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Abstract—The problem of enumerating minimal unsatisfiable
subsets of a constraint system (MUSes) is a natural candidate for
parallelization: as an enumeration problem, it allows for concur-
rent solving of independent subproblems, and as a typically in-
tractable problem w.r.t. completion (which parallelization cannot
transcend), the speed or rate of output (which parallelization can
improve) is often the most important performance characteristic.
In this work, we explore the parallelization of partial MUS
enumeration (aiming to enumerate some MUSes within given
resource constraints) via two extensions to a recently-developed
sequential algorithm — one employing an existing parallel single-
MUS extraction algorithm, the other parallelizing the entire
enumeration algorithm — and we discuss variants and implemen-
tation details as well. Results of experiments run with up to 16
cores show that the full parallelization of the entire enumeration
algorithm scales well, reaching an average of 92% of perfect
scaling with 4 cores and 70% at 16 cores. Evaluating variants
and implementation details illuminates how those choices impact
performance, including a potentially counterintuitive result that
sharing results between threads to avoid duplicate work is not
beneficial in the general case.

I. INTRODUCTION

With multi-core processors now commonplace, algorithms
must be parallelized to make full use of the computing
resources available in a given system. Today, four-core proces-
sors are typical in consumer-level machines, 16-core configu-
rations and beyond are common in servers and workstations,
and core counts will continue to increase as CPU manufac-
turing processes improve. Compared to a sequential algorithm
running on a single core, a parallel algorithm on a k-core
machine could provide up to k times the performance on
average, and while such perfect scaling is not often achievable,
it provides an ideal against which parallel algorithms can be
measured.

In this work, we explore parallel algorithms for the partial
minimal unsatisfiable subset enumeration problem (partial
MUS enumeration). Given an unsatisfiable constraint system,
an MUS of that system can be seen as an explanation of its
infeasibility, and MUSes are used in a wide range of appli-
cations (for a survey, see [3]). Enumeration problems with a
large search space like MUS enumeration lend themselves well
to parallelization; enumeration can often be decomposed into
many independent subproblems, which often allows parallel
algorithms to exhibit better scaling, making efficient use of
multiple cores. Additionally, MUS enumeration is typically
intractable with respect to completion — a constraint system
with n constraints can have on the order of 2" MUSes — and

so applications of MUSes tend to not depend on finding all
MUSes, but rather the rate of output or the number produced
within some time limit is of greatest importance.

We base our work on the MARCO algorithm [7], a recently-
developed sequential MUS enumeration algorithm. MARCO
produces MUSes at a high initial rate, making it well suited
to applications for which multiple MUSes are desired quickly,
as compared to an approach like the CAMUS algorithm [8]
that can complete the enumeration in less time when complete
enumeration is tractable but more often fails to return any
MUSes within a reasonable time limit.

MARCOQO can use any single-MUS extraction algorithm
as a black-box solver, and most of its runtime is spent in
running that solver; therefore, we investigate one approach to
parallelizing MARCO that employs an existing parallel single-
MUS extraction algorithm with no changes made to MARCO
itself. This is convenient, but its scaling relies solely on that
of the MUS extraction algorithm. Therefore, we have also
explored an extension of MARCO that parallelizes the entire
algorithm itself in a flexible and highly scalable fashion.

We should note that MARCO simultaneously enumerates
minimal correction subsets (MCSes) as it produces MUSes,
and there has been recent interest in exploring this problem
further [9]. While the parallelization we present improves
MCS enumeration as well, that is not the aim of this work, and
we focus primarily on performance increases in enumerating
MUSes alone.

Three recent articles have explored MUS enumeration be-
yond MARCO. Bacchus and Katsirelos [2] present a new
algorithm for single-MUS extraction based on the duality
between MCSes and MUSes, and they integrate this algorithm
into MARCO to reduce the latency of computing an MUS.
Then, they extended the new single-MUS extraction algorithm
to find a “collection” of MUSes incrementally [1]. Compared
to MARCO iteratively finding each MUS individually, their
algorithm performs local search to find more MUSes once the
first is computed. For the task of partial MUS enumeration,
when enumerating MUSes within a set time limit, their algo-
rithm produced more MUSes than MARCO more often (170
instances) than not (82 instances). Zielke and Kaufmann [15]
directly extend MARCO to produce MCSes faster with the
goal of using those to improve the enumeration of MUSes.
Their algorithm produces far more MCSes than MARCO, but
in terms of MUS output, the results are mixed. It produces
more MUSes than MARCO in 55% of their test cases, but
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the performance loss relative to MARCO in the other 45%
is greater than the gain in those 55%. As we will see, these
and other enumeration algorithms could be integrated into the
parallelization we present here; however, as these approaches
add complexity to MARCO and some have produced mixed
results on the task of MUS enumeration, we do not incorporate
them into the evaluation here, instead focusing on parallelizing
the algorithm underlying all of them.

MARCO uses a SAT solver for maintaining internal state
and directing its search (separate from the constraint system in
which it is enumerating MUSes), and it would be possible to
use a parallel SAT solver [10] as a drop-in replacement there as
well. Usually, the time spent in this solver is a small fraction
of MARCO’s total runtime, however. Even in the unlikely
case that the parallel SAT solver achieves perfect scaling,
the impact on the entire algorithm’s performance would be
minimal, and so we do not explore this option in this work.

To the best of our knowledge, no previous work has pre-
sented a parallel algorithm for the MUS enumeration problem.
The closest work of which we are aware is by Jannach,
et al. [5], who parallelized an algorithm for model-based
diagnosis (MBD). After mapping concepts from the diagnosis
domain into our own (“diagnosis”—MCS; “conflict”—MUS),
their work can be seen as an algorithm for enumerating all
MCSes of a particular type of constraint system, finding and
using some MUSes during execution. Thus there are some
connections, but the focus is different and the work does not
directly apply to the problem of interest here.

In the remainder of this paper, we first set out formal
definitions in Section II, followed by a brief overview of
the sequential MARCO algorithm in Section III. Addressing
the “simple” parallelization of MARCO, existing work on
parallel single-MUS extraction is covered in Section IV. We
describe the full parallelization of MARCO in Section V,
present experimental results in Section VI, and conclude in
Section VII.

II. PRELIMINARIES

We are interested in constraint-agnostic approaches for ana-
lyzing infeasible constraint systems that can be applied to any
type of constraints. Hence, here we define a constraint system,
C, without specifying the type of constraints it contains.
Consider C' as an ordered set of n abstract constraints, where
C = {C1,Cs,...,Cy, } over a set of variables. Each C; places
some restrictions on values that can be assigned to certain
variables. C' is satisfied by an assignment to the variables of
C if all restrictions of every C; are met by the assignment; we
call such an assignment a model. We say C' is satisfiable or
SAT if such an assignment exists; otherwise, it is unsatisfiable,
infeasible, or UNSAT. When a constraint system is determined
to be UNSAT, it is often useful to perform further analyses on
its infeasibility.

One common way to analyze an unsatisfiable constraint
system is to extract the following types of subsets with
particular properties:

o A minimal unsatisfiable subset (MUS) of a constraint
system C'is a subset M C C such that M is unsatisfiable
and Ve € M, M \ {c} is satisfiable.

e A maximal satisfiable subset (MSS) of a constraint sys-
tem C' is a subset M C C such that M is satisfiable and
Ve e C'\ M, M U {c} is unsatisfiable.

o A minimal correction set (MCS) of a constraint system
C'is a subset M C C such that C'\ M is satisfiable and
VS C M,C\ S is unsatisfiable.

As a concrete example, we can consider the Boolean satis-
fiability problem, as it is also relevant to the internals of the
algorithms we will be discussing. Such a constraint system C'
is defined over a set of Boolean variables and represented as
a Boolean logic formula in conjunctive normal form (CNF),
where C' is a conjunction of clauses, C' = A,_; , C;; each
clause C; is a disjunction of literals, C; = ;1 VIia V- -V ilig,;
and each literal is either a Boolean variable x or its negation
-z,

III. SEQUENTIAL MUS ENUMERATION (MARCO)

This work builds on the sequential MARCO algorithm
for MUS enumeration [6], [7], [11]. MARCO analyzes an
infeasible constraint system C' by exploring its power set
P(C). MARCO exploits the connection between the power set
of a constraint system and Boolean algebra; it uses a Boolean
formula to keep track of the subsets whose satisfiability has
been determined to reduce the future search space.

Specifically, the MARCO algorithm builds a function, F :
P(C) — {0,1}, that maps each element of the power set
of C to False (already explored) or True (unexplored). The
function F thus takes a subset, seed C C, as an input, and it
returns 1 if and only if the satisfiability of seed is unknown
and remains to be checked, 0 otherwise. Therefore, any model
of F indicates an unexplored subset of C'. Once an MUS/MSS
is found, an appropriate blocking clause is added to F. Thus,
this formula keeps track of which subsets have been explored
and which have not.

The MARCO algorithm iteratively solves F to identify
unexplored subsets. Each such subset found is checked for
satisfiability using a constraint solver. If the subset is UN-
SAT, MARCO calls a shrink subroutine to extract an MUS;
otherwise, if MARCO is run in its optimal configuration, the
SAT subset is guaranteed to be an MSS. After an MUS/MSS
is computed, its corresponding blocking clause is added to
F. MARCO maintains two solvers to implement these pro-
cedures: one solver, Map, holds F and generates models of
it, and the other solver determines the satisfiability of subsets.
MARCO terminates when F is no longer satisfiable; at that
point, the satisfiability of every subset of C' is known and all
MUSes/MSSes have been found.

IV. PARALLEL SINGLE-MUS EXTRACTION (RELATED
WORK)

While we are aware of no other work on enumerating
MUSes in parallel, parallel algorithms for single-MUS ex-
traction have been presented, and one simple approach to



parallelizing partial MUS enumeration would thus be to use
a parallel MUS extraction algorithm as the shrink subroutine

in MARCO.

Wieringa [13] first developed a parallel MUS extraction
algorithm, which we denote by TarmoMUS in this paper. In
a later paper, Wieringa and Heljanko [14] presented a parallel
incremental SAT solver, Tarmo, and used the MUS extraction
problem as a case study to show the effectiveness of their
solver. Belov and Manthey [4] further explored the paralleliza-
tion of MUS extraction with different levels of flexibility. They
investigated the implementation and communication between
threads in detail, and they presented a parallel version of the
MUSer2 MUS extraction algorithm named pMUSer2.

Both TarmoMUS and pMUSer2 are built on the deletion-
based approach to extracting an MUS. This approach iter-
atively removes each clause from an unsatisfiable Boolean
formula and tests its satisfiability after removing the clause.
If the formula becomes satisfiable, the removed clause is
necessary for the MUS; thus we return it to the formula
and move to the next constraint. If the formula remains
unsatisfiable, the removed constraint is not needed for the
MUS, and it is discarded. Wieringa developed TarmoMUS,
built on top of an external SAT solver, Tarmo. Tarmo is made
to solve in parallel multiple copies of a given formula with
different clauses enabled and disabled. Due to the similarity
between the formulas it is solving, Tarmo can share informa-
tion between the parallel solvers, resulting in an efficiency
gain. TarmoMUS has two master threads: one creates the
formulas with different clauses removed and passes them to
Tarmo, Tarmo tests the necessity of those clauses potentially
in parallel, and the other thread receives results from Tarmo
and performs model rotation to identify further necessary
clauses.

Belov and Manthey explored a variety of choices one can
make when parallelizing deletion-based MUS extraction. The
first choice is whether the algorithm executes asynchronously
or synchronously. In the synchronous execution, the master
thread waits for all worker threads to finish the current level of
the iteration before assigning any of them new task, whereas in
the synchronous execution, the master processes results as they
are sent from any worker thread. Another choice comes from
the work distribution — whether all workers check the necessity
of the same clause (benefiting from the different paths each
solver may take through the search space) or each gets a
different clause to test. The last choice regards communication,
whether workers share learned clauses between themselves or
not. Additional learned clauses received from other solvers can
improve a solver’s performance, but this has the downside of
added delays for communication. Across all configurations,
they showed that the best performance is obtained by work-
ers checking different clauses in a formula, sharing learned
clauses, and using asynchronous execution. Their results show
pMUSer2 outperforms the previous approaches, and thus we
consider it the state of the art in parallel MUS extraction.

V. MARCOS: PARALLEL MUS ENUMERATION

Our parallelization of MARCO is dubbed MARCOs (an
acronym for Mapping Regions of Constraints Simultaneously,
as well as the “plural” of MARCO - it is pronounced as the
name “Marcos”). MARCOs features limited communication
between threads, resulting in robust scaling over many cores
without substantial overhead. Fundamentally, it exploits the
fact that each call to shrink, where the bulk of MARCO’s time
is spent, can be executed independently in parallel. MARCOs
identifies multiple unexplored seeds simultaneously, and each
UNSAT seed can be passed to shrink to extract an MUS in
parallel with others. The sole required communication is the
reporting of results (MUSes and MSSes generated). MARCOs
employs a master-worker architecture, with a master thread
that initializes worker threads and manages the communica-
tion:

1) The master thread creates k worker threads (one per
core) running separate copies of the sequential MARCO
algorithm.

2) Worker threads send generated results (MUSes and
MSSes) to the master thread as they are found.

3) The master thread filters duplicate results and outputs
any new results it has not yet received.

4) As soon as any one thread reports that the enumeration
is complete (no unexplored subsets remain), the master
thread terminates the algorithm.

The communication required can be accomplished by
passing messages via unidirectional IPC mechanisms. It
requires no shared-memory data structures, so no locks
or additional synchronization mechanisms are necessary. In
our implementation, we create the threads with Python’s
multiprocessing library and IPC is performed with
multiprocessing.Pipe objects.

The correctness and completeness of MARCOs depend
directly on its worker threads. Completeness and correctness
proofs for MARCO are found in [7]. Additional implementa-
tion details as well as variants and optimizations follow.

A. Checking for Duplicates

To check whether each received result has been previously
computed by other workers, the master thread must maintain
a set of all results with fast lookups. In our tests, the memory
required to store these results directly in a standard set data
structure was prohibitive. Instead, we found that reusing the
“map” concept from MARCO was far more memory efficient
while retaining adequate speed. Specifically, the master thread
maintains its own Map solver for a formula F. For each
result received from a worker, the master thread evaluates
whether the assignment corresponding to that MUS/MSS is
a model of F. If it is, the MUS/MSS is new. The master
thread then outputs it as a new result and adds a blocking
clause as appropriate to its copy of F to mark it as explored.
If the received result does not correspond to a model of F, the
master thread simply discards it and waits for the next. Note
that the master thread can only filter out duplicate results after



they have been received, and thus workers could still waste
time in computing them.

B. Avoiding Duplicate Work: Randomization

An additional way to prevent MARCOs from generating
duplicate results is to bias worker threads to work on different
tasks in the first place. To accomplish this, when first initializ-
ing the Map solver and the constraint solver in each worker,
we randomize the initial activity of the variables in each solver,
thus randomizing the solvers’ variable orderings.

Though the first maximal seed returned by the Map solver
for each worker will be the same — the entire constraint
system — the randomized constraint solvers are likely to extract
different UNSAT cores from it; therefore, all worker threads
could have different seeds passed to the first call to their
shrink subroutines. And in the Map solvers, randomization
can lead each worker thread to generate different seeds even
when they have equivalent F formulas. We show in Section VI
that this randomization is crucial for good performance and
scaling.

C. Avoiding Duplicate Work: Sharing Results

A further method for avoiding duplicated work between
threads is to share information between the worker threads in
addition to the one-way communication to the master. When
the master receives each new result, it can send the MUS/MSS
to all workers other than the one that produced that result.
Workers can then block each received result in their own Map
solvers, marking the corresponding subsets as explored.

We initially placed results received by each worker in a
queue that the worker would check before producing each
new seed, which is when the shared results are most useful.
However, a worker may spend a very long time in a single call
to the shrink subroutine, and a large number of results can
be received by the worker in that time, potentially exceeding
memory limits. To avoid this, we created a second thread for
each worker that handles incoming results concurrently with
its normal execution of the MARCO algorithm. This requires
synchronizing the Map solver with thread-safe mutexes, as
the solver object is now shared between two threads.

Note that this method for avoiding duplicate work intro-
duces a trade-off: any saved work comes at the cost of
increased overhead due to the additional communication and
synchronization. We show in Section VI that this trade-off
generally resolves in favor of not adding this sharing, due
primarily to the fact that duplicate results are rare.

In addition to the above strategy for using shared results,
a worker thread could identify when a newly-received result
might make its current work redundant. For example, if a
worker is running shrink on a seed that is a superset of a
just-received MUS, it may produce the same MUS again. Even
in this situation, the call to shrink could produce a different
MUS, however, as each unsatisfiable seed is likely to contain
multiple MUSes. Given this uncertainty along with the rarity
of duplicate results overall and the fact that receiving a result
subsuming the current work at any point is even more rare,
we chose not to explore this option.

VI. EXPERIMENTAL RESULTS

We investigated the performance and scaling of the proposed
algorithms across a range of instances on 2 to 16 cores. We
first evaluated the variants of MARCOSs proposed in Sec-
tion V, specifically investigating the effects of randomization
and result-sharing among worker threads and determining the
best variant based on experimental results. We then compared
the best variant of MARCOSs to the “simple” parallelization
of MARCO obtained by using the parallel MUS extraction
algorithm pMUSer2 [4] as the shrink subroutine (Section IV)
— referred to as MARCO(pMUSer) in this section. In all
cases, we focus on the number of MUSes that an algorithm
produces within a set 10 minute time limit, as the motivation
for parallelization is primarily to increase this rate. As the
output rate of MARCO has been shown to remain consistent
during its execution [7], 10 minutes is sufficient to characterize
the performance of the tested algorithms on each instance.

We collected a large set of benchmarks from sources includ-
ing the MUS track of the 2011 SAT competitionl, automotive
product configuration [12], and circuit diagnosis applications.
To limit over-representation of any particular type of instance,
we grouped benchmarks into “families” by filename and
randomly selected five instances from each family; when only
five or fewer were available in a family, all were selected. This
selection produced a set of 309 unsatisfiable Boolean CNF
benchmarks ranging in size from 26 to 4.4 million variables
and from 70 to 16.0 million constraints (clauses).

From these 309, we excluded from our analysis the 25 in-
stances for which none of the tested implementations were able
to produce any MUS. Additionally, because we are focused
on the partial MUS enumeration problem, most applicable
when complete enumeration is infeasible, we also excluded 21
instances for which sequential MARCO was able to complete
the enumeration within the given time limit. For the problem of
complete MUS enumeration, it is shown in [7] that CAMUS
generally outperforms MARCO; thus, in applications where
complete enumeration is tractable, MARCO would not be the
algorithm to use. And as parallelization is only able to offer
constant-factor speedups, it will not enable complete enumera-
tion in many more instances than a sequential algorithm; in our
experiments the parallel algorithms completed enumeration in
only one more instance than sequential MARCO. The result
of this filtering was a set of 263 unsatisfiable instances for
which sequential MARCO fails to complete the enumeration
and at least one algorithm produced at least one MUS.

We ran all experiments on Amazon Elastic Compute Cloud
(EC2) “c3.8xlarge” instances with Intel Xeon E5-2680 v2
processors and 60GiB of RAM. Each machine had 16 pro-
cessor cores and 32 logical cores due to hyperthreading;
each execution of an algorithm was specifically allocated and
restricted to k cores (and their corresponding 2 - k£ logical
cores) for some value of k between 1 and 16 as noted by
the -k suffix appended to algorithm names below. MARCOs
was run with k worker threads in addition to the master,

! Available: http://www.cril.univ-artois.fr/SAT11/
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Fig. 1. Cumulative distribution plots of normalized MUS output counts for
MARCOSs variants. Both cases are normalized to MARCOs with no result-
sharing and with randomization on each of 2, 4, 8, and 16 cores.

and MARCO(pMUSer) ran pMUSer2 with & threads. Every
execution of an algorithm on a single instance was given a
timeout of 600 seconds and a memory limit of 3500 - K MB
of RAM (hence from 3.5GB for the sequential algorithm up
to 56GB for a 16-core parallel execution).

A. MARCOs configurations

We first analyzed how the variants of MARCOSs proposed in
Section V affected performance. Specifically, we evaluated the
effects of randomization and of sharing results between worker
threads. We found that the best configuration used randomiza-
tion, as expected, but sharing results between worker threads
was unexpectedly detrimental to performance in most cases.

In Fig. 1, we show MUS output counts for variants of
MARCOS run on 2, 4, 8, and 16 cores normalized to the

number output by the best configuration on the same number
of cores. Each line shows ratios of the output counts of a
variant to the best configuration, both run on k cores. The data
are sorted to produce cumulative distribution plots (similar
to a “cactus plot”) that illustrate the distribution of those
values. Each point below y = 1.0 represents an instance for
which the variant produces MUSes more slowly than the best
configuration, while those above represent instances where the
variant is faster.

In Fig. la, we examine the effect of removing randomiza-
tion. Without randomization ([-rand]), sharing results becomes
critical — otherwise each worker thread will make the same
choices and produce the same results, producing no benefit
from parallelization — therefore, the specific variant examined
also enables result-sharing ([+share]). It is clear that except
for a few instances where the variant without randomization is
able to generate result more quickly, randomization provides
benefits in most cases, with the non-randomized variant being
slower in roughly 70% of all instances, often by an order
of magnitude. The effect becomes more pronounced as the
number of threads is increased.

Fig. 1b presents data examining the effect of result-sharing
(and with randomization enabled). Intuitively, enabling result-
sharing between worker threads will help avoid duplicate,
redundant work and thus boost the performance: without
sharing results, all workers will have to compute the complete
set of results independently, whereas with sharing each result
only needs to be found by one worker. In our experiment, the
effect on performance is in fact the opposite. In this case again,
roughly 70% of instances exhibit decreased performance with
the variant, though the effect is not as drastic as with disabling
randomization. This implies that the cost of sharing results
(the increased communication overhead) generally outweighs
any benefit it provides. Moreover, even when the number of
worker threads is increased to 16, the relative performance
of the result-sharing variant decreases, despite the fact that
duplicate results will be more frequent with more simultaneous
workers.

To help explain this, Fig. 2 shows a reverse cactus plot
of the MUS duplicate rates (#duplicate MUSes / #total MUS
results) for MARCOs without result-sharing on 2, 4, 8, and 16
cores. The number of duplicate MUSes puts an upper bound
on the amount of benefit result-sharing can provide; if there
are few duplicate MUSes, there is little redundant work for
result-sharing to possibly prevent. In most instances, there are
very few duplicate MUSes. For each of 2, 4, 8, and 16 cores,
the number of instances with fewer than 10% duplicate MUSes
is 93%, 86%, 85%, and 79% of the instances, respectively. In
the worst case, when run on 16 cores, the median duplicate
rate is 0.39%, and in 38% of instances no duplicate MUSes
are produced at all.

Our explanation for this is that the search space is so vast in
most cases (recall the number of MUSes can be exponential in
the size of the instance) that randomization alone is sufficient
to prevent most duplicate work early in the enumeration.
Indeed, results on the instances for which enumeration can be
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Fig. 2. Reverse cactus plot of MUS duplicate rates for MARCOs with
randomization and no result-sharing on 2—16 cores.

completed suggest that result-sharing has a beneficial impact
on total runtime in those cases; when the enumeration nears
completion and the unexplored seeds become fewer, duplicate
work will become more common and sharing results will
increase efficiency. For most applications of partial MUS
enumeration, however, this will not happen in any reasonable
time frame due to the sheer size of the result set, and so sharing
results cannot produce enough benefit to outweigh its cost.

B. Costs and Benefits of Result-Sharing

We investigated result-sharing further by looking separately
at the effects of 1) sending results to worker threads and
2) incorporating those results into each worker’s Map solver.
We ran an experiment with an “intermediate” implementation
between the result-sharing and no result-sharing variants: in
this implementation, the master thread sends all results to all
worker threads, but the worker threads do not actually add
those results to the Map solver. We call this variant result-
sending” or [+send]. With this, we can measure the cost of
the communication alone, separately from the cost and benefit
of integrating them into each worker’s Map.

The following table summarizes the performance differ-
ences between the no-result-sharing, result-sharing, and in-
termediate (“result-sending”) variants in terms of MUSes
produced. In the table, we present the geometric mean of
the ratios between a variant’s MUS output count and that
of MARCOs without result-sharing for each of 2, 4, 8, and
16 cores. Fig. 3 presents scatter plots of the MUS output
counts for these variants on 16 cores, where the effects of
communication and sharing are largest.

#MUSes output - MARCOs-16

10" 1 10 10° 10° 10* 10°

#MUSes output - MARCOs-16 [+send)]
(a) MARCOs [+send] vs MARCOs with no result-sharing.

10

10

#MUSes output - MARCOs-16 [+send]

1 10 10 10
#MUSes output - MARCOs-16 [+share]

(b) MARCOs [+share] vs MARCOs [+send].
Fig. 3. Scatter plots comparing #MUSes produced.

10

average ratio to MARCOs-k

k [+send] [+share]
2 0.979 0.962
4 0.964 0.919
8 0.951 0.907
16 0.818 0.786

From the table, we can see that just sending the results
has a fairly small effect (a 2-5% reduction in output) for 2
through 8 cores, while at 16 cores the communication results
in a roughly 18% reduction in output. Fig. 3a, showing detail
for the 16-core case, shows that even at 16 cores, the majority
of instances show little effect from the communication, with
most points lying very near the diagonal. In our experiments,
the largest performance reductions occur when the size of
each result is extremely large (when the MUSes/MSSes have



hundreds of thousands of clauses or more). Note that there
is no clear correlation between number of results sent and
the communication cost; many instances with hundreds of
thousands of results sent show little difference in total output
whether they are sent or not.

Comparing the overall performance of sending the results
([+send]) and using those sent results ([+share]) isolates the
effect of using the results. From the table again, we can see
that using the shared results produces an additional decrease in
performance. Fig. 3b conveys this as well, with mixed results
between the two variants. This suggests that adding incoming
results to the Map solver takes enough time that it often
outweighs the benefit of possibly preventing those results from
being computed again in the future. Even if sending the results
were “free,” result-sharing would slightly reduce performance
overall. This is again explained by the duplicate rate data; the
cost of sharing results is always present here, even though it
can only provide a large benefit in a small set of instances.

C. Scaling across 2 to 16 cores

We examined the scaling of the best variant of
MARCOs (with randomization and no result-sharing) and of
MARCO(pMUSer). Fig. 4 presents cumulative distribution
plots of normalized MUS output counts (as in Fig. 1) to
provide a clearer view of each algorithm’s scaling. The data
here are ratios of an algorithm’s output count on k cores to
the output count of sequential MARCO on a single core.
Perfect scaling would produce k times the outputs of the
sequential algorithm, and this is shown in the charts by the
labeled horizontal lines. There are a few instances where
a parallel algorithm generated some results and sequential
MARCO found nothing. Those data points lie at infinity, as
the denominator of the ratio is zero in those cases.

Here we can see that as the number of cores increases,
the MUS output counts grow proportionally, but diminishing
returns are apparent. Additionally, we can see that MARCOs
is much closer to perfect scaling than MARCO(pMUSer) is:
MARCOs is more often near k times sequential’s perfor-
mance, more often above k times, and almost never below
sequential’s output count.

We summarize the scaling results in the following table.

MARCOs-k MARCO(pMUSer-k)
as % of as % of
average ratio perfect  average ratio perfect
k  to sequential  scaling  to sequential  scaling
2 1.804 90.2% 1.308 65.4%
4 3.660 91.5% 1.647 41.2%
8 6.589 82.4% 1.702  21.3%
16 11.163 69.8% 1.706 10.7%

In the table, we present the geometric mean of the ratios
shown in Fig. 4 for each algorithm and for each of 2, 4, 8, and

16 cores”. From the average ratios, we compute the percentage
of perfect scaling that each represents. The data show that
MARCOs reaches over 90% of perfect scaling when run on 2
or 4 cores, and it is still at nearly 70% on 16 cores. The average
performance of MARCO(pMUSer) does not improve much
after 4 cores, and its scaling is worse than that of MARCOs at
all core counts. The empirical analysis of pMUSer2 presented
in [4] shows results consistent with these, both in the rough
magnitude of the performance improvements up to 4 cores and
the minor gain going from 4 to 8.

Overall, MARCOs scales well, making efficient use of
multiple cores for enumerating MUSes. Parallelizing MARCO
by plugging in a parallel MUS extraction algorithm, on the
other hand, exhibits much worse scaling due to the difficulty
of parallelizing the task of extracting one MUS.

VII. CONCLUSIONS & FUTURE WORK

We have explored parallel approaches to the partial MUS
enumeration problem, presenting two different extensions of
MARCO, a recently-developed sequential MUS enumeration
algorithm. The first approach is a simple drop-in replacement
of the sequential MUS extraction tool used in MARCO with
a parallel version, pMUSer2 [4]; this provides a simple,
immediate parallelization of the most time-consuming step in
MARCO. The second is a complete parallelization of MARCO
itself, which we have dubbed MARCOs, alongside which we
have discussed several implementation choices that can have
a large impact on its performance.

Experiments show that employing pMUSer2 in otherwise-
unmodified MARCO fails to scale well, suffering from the
fact that parallelizing single-MUS extraction is difficult, and
thus far it has not come close to perfect scaling. On the other
hand, MARCOs avoids this problem by extracting multiple
MUSes simultaneously, and results show that it scales well,
consistently reaching a large fraction of the performance of
perfect scaling. Experiments designed to determine the impacts
of various implementation choices show that randomization is
crucial to achieving good scaling and that the randomization
then makes sharing results between threads to avoid redundant
work unnecessary in most cases.

As this is the first work on parallelizing partial MUS
enumeration, many avenues are open for further research.
MARCOSs reaches a large percentage of the performance of
perfect scaling, though there is some room to improve its
scaling. Any improvements in sequential MUS enumeration
can be easily adapted into its parallel framework with equiva-
lent scaling. Furthermore, the flexible nature of the framework
enables the exploration of “mixed strategies,” in which each
thread runs a different heuristic or a different solver altogether,
which may enable synergies between threads that produce
results in more instances and could improve performance
beyond k times that of MARCO as it exists (this would

’Invalid ratios, when one or both algorithms output no MUSes, are
necessarily excluded. Any inclusion of those data could only increase the
reported average performance ratios, as more instances had zero outputs for
sequential and non-zero for parallel than the other way around.
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Fig. 4. Cumulative distribution plots of MUS output counts for each parallel algorithm normalized to sequential MARCO. Left: MARCOs. Right:
MARCO(pMUSer). Horizontal lines indicate where perfect scaling for each of 2, 4, 8, and 16 cores would lie.

not produce “more than perfect” scaling, however, as these
mixed strategies could always be scheduled sequentially as in
a portfolio solver).

This work focused on MUS enumeration, but both MARCO
and MARCOs enumerate MSSes/MCSes while they are pro-
ducing MUSes, so MARCOs is thus a parallel MCS enumera-
tion algorithm as well, suggesting that comparisons should be
made to existing algorithms in that area. And finally, MARCO
is just one target for parallelization of MUS enumeration, and
other algorithms such as CAMUS [8], which has better perfor-
mance for complete MUS enumeration, could be parallelized
as well.
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