cryptography
and bioinformatics. It is also a rich source of challenging
open problems: the existence of combinatorial designs is often
unknown, even for very small problem sizes [4], [6].

A promising technique for tackling combinatorial search
problems of many kinds, which has risen to prominence over
the past two decades, is the use of SAT-solvers. Such tools are
now capable of solving some instances with millions of vari-
ables, and in recent years they have been successfully applied
to solve several open problems in combinatorial designs: Heule
et al. have completely solved the Boolean Pythagorean Triples
problem [13]; Zhang produced 25 new r-self-orthogonal Latin
squares [24]; Koshimura et al. obtained solutions for two open
job-shop scheduling problems ABZ9 and YNI1 [16].

However, standard combinatorial design problems can prove
surprisingly difficult to solve effectively using SAT-solvers,
even when the number of variables is quite small. The general
techniques developed for efficient SAT-solving appear not
to be enough to solve many common combinatorial design
problems; additional techniques often seem to be required to
reduce the search space and avoid redundant work.

In this paper, we explore the technique of using SAT-solvers
to tackle an important family of combinatorial design problems
known as Graph Decomposition problems. We develop a
framework to encode Graph Decomposition problems into
SAT, under which one can flexibly deal with many variants
of the problem such as the packing problem, the resolvability
problem and the multidecomposition problem (for a survey of
the Graph Decomposition problem and its variants, see [0]).
We also explore the symmetries of Graph Decomposition
problems and develop some effective techniques for breaking
such symmetries in the SAT formulation.

We first apply our techniques to the central problem of
decomposing a complete graph K, into smaller complete

graphs. By applying symmetry-breaking techniques, the time
needed to obtain a Kg-decomposition of K3g was reduced
from being infeasible to 20 minutes. The smallest currently
unknown case of this type is the problem of finding a K-
decomposition of K5;. This problem still remains out of reach,
although we have encoded it as a SAT-formula with only 4335
variables and shown that around 36% of these can be fixed
by symmetry breaking. It therefore represents an intriguing
challenge to the developers of SAT-solvers.

To show the flexibility of our techniques, we then apply
our framework to encode the (Cs, Cg)-multipacking problem
for K,, and the problem of finding almost-resolvable (2-star)-
decompositions of K,,. For these problems we are able to
produce answers to several previously-unknown cases.

In the remainder of the paper, we set out formal definitions
for the Graph Decomposition problem and the SAT problem
in Section II. We describe our framework for encoding Graph
Decomposition problems and breaking symmetries in such
problems in Section III, present three case studies to show the
effectiveness of these techniques in Section IV, and provide
some details of our implementations in Section V. We briefly
describe related work and compare the Graph Decomposition
problem with another recently-solved combinatorial problem
in Section VI. Finally we conclude in Section VIIL.

II. PRELIMINARIES

We first introduce the Graph Decomposition Problem. A
graph is an ordered pair G = (V,E) where V is a set of
vertices, or nodes, and E is a set of edges, which are 2-element
subsets of V. An H-decomposition of G is a partition of F
into subgraphs isomorphic to H. The copies of H are called
the blocks of the decomposition. Given a fixed graph H, the
H-decomposition problem is to determine whether an input
graph G admits an H-decomposition.

For any graph G, there are three necessary conditions for
the existence of an H-decomposition of G: first, |V (G)| >
|V (H)|; second, |E(G)| is divisible by |E(H)|; finally, the
degree of every vertex in G can be obtained as a sum of
degrees of vertices in H. In some cases, these three conditions
appear to be sufficient for such a decomposition to exist, but
more often, additional conditions are required, and in many
cases these have not yet been fully identified. Hence, the
existence of H-decompositions for many graphs is currently
unknown.

We also recall the definition of the Boolean Satisfiability
Problem (SAT). A propositional formula F is said to be



in conjunctive normal form (CNF) if it is a conjunction of
clauses, F = \,_, ,, Ci; each clause Cj; is a disjunction of
literals, C; = 1;1 V ;2 V - -+ V li,; and each literal is either a
Boolean variable x or its negation —x. For example, consider
the following formula: ¢ = (a) A (=b) A (—a V =¢) A (bV —c)
The formula ¢ consists of four clauses over three Boolean
variables a, b, ¢, where the first two clauses are unit clauses and
the other two clauses are binary clauses, that is, disjunctions
of two literals.

Throughout the paper, we will treat all Boolean variables
as 0/1 variables, where the value 1 represents True and the
value O represents False. A propositional formula F is said to
be satisfiable if there exists an assignment to all variables that
makes F evaluate to 1; otherwise, we say F is unsatisfiable.
The above formula ¢ is satisfiable because it evaluates to 1
under the assignment a = 1,b=0,c=0.

The Boolean satisfiability problem (SAT) is defined as
follows: given a propositional formula, determine whether it is
satisfiable, and if so find a satisfying assignment. Tackling this
problem has become much more efficient over the past two
decades because of the development of software tools known
as automated SAT-solvers. Hence it is now a viable approach
for many search problems to translate each instance into a
corresponding SAT instance and apply a standard SAT-solver.

To translate a Graph Decomposition problem into SAT,
it is often useful to explicitly encode information about the
cardinality of certain sets. While this can be done using
standard formulas in CNF, it is often more efficient to use spe-
cial purpose cardinality constraints, or counting constraints,
which impose a bound on the number of literals in some set
that can be assigned the value 1. Given a set of n literals
{a1,a2,...,a,} and an integer bound %, s.t. 0 < k < n, a
cardinality constraint is defined as:

n
Z >
a; = k
i=1
where =

Z is any relation from the set {<,=,>}, forming
AtMost, Equals, and AtLeast constraints, respectively. We will
refer to an instance including cardinality constraints in addition
to clauses as a SAT+cardinality instance.

In this paper, we will develop general techniques to en-
code a Graph Decomposition problem instance for an input
graph G into a SAT+cardinality instance. That is, solving
this SAT+cardinality instance is equivalent to answering the
question of whether or not there exists a decomposition of G
of the required type. Moreover, if the SAT+cardinality instance
is satisfiable, then the satisfying assignment, or the model, can
be decoded into a decomposition of G of the required type.
On the other hand, if the SAT+cardinality instance is shown
to be unsatisfiable, that will constitute a proof that such a
decomposition does not exist.

Note that both SAT and the Graph Decomposition problem
are NP-complete [7], so it is known that in principle there
will exist reductions from one to the other. Here, we propose
a simple and efficient way to translate from various kinds of

>

instances of the Graph Decomposition Problem to instances
of SAT (plus additional cardinality constraints), and show that
such translations can be used in practice with current SAT-
solving tools to solve some previously unknown cases.

III. FRAMEWORK
A. Encoding

When encoding a problem into a SAT instance, there are
generally two major questions we need to answer — what are
the variables, and what are the constraints (i.e., clauses), both
of which play a key part in correctness and efficiency.

a) Variables: We propose two types of variables to
encode Graph Decomposition problems: vertex variables and
edge variables. A vertex variable indicates whether a particular
vertex is included in a particular block, and an edge variable
indicates whether a particular edge is included in a particular
block.

Given the graphs H and G, the number of copies of H
required for an H-decomposition of G (i.e., the number of
blocks) is given by ¢ = |E(G)|/|E(H)|. For each copy of
H, we associate one copy of G with it. For a copy G; where
0 <7 < ¢, we make a variable for each vertex of GG;, denoted
by v;; where 0 < j < |[V(G)|. The variable v; ; will be set
to 1 iff the vertex j is used in the :th copy of H; otherwise, it
is set to 0. Similarly, we can make a variable for each edge of
G, denoted by v; (. for all {z,y} € E(G). The variable
Vi {a,y} Will be set to 1 iff the edge {x,y} is used in the ith
copy of H; otherwise, it is set to 0.

b) Constraints: We propose several kinds of constraints
that are useful for Graph Decomposition problems and vari-
ants. The exact restrictions required will be determined by the
exact form of Graph Decomposition problem we are encoding.

1) #vertices: A necessary condition for a graph decom-
position is that, in each copy of G, exactly |V (H)]
vertices are used. That is, for every 0 < ¢ < ¢
Sy = [V (H)|.

2) #edges: Similarly, the number of edges that is used in
each copy of G should be exactly |E(H)|. That is, for
every 0 <i <eg, Z{w,y}eE(G)Ui,{a:,y} = |E(H)‘

3) Edges being mutually exclusive and complete: By
the definition of a graph decomposition, each edge in
G 1is used exactly once. Thus, for all {x,y} € E(G),
S0 i oy = 1.

4) Degree condition: We can also look at the degree of
each vertex in H. For example, if vertex z is used in the
ith copy of G, then the number of its adjacent vertices
present in that block should be not less than the minimal
vertex degree in H and not greater than the maximal
vertex degree in H. This type of constraint is particularly
helpful when all vertices in I have the same degree.

5) Linking vertex and edge variables: if using both
types of variables simultaneously, we associate them by
generating the constraints v; {4 4} — Vi Av;y. That is,
if the edge {x,y} is present in the ith block, then the
vertices x and y have to be present there as well. Notice



that the converse is also true in the important special
case when H is a complete graph; however, in general
when vertices « and y are both present in a block, the
edge {x,y} is not necessarily part of that block.

B. Symmetry Breaking

To prove that G does not admit an H-decomposition, it
is necessary (in some way) to eliminate every possible com-
bination of subgraphs. The search space is thus (potentially)
exponentially large. Therefore, reducing the search space and
avoiding redundant work is crucial to efficient performance.

A solution symmetry in a constraint satisfaction problem
(including a SAT problem) is formally defined [5] as a permu-
tation of the set of variable-value assignments that preserves
the set of solutions. When such solution symmetries exist,
they may be applied to any solution to potentially obtain
other, equivalent solutions. Hence each solution symmetry
partitions the set of solutions into equivalence classes, which
are the orbits of the set of solutions under the action of that
symmetry [5].

A common approach to solving problems with symmetries
more efficiently is to add additional symmetry-breaking con-
straints to the problem which allow only one representative
from each equivalence class of solutions under that symmetry.
Adding such symmetry breaking constraints will not change
the satisfiability of an instance; it may however dramatically
reduce the number of models for a satisfiable instance, and it
may dramatically reduce the search space for an unsatisfiable
instance.

In the context of Graph Decomposition problems, such
symmetries can arise in several different ways. For example, in
our problem formulation each block is numbered; permuting
the blocks will simply map any solution to an equivalent
solution. We refer to this form of symmetry as block symmetry.
To break such a symmetry, we can impose extra conditions on
the solutions. For example, if we associate each block ¢ with a
0/1 vector of its vertex variables <vi70,vi71, ... »'Ui,|V(G)\—1>,
then we can add constraints that only permit solutions where
the vectors for the blocks are ordered lexicographically.

Similarly, in our formulation each vertex in G is numbered;
there may be permutations of the vertices that preserve the
edge relation. Such a permutation is known as an automor-
phism of GG. Any automorphism of G will preserve solutions
to the graph decomposition problem, and so will give rise
to a solution symmetry. We refer to this form of symmetry
as vertex symmetry, and again such symmetries can be broken
with extra constraints. For example, if we associate each vertex
j with a 0/1 vector of its variables with an entry for each block
(vo,j,V1,js -+, Ve—1,j), then we can add constraints that only
permit solutions where the vectors for vertices in the same
orbit of an automorphism are ordered lexicographically.

As we will see below, breaking both block symmetries and
vertex symmetries at the same time is similar to the problem of
breaking both row and column symmetries in matrix models,
which has been studied in other contexts [9].

IV. CASE STUDIES
A. K,.-decomposition of K,

We denote by K; the complete graph on ¢ vertices, which
is a graph where every pair of distinct vertices is connected by
an edge. Deciding whether there exists a K.-decomposition of
K, for given values of r and n, is a long-standing problem in
mathematics. We remark that finding a K,.-decomposition of
K, is equivalent to finding a 2— (n, r, 1) balanced incomplete
block design in the field of combinatorial designs [6].

When r = 2, this problem is trivial, as each individual edge
can be taken as a block. The case of » = 3 was solved in
1847 by Kirkman [15] who showed that a K3 decomposition
of K, exists iff n = 1 or 3 (mod 6). Such decompositions,
when they exist, are known as Steiner Triple Systems.

The existence problem is now completely solved for all
values of 7 up to 5, and it is partially solved for 6 < r < 9.
After that point, very little is known (for a survey, see [4]). For
the cases known to exist, SAT-solvers can in principle be used
to enumerate all solutions; for the unsolved cases, SAT-solvers
can in principle be used to decide their existence.

We will focus on the case of r = 6, that is, the problem
of Kg-decomposition of K, since this is the smallest case
where the problem of existence is not entirely solved. It is
solved asymptotically; that is, it is known that there exists a
Kg-decomposition of K, when n =1 or 6 (mod 15) and n
is sufficiently large [4].

Much work has been done to resolve the remaining cases,
including [1], [2], [3]. However, there are several finite cases
that remain unknown: the smallest is n = 51. The case of
n = 46 was shown not to exist in 2001 by an exhaustive
computational search using roughly 3 CPU years [14]. Since
then, no progress has been made. Therefore, determining
whether or not there exists a Kg-decomposition of Kj3; is of
great interest to the graph theory community, and we take this
problem as our first case study. We will also use the known
cases of the K4 decomposition problem (i.e., K1, Ko1, K31,
K36 and Kys) as benchmarks to test the efficiency of the
techniques we have developed.

a) Encoding: For this problem, because I is a complete
graph, we only need to use vertex variables. There are 1275
edges in K51 and 15 edges in K. Therefore, a K¢ decompo-
sition of K1, if it exists, would have 85 blocks, which yields
85 x 51 = 4335 vertex variables. The following constraints
encode a valid decomposition:

1) Every vertex of Kj5; is used in exactly 10 blocks; that
is, for every 0 < j <50, X84 v; ; = 10.

2) In every block, there are exactly 6 vertices used; that is,
for every 0 < i < 84, E?govi,j = 6.

3) Every edge in K51 is used exactly once; the same edge
cannot be used in two different blocks at the same time.
Hence, for all {z,y} € E(K51), Viy # iz, where 0 <
il, iz S 84, Wiy V Wy,iy \Y g ,ig V Wy ig-

The resulting SAT instance is satisfiable iff there exists a Kg-
decomposition of Kj5;, and any satisfying assignment of the
instance is associated with a unique Kg decomposition of K31.



b) Symmetry Breaking: In a complete graph, any per-
mutation of the vertices is a graph automorphism. Thus, given
an instance of K5; with each vertex indexed, we can rename
the set of vertices using any permutation of the indices. This
property of the graph induces a vast amount of solution sym-
metry in the Graph Decomposition problem. For example, to
choose the first K¢ in the decomposition, (%) = 18,009,460
equivalent choices can be made, since any choice of Kg can
be obtained from any other by renaming the vertices of K.

As noted above, finding a Kg decomposition of Kj is
equivalent to finding a 2—(51, 6, 1) block design. Finding such
a design can be modeled as finding a particular 0/1-matrix [9].
Breaking symmetries in such a model by requiring the rows
and the columns to be in lexicographical order is equivalent
to breaking block symmetries and vertex symmetries in our
framework. However, enforcing lexicographic ordering using
constraints expressed by clauses is not trivial; enforcing such
a constraint on two consecutive columns/rows of length n
requires (n? + n)/2 clauses [10].

We thus break symmetries in a much more space-efficient
way; we impose partial lexicographic order by adding unit
clauses to the formula. Notice that in a modern SAT solver,
unit clauses are often not stored as clauses; the solver im-
mediately makes an assignment for the associated variable at
the root level of the search tree, thus reducing the size of the
formula. For example, we can break the symmetry between
different choices for the first K¢ described above by simply
assigning vertices 0—5 to the first Kg block; if this assignment
does not lead to a solution, then, by symmetry, assigning any
other six vertices to the first block will not lead to a solution
either, so correctness is maintained.

Extending this idea, we obtain the symmetry breaking
shown in Fig. 1. In this figure, the complete set of variables is
arranged in a 51 x 85 matrix. Several distinct regions within
this matrix are indicated by different colors. Each colored
region indicates a particular form of symmetry breaking,
described in more detail below. Each square filled with black
indicates a variable assigned the value 1, and each square
shaded with a color indicates a variable assigned the value O.
Together, the various forms of symmetry breaking we describe
below reduce the number of unassigned variables from 4335
to 2759 and ensure that a large proportion of the rows and
columns are lexicographically ordered without needing any
additional clauses (except unit clauses).

We start by considering the purple region in columns 0-9
and across row 0. Because vertex 0 must be used ten times in
a Kg-decomposition of K51, and because the columns can be
re-ordered arbitrarily, we assign vertex O to be used in blocks
0 through 9 by placing a 1 in the first 10 cells of row O.

Next, we note that vertex 0 will have to occur in some
block with every other vertex, so we can assign vertices 1
through 50 sequentially to be in one of the first 10 blocks
along with vertex 0, with exactly 5 of them in each block. By
re-ordering the vertices and the blocks, we can assign the value
1 to precisely those variables shown in black within the purple
region. Given the cardinality constraints defined for vertices

(rows) and blocks (columns), the other variables in the purple
region must all be assigned the value 0.

Next we look at the green region in rows 1-5. In each row
within this region, each vertex must be used 9 more times.
Hence, by re-ordering the blocks we can place these 9 1s in
each row in the positions shown in Fig. 1. Again, because of
the cardinality constraints, the rest of the variables in those
rows must then be assigned the value 0.

Next we look at the light blue region in rows 6-10, columns
10-54. In any decomposition of K51, the edge {1,6} must
appear in some block. We have already made assignments that
assign vertex 1 to blocks 0 and 10 through 18. Putting vertex
6 in block 0 is not possible, as this block already contains 6
other vertices. By re-ordering equivalent blocks we can place
vertex 6 in block 10. By a similar argument, we can assign
vertex 7 to block 11, and so on for vertices 8 through 10. This
allows us to assign the diagonal sequence of 1s in rows 6-10
and columns 10-14. Similar arguments allow us to assign all
the other 1s shown in the light blue region, and then all the
remaining variables in this region can be assigned O.

Now the yellow region in the remaining columns of rows
6-10 is similar to the green region. Vertices 6 through 10 must
each be used 4 more times, hence by re-ordering the blocks
we can place the 4 remaining 1s in each of these rows in the
positions shown by black squares in Fig. 1. Again, because
of the cardinality constraints, the rest of the variables in those
rows must then be assigned the value 0.

Given the assignments thus far, the last 40 rows may be
divided into 8 equivalence classes (of 5 consecutive rows
each) that are indistinguishable from each other. Within each
equivalence class, every row (vertex) is also indistinguishable
from the others. Hence by reordering these rows we may
assume that the remaining 4 1s in block 10 are in the positions
indicated in Fig. 1. The dark blue cells in the rest of column
10 arise from the cardinality constraint on that column, while
the dark blue cells in rows 11, 16, 21, and 26 are due to the
mutual exclusion clauses preventing duplicate use of any edge.

For the orange regions in columns 11-15, we first consider
the 4 x4 submatrix whose top-left corner is vertex 12 and block
11. Because nothing distinguishes vertices 12 through 15 thus
far, we can permute these four rows arbitrarily. Since each row
and each column of this submatrix can contain at most one
1 (because each edge of GG occurs in at most one block), we
can re-order these rows to ensure that any variables taking the
value 1 are not in the shaded positions. Hence these shaded
positions can all be assigned the value 0. Similar remarks apply
to all other square submatrices within the orange region.

A similar argument applies to the dark orange-red regions
in rows 11-15, here noting that the columns in each 4 x 4
submatrix are thus far indistinguishable. We can re-order the 4
columns in each submatrix to ensure that any variables taking
the value 1 are not in the shaded positions. Hence these shaded
positions can all be assigned the value 0.

We have described this symmetry-breaking for Kj5;, but
the reasoning can be applied to produce similar patterns of
assignments for Kg-decompositions of other sizes as well.
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c) Results: By using our encoding, the instances of K-
decomposition of Kig and of K91 were proven UNSAT in
0.01 seconds with no symmetry breaking predicates needed.
Without symmetry breaking, it took roughly 100 seconds to
produce a Kg-decomposition of Ksz;; with the unit clauses
added, a solution was computed within less than a second.
Similarly, without symmetry breaking, the SAT-solver was not
able to produce an answer for K3g with a timeout of several
days; with symmetry breaking predicates, an UNSAT answer
was determined in 20 minutes. Unfortunately, the instances of
Kg-decomposition of K46 and K5; both ran out of memory
(>16GB) after roughly 14 days. However, we can still see
that symmetry breaking plays a key role in determining the
existence of a graph decomposition as n increases.

B. (Cs, Cg)-multipacking of K,

One variant of the Graph Decomposition Problem that is
also of interest to graph theorists is, rather than decomposing
a graph into isomorphic copies of one graph, to ask whether
we can decompose the graph into isomorphic copies of several
graphs. An (H;, Hs)-multidecomposition of G is a partition of
the edge set of G into isomorphic copies of H; and Hs such
that at least one copy of each graph is present.

One necessary condition for the existence of an (Hq, Hs)-
multidecomposition of G is that there must exist a positive
integer solution to hiz + hoy = |E(G)|, where h; is the
number of edges of H; and ho is the number of edges in
H,. When an integer solution does not exist, we can ask how
close we can get to a multidecomposition — the problem then
becomes to find a multipacking of the graph. An (H,, H2)-
multipacking of G is a partition of a subset of the edge set of
G into isomorphic copies of H; and Ho such that at least one
copy of each graph is present. The set of edges of G not used
in copies of Hy or Hy is called the leave of the (H;, Hs)-
multipacking of G, denoted L. The goal is to find a maximum
multipacking solution, that is, one where the leave contains
the fewest possible edges.

For our second case study we will focus on the problem of
finding a maximal (Cg, C)-multipacking of K, where Cj is
the cycle graph with six vertices, and Cg is the complement
of (g, that is, the graph on the same vertices such that two
distinct vertices of Cg are adjacent iff they are not adjacent
in Cs. Gao and Roberts solved this problem for general
cases by a recursive construction, building on several base
cases, including K17 and Ky7 [11]. No generic constructions
are known for these base cases, but they can be solved by
translating to SAT, as we will now show.

a) Encoding: Our encoding for this multipacking prob-
lem follows the general framework described above. For the
multipacking problem, we use both vertex variables and edge
variables. Because the constraints on each block are built
individually, we can encode some blocks to contain Cg while
other blocks contain Cg. Let ¢ be the total number of blocks in
the multipacking, ¢; be the number containing Cg, and ¢y be
the number containing Cs. There are three types of constraints
applied to all blocks:

1) Every edge of K, not in the leave L is used exactly
once: V{z,y} € B(K,) \ L, {200 oy = L.

2) In every block, exactly 6 vertices are used: for every
0<i<e, E;":_Olvi,j = 6.

3) For every edge used in a block, its corresponding
vertices are also present: v (4 4} — Vie A Vi y-

Blocks containing C also have the following constraints:

1) In every such block, there are exactly 6 edges: for every
0<1t<cy, E{m,y}EK”\Lvi,{m,y} = 6.

2) Every vertex used in such a block has degree two. For
example, if vertex j is used in the ith block, then exactly
two edges adjacent to vertex j are present in the ith
block.

3) Every such block is triangle free: for every triple of
vertices x, y, z in block ¢, if all the 3 vertices are present
in the block, then there has to be a pair of vertices
that do not share an edge; that is, —v;, V —w;, V
2 2V T (2 ) VW5 (2,2} VT4, {y,2) - This IS necessary
because there are two types of graphs satisfying all the
previous constraints; one is Cg, and the other is two
disconnected triangles on six vertices.

And blocks containing C have the following constraints:

1) In every such block, there are exactly 9 edges: for every
c1 <1< ¢ Bipyye K \LVi{zy} = 9

2) Every vertex used in such a block has degree three.

3) Given a triple of vertices, if all of them are present in
a block and the edges between two pairs of vertices are
missing, then the edge between the third pair of vertices
has to be present. That is, for every triple of vertices
T, Y,z in block 2, =iz V 2wy V 20, V U gy V
Vi{z,z} V Vi {y.z}

b) Results: Using the above encoding, our SAT-solver
identified a (Cs, Cs)-multipacking for K;; with 3Cs and
4Cg within a second and a (Cg, Cg)-multipacking for K7
with 18Cg and 3Cy within a minute. Notice that we did not
break symmetries here, because adding symmetry-breaking
constraints will reduce the number of solutions available, and
our goal is only to find one solution to prove existence.

C. Almost resolvable (2-star)-decompositions of K,

The Graph Decomposition Problem can be broadened to
ask for the existence of a resolvable graph decomposition.
A “parallel class” in an H-decomposition of G is a subset
of blocks which span the vertices of G, i.e. each vertex of
G is contained in the subset exactly once. A decomposition is
resolvable if the blocks can be partitioned into parallel classes.

When a resolvable decomposition is impossible due to a
mismatch in graph sizes (i.e., |[V(G)| = 0 (mod |V (H)]|)),
then we can ask for an almost-resolvable decomposition
instead. An almost-resolvable H-decomposition of a graph G
is a decomposition with classes that span all but j vertices of
G, where j < |V(H)|. In other words, each class except one
spans as many vertices as possible with copies of H, but there
may be one smaller partial class made up of “leftover” edges
and vertices.



Resolvable star decompositions have been completely char-
acterized [22], and almost resolvable (2-star)-decompositions
in which exactly one vertex is left out of each parallel class
were characterized in Yu [21], where a 2-star, or 2-path, is
the graph with three vertices and two edges *e®. However,
it remains an open problem to characterize almost resolvable
(2-star)-decompositions in which 2 vertices are left out of each
parallel class.

To complete a recursive construction proving the existence
of almost-resolvable (2-star)-decompositions for all K,,, we
needed to find almost-resolvable (2-star)-decompositions for
four sizes of K,, (n =17, 20, 29, and 32) with some additional
requirements on the form of the decompositions [20]. In each
instance needed by the proof, the decomposition not only
has to be an almost-resolvable (2-star)-decomposition, but the
vertices have to be partitioned into “regular” and “infinity”
vertices and each class of the decomposition must contain a
specific number of pure edges (between two “regular” vertices,
or between two “infinity” vertices) and mixed edges (between
one “regular” and one “infinity” vertex).

a) Encoding: As H in these decompositions is not a
complete graph, it is not sufficient to use only vertex variables,
as assigning vertices to the blocks is insufficient to specify
the edges of the block. Our encoding uses a variation on edge
variables: instead of creating a variable indicating whether a
given edge was included in a given block, each variable instead
represented whether or not an edge was included in a given
class. This means that edges are not assigned to particular
blocks but rather to a particular class of blocks. With additional
constraints, we ensured that the edges included in a class do
in fact form 2-stars within blocks. The constraints were as
follows:

1) Mutual exclusion + completeness: Every edge must be
included in exactly one class [item number 3 in the list
of constraints in Section III-A].

2) Vertex degrees: Every vertex can have at most 2 inci-
dent edges included in a given class [item 4 in III-A].

3) Edge counts: For any class other than the unique
partial class, the number of included edges must be
floor(|V(G)|/|V(H)|) x |E(H)|, and the partial class
must include as many edges as are “leftover” [similar to
item 2 in III-A].

4) 2-Star decomposition: For any edge e included in a
class, there must be exactly one other edge in that class
sharing a vertex with e. (If every edge is incident on
exactly one other included edge, then the class must be
formed of 2-stars, as required.)

5) Pure and mixed classes: For the recursive construction,
certain classes in a decomposition can contain no mixed
edges, and certain classes can contain no pure edges
between two “infinity” vertices. This is accomplished by
forcing any such edge variables within the given classes
to be 0.

These constraints are satisfiable iff there exists an almost-
resolvable (2-star)-decomposition of a given K, that satisfies
the requirements of the recursive construction.

b) Symmetry Breaking: While not all vertices are equiva-
lent in these instances due to the partition between the regular
vertices and the infinity vertices, they are still equivalent within
each part. Therefore, we broke the vertex symmetries within
each part by forcing one class to include 2-stars “in vertex
order” within each set of vertices. Specifically, for the &
regular vertices Vq, Vo, ..., Vi, edges were assigned to 2-stars
as (V1-Vo-V3), (V4-V5-Vg), ete., and the same ordering of 2-
stars was enforced within the infinity vertices.

¢) Results: We encoded the four instances for which
solutions were needed (K17, Ko, Kog, and K3o) with the
above encoding. The formulas ranged in size from 1,904 to
12,400 variables and from 843,100 to 22,111,674 constraints.
We were able to solve two of the four by finding decom-
positions for each: the K;7 formula was solved in roughly
one minute, while K5y took several hours. Removing the
symmetry breaking constraints in this case was significantly
detrimental to performance (the K7 instance took roughly 25
times longer without them). K59 and K39, both substantially
larger formulas, remain unsolved.

V. TooLs

We solved the cardinality instances arising from these en-
codings with the MiniCard constraint solver [17], an extension
of MiniSat [8] that handles cardinality constraints natively
(i.e., as opposed to encoding them into CNF). We had to
make one extension to MiniCard to handle implied cardinality
constraints needed for encoding the “degree condition” (item 4
in section III-A), which was used in the multipacking case
study (section I'V-B).

While implications in CNF can be handled easily (the
implication y — C, where C is a disjunction, is equiv-
alent to —y V C), an implied cardinality constraint like
y — AtMost(lits, bound) has no such trivial construction. By
extending the definition of a cardinality constraint to allow
duplicate literals with a certain semantics, however, an impli-
cation can be encoded within a single constraint. Specifically,
we modified MiniCard to allow duplicate literals within a
cardinality constraint such that each contributes separately to
reaching or exceeding the constraint’s bound. For example,
AtMost([x1, 1, x1, T2, x3],4) (note that the literals are now a
multiset, not a set) is then equivalent to 3z1 + x2 + x5 < 4.

With this modification, an implication of an AtMost con-
straint with k literals and bound b:

Yy — AtMOSt({ll, lo, ... ,lk}, b)

can be encoded as a single AtMost with a bound of k£ and
with k£ — b copies of y added to the implied AtMost’s literals:

AtMost([y] x (k — b)Y W [, 1o, . .., lu], k)

This new constraint is satisfied if y is False, as the number
of remaining literals is equal to the constraint bound. If y is
True, however, the effective bound is reduced by the number
of y literals, and hence the bound on the remaining k literals
is k — (k — b) = b, making the induced constraint equivalent
to the original AtMost constraint in that case.



VI. RELATED WORK

To the best of our knowledge, solving Graph Decomposition
problems using SAT has not been directly studied; however,
there has been previous work on the closely related problem
of finding balanced incomplete block designs (BIBD) [18].
BIBD problems have been widely used as benchmarks to
evaluate the efficiency of newly-developed symmetry-breaking
techniques [9], [12], [19]. However, none of this work was able
to produce new results for unsolved cases.

Many papers have sought to tackle other hard combina-
torial problems using SAT (for a survey, see [23]), and one
recent success is that the Boolean Pythagorean Triples (BPT)
problem was completely solved by SAT-solvers [13], closing
a problem that had been open for over two decades. Here,
we briefly discuss some distinctions between BPT and Graph
Decomposition (GD) problems.

A triple (a, b, c) € N3 is called Pythagorean if a®+b2 = 2.
The BPT problem asks, given a set of integers {1...n}, whether
it is possible to partition the set into two subsets such that no
Pythagorean triples are present in the same subset.

We note that Graph Decomposition (GD) problems can be
more complex than the BPT problem in the following ways:
1) BPT only needs to partition the set into two parts, while
GD problems often seek a partition into many parts, and
therefore must explore more possibilities for the partitioning;
2) the Pythagorean triples are all known beforehand and the
only constraint is to ensure no such triple is present in the
same part, while a GD problem often comes with a variety
of requirements in addition to mutually exclusive edges, such
as resolvability; 3) most importantly, BPT only has very few
symmetries — an integer can either be in one or the other part
— but the symmetries in a GD problem can grow exponentially
with the number of vertices.

VII. CONCLUSIONS & FUTURE WORK

We have developed a framework to encode the Graph
Decomposition problem and investigated efficient forms of
symmetry breaking for such problems. Two kinds of associated
Boolean variables were presented: vertex variables and edge
variables. Using vertex variables alone can result in small
instances but is often not sufficient to make a sound encoding
for more complex forms of Graph Decomposition problems.

While there is no general technique to encode any arbitrary
Graph Decomposition problem, we presented several general
forms of constraints that can be combined to flexibly deal with
many standard variants of such problems. By applying this
framework, we showed a substantial improvement in the solu-
tion time to find a Kg-decomposition of K36 and successfully
derived new (Cj, Cs)-multipackings and almost resolvable (2-
star)-decompositions for certain complete graphs.

Many avenues are open for further research. For example,
we have shown that in the SAT formulation of the problem
of finding a K,-decomposition of K, many symmetries can
be broken using unit clauses, and there is room for further
extension and automation of this approach. Although the
question of the existence of a Kg-decomposition of K is still

out of reach, it may be possible to establish non-existence by
considering an abstraction of the SAT formulation described
here or by adapting the Cube-and-Conquer (C&C) approach
used in [13] to prove unsatisfiability for this instance.
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