MaxSAT-Based MCS Enumeration

Antonio Morgado', Mark Liffiton?, and Joao Marques-Silval3

! CASL/CSI, University College Dublin, Dublin, Ireland
ajrmQucd.ie
2 Tllinois Wesleyan University, Bloomington, IL, USA
mliffito@iwu.edu
3 INESC-ID/IST, Lisbon, Portugal

jpmsQucd.ie

Abstract. Enumeration of Minimal Correction Sets (MCS) finds a wide
range of practical applications, including the identification of Minimal
Unsatisfiable Subsets (MUS) used in verifying the complex control logic
of microprocessor designs (e.g. in the CEGAR loop of Reveal”™ [112]).
Current state of the art MCS enumeration exploits core-guided MaxSAT
algorithms, namely the so-called MSU3 [15] MaxSAT algorithm. Observe
that a MaxSAT solution corresponds to a minimum sized MCS, but a
formula may contain MCSes larger than those reported by a MaxSAT
solution. These are obtained by enumerating all MaxSAT solutions. This
paper proposes novel approaches for MCS enumeration, in the context of
SMT, that exploit MaxSAT algorithms other than the MSU3 algorithm.
Among other contributions, the paper proposes new blocking techniques
that can be applied to different MCS enumeration algorithms. In ad-
dition, the paper conducts a comprehensive experimental evaluation of
MCS enumeration algorithms, including both the existing and the novel
algorithms. Problem instances from hardware verification, the SMT-LIB,
and the MaxSAT Evaluation are considered in the experiments.
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1 Introduction

A Minimal Correction Subset (MCS) of an unsatisfiable CNF formula is an
irreducible set of clauses whose removal causes the formula to become satisfiable
(thus “correcting” it). MCSes can be naturally extended for Satisfiability Modulo
Theories (SMT) formulas expressed in clausal form.

The enumeration of all Minimal Correction Subsets (MCSes) of unsatisfiable
formulas finds a range of practical applications, including MUS enumeration [10]
and design debugging [21]. One concrete example is the verification of hardware
designs [2], for which enumeration of MCSes has been used in an industrial
setting. A related problem is the enumeration of all minimal MCSes, those with
the smallest cardinality. An example application is solving Boolean Multilevel
Optimization by minimal MCS enumeration [3].



State of the art algorithms for MCS enumeration are based on model enu-
meration of Maximum Satisfiability (MaxSAT) solvers, and the most effective
approaches are based on core-guided algorithms [I1], more concretely the so-
called MSU3 algorithm [T4]. Nevertheless, in practical MaxSAT solving, the
MSU3 algorithm is not as effective as other core-guided MaxSAT algorithms.
Therefore, it is natural to ask how MCS enumeration can be extended to other
MaxSAT algorithms. This question further motivates the investigation of differ-
ent approaches for implementing model enumeration in MaxSAT algorithms.

This paper proposes improvements to MSU3-like MCS enumeration algo-
rithms, and it shows how to implement MCS enumeration with other well-known
MaxSAT algorithms, namely W(MSU1) [9/12]. Experimental results, obtained
on a representative set of benchmarks, show that the proposed improvements
are effective.

The remainder of the paper is organized as follows. Section 2l introduces the
definitions and notation used throughout the paper. Afterwards, section [B] sum-
marizes the application of MCS enumerations in verification with counterexample
guided abstraction refinement (CEGAR). Section Hl investigates improvements
to existing MCS enumeration algorithms, and shows how other core-guided
MaxSAT algorithms can be used for MCS enumeration. Experimental results
are presented in Section [ and the paper concludes in Section

2 Preliminaries

This section provides basic definitions on SMT and MCSes and surveys some of
the existing work on MaxSMT.

The problem of determining the satisfiability of a formula with respect to a
background theory T is called the Satisfiability Modulo Theory (SMT) problem.
Current SMT solvers are able to handle a variety of different theories and even
conjunctions of theories. One example SMT theory is the theory of Equality with
Uninterpreted Functions (72), in which no restriction is imposed on the way the
formulas or the predicates of a signature are interpreted.

Another example of a theory often seen in SMT instances is the theory of
Linear Integer Arithmetic (Tz), also know as the quantifier free Presburger arith-
metic. Given the signature (0,1,+, —, <), Tz is the theory of models that in-
terprets these symbols in the usual way over the integers [5]. Further details on
SMT, theories and SMT solving can be obtained in [T9122]5].

This paper addresses the problems of finding all Minimal Correction Sets
(MCSes) in SMT. Despite focusing on SMT, all the algorithms and techniques
described in the paper can be applied in the SAT domain. Before presenting the
definition of the enumeration problems, some notation is introduced.

Given an unsatisfiable constraint system ¢, a minimal correction set M of
¢ is a set of constraints whose removal yields a satisfiable formula ¢’ = ¢ — M
(“correcting” the infeasibility) and that is minimal in the sense that adding any
constraint from M back into ¢’ will make it unsatisfiable.



In the paper we refer to the MaxSMT problem [I7]. The input of the MaxSMT
problem is a CNF SMT formula ¢, which is a conjunction of clauses. A clause is
a disjunction of literals, where the literals are either atomic formulas or the nega-
tion of atomic formulas. The output of MaxSMT is an assignment A (consistent
with 77) that minimize the number of falsified clauses of .

Generalizations of MaxSMT, include Partial MaxSMT, Weighted MaxSMT
and Weighted Partial MaxSMT. In Partial MaxSMT the set of clauses in ¢
is divided in two separated sets: hard clauses and soft clauses. The goal is to
minimize the number of soft clauses that are falsified while still satisfying all the
hard clauses. Weighted MaxSMT allow weights on the clauses, with the objective
of minimizing the sum of the weights of the falsified clauses, and Weighted Partial
MaxSMT combines the previous two.

Two different enumeration problems are addressed in the paper and are de-
fined as in Definition [

Definition 1. Given a constraint system ¢, the AUMinMCS problem consists
of finding all the minimum size MCSes of . The AIIMCS problem consists of
finding all the MCSes of ¢ (independent of their size).

Both AlIMinMCS and AIIMCS can be generalized to partial or/and weighted
variants, analogous to MaxSMT. Observe that any MaxSMT solution indicates
an MCS, in that the constraints not satisfied by that solution must be an MCS,
and any such solution is a smallest MCS. The definition of an MCS requires
minimality (not minimum cardinality), however, an instance can contain MCSes
larger than those indicated by a MaxSMT solution, as well. Therefore, one can
consider the problem of AIIMinMCS to be similar to “AllMaxSMT”, finding all
MaxSMT solutions, and AIIMCS is a somewhat broader problem.

The algorithms proposed in Section [ are based on unsatisfiable cores. In
SMT, as in the SAT domain, a core of an unsatisfiable CNF SMT formula ¢ is
an unsatisfiable subset of clauses of ¢. The SMT solver used in the experiments
(Yices [8]) is capable of extracting cores from unsatisfiable instances.

2.1 MaxSMT

To the best of our knowledge, the first attempt to solve optimization problems
using SMT (and in particular MaxSMT) was due to Nieuwenhuis & Oliveras [17].
This work extends the Abstract DPLL Modulo Theories [I§] framework in order
to be able to strengthen the theory. The strengthening of the theory allows
the inclusion of new information (for example the improvement of a bound).
Nieuwenhuis & Oliveras [I7] applied a branch-and-bound schema using their
framework for the case of weighted MaxSMT. Initially, each clause C; (with
a weight w;) receives a new Boolean variable p;, and the constraints (p; —
(ki = w;)), and (-p; — (k; = 0)) are added to the theory. Also the constraint
(k1 + ...+ km < B) is added to the theory together with the relation (B < By)
(where By is an estimation of the initial cost). Each time a new cost B; is found,
the theory is strengthened by adding the relation (B < Bj) to the theory.



Algorithm 1 The MSU3-SMT Algorithm (based on [I5I14])

MSU3-SMT ()

1 ow <+ > pw is the working formula
2 RV <« 10 > Set of relaxation variables
3 A0 > Lower bound on true relaxation variables
4 while true
5 do (st, 9o, A) < SMT(pw UEnc(3 ], cpy 7 < A))
6 > “pc” is an unsat core if st is false
7 > “A” is satisfying assignment if st is true
8 > “Enc” encodes cardinality constraint
9 if st = true then return A > Solution to MaxSMT problem
10 if |RV| < |soft(p)|
11 then for each w € pc N soft(p)
12 do RV + RV U{r} > r is new relax. var. created
13 wr —wU{r}
14 ew + ow \ {w} U{wr}
15 A= A+1
16 > [[ Additional code for enumeration of MCS inserted here ]]

In 2010, Cimatti et al. [6] proposed a new theory called the theory of Costs
C that allows modeling multiple cost functions, and they developed a decision
procedure for C. Using the theory C, Cimatti et al. [6] showed how to address the
problem of minimizing the value of one cost function subject to the satisfaction of
a SMT(T) formula, which they called the Boolean Optimization Modulo Theory
(BOMT) problem. The optimization itself is obtained by linear search or binary
search, asserting atoms of C that bound the cost, and using an incremental SMT
solver. Cimatti et al. [6] encoded the weighted partial MaxSMT into BOMT by
adding a new Boolean variable A; to each soft clause. Then, the cost function is
the sum of the weights of the soft clauses, whose variable A; is assigned true.

Other work on MaxSMT algorithms includes [I6/23]. The work in [I6] ad-
dresses the concrete problem of Maximum Quartet Consistency, where an SMT
solver is used as a black box, and optimizes a cost function either using linear or
binary search binary. The work in [23] addresses optimization in SMT formulas
when the variables in the cost function are rational.

An early MCS enumeration algorithm by Liffiton & Sakallah [T0] followed
an iterative approach, checking for MCSes of size 1, 2, etc. and blocking solu-
tions as they were found. This algorithm was later extended to exploit unsatisfi-
able cores [I1], closely following the approach of the MSU3 MaxSAT algorithm
of Marques-Silva & Planes [I5I14] but extending it to enumerate MCSes. The
core-guided enumeration algorithm, generalized to SMT, is reviewed in detail in
Section @l while the SMT version of the MSU3 MaxSAT algorithm on which it
is based is presented briefly here.



Algorithm 2 The FM-SMT Algorithm [9]

FM-SMT ()

1 ow <+ > pw is the working formula
2 A+<0 > Bound on the number of iterations
3 while true

do (st, ¢, A) < SMT(ew)

”

4
5 > “pc” is an unsat core if st is false
6 > “A” is a satisfying assignment if st is true
7 if st = true then return A > Solution to MaxSMT problem
8 if A = |soft(yp)| then return false > No MaxSMT solution
9 A= A+1
10 RV 0
11 for each w € pc, w tagged as soft
12 do RV «+ RV U{r} D> r is a new relax. var. created
13 wr — wU{r} > wg is tagged soft
14 ew + ow \ {w} U{wr}
15 if RV = () then false > No MaxSMT solution
16 ow < pw UEnc(d] gy r=1) > Encodes card. const. tagged hard

Algorithm [l presents the pseudo-code of the MSU3-SMT algorithm for MaxSMT.
MSU3-SMT iteratively expands the set of relaxable clauses to encompass each
extracted core while constraining the number of clauses that are allowed to be
relaxed. The advantage of MSU3-SMT over other core-guided approaches is that
it only adds a maximum of one relaxation variable per clause and one additional
constraint to restrict the number of clauses relaxed.

Other MaxSAT algorithms can be extended to compute MaxSMT solutions
as well. In particular, this paper considers the FM-SMT algorithm, based on
the MaxSAT algorithm of Fu&Malik [9]. The approach taken by FM-SMT is to
iteratively neutralize cores as they are found by adding fresh relaxation variables
to the soft clauses of each core. Because the objective is to minimize the number
of falsified clauses, the algorithm adds a constraint to allow relaxing exactly one
clause in each core per iteration, thus allowing one of the clauses in the core to
be falsified. The pseudo-code of FM-SMT is depicted in Algorithm 2

This paper also considers a variation of the FM-SMT algorithm that uses
an atMostl constraint instead of the exactlyl cardinality constraint on line
of Algorithm [l This algorithm is referred to as MSUL-SMT (similarly to the
MSU1 MaxSAT algorithm [T4/T3]).

3 AIIMCS in CEGAR

One direct application of the AIIMCS problem, and one for which Section
contains empirical results, is verification via counterexample-guided abstraction
refinement (CEGAR). Reveal ™[] is one such formal verification system that



Algorithm 3 The ALLMCS-MSU3-SMT Algorithm

ALLMCS-MSU3-SMT(¢)
W P
RV <0
A+0
while true
do (st,.A) « MSU3-SMT (¢, ow, RV, \)
if st = true
then ReportMCS(¢p, A)
BlockMCSbyRV (¢w, RV, A)
else exit
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employs AIIMCS in the process of verifying digital logic designs. Reveal performs
datapath abstraction on a design and relies heavily on refinement, the dual of
abstraction, to dynamically bridge between the abstract model and the original
design throughout the verification process.

Specifically, when a violation is found in the abstract model, the flow produces
a conjunction of bit-vector constraints representing the violation that indicate
either a potential bug in the design or a "false alarm” resulting from the abstrac-
tion. Fach violation must be checked against the original design to determine
whether it is spurious, and this is done by checking the satisfiability of the vi-
olation’s constraints V' conjoined with the constraints of the original design C'.
If V' A C is satisfiable, then the violation indicates a potential bug, and the flow
exits with that result, but if VA C is UNSAT, then the violation is spurious and
the abstraction must be refined. Each minimal subset of the violation V' C V
such that V' A C' is UNSAT provides a concise reason for the contradiction in
the form of a refinement core or lemma that can be used to refine the abstract
model (by blocking it from future solutions).

It is here that AIIMCS is applied. Every minimal unsatisfiable subset (MUS)
of V' A C indicates a minimal V'’ that can be used for refinement, and AIIMCS is
used in the first phase of the CAMUS algorithm for computing all MUSes of an
unsatisfiable constraint system [10]. Extracting all MUSes is a core component
of Reveal’s algorithm during refinement, providing 1 to 4 orders of magnitude
speedup in run-time compared with other refinement techniques as observed
in academic benchmarks [2]. Efficient all-MUS extraction, and thus efficiently
solving AIIMCS is expected to be essential in practical abstraction/refinement-
based implementations of formal verification on real-life designs.

4 All(Min)MCS Algorithms

This section develops new algorithms for AIMinMCS/AIIMCS. The MaxSAT-
based approach proposed in [T0JI1] is briefly reviewed first. Then, the new algo-
rithms are detailed.



Algorithm 4 Additional code to include in Algorithm [ for AIIMCS

(st, o) <= SMT (ow) > pc is an unsat core if pw is unsat
if st = UNSAT
then if |[RV| = |soft(y)|
> if all soft clauses are relaxed and ¢w is UNSAT,
> then all MCSes have been found
then return false
if o Nsoft(p) =10
then return false > nothing to relax; thus, no more solutions

0~ O Ui W N -

The current state of the art approach for enumerating MCSes is due to Liffi-
ton & Sakallah [II]. The algorithm enumerates MCSes in increasing order of size,
essentially by solving MaxSAT iteratively, blocking each solution as it is found.
The most recent, core-guided version is an extension of the MSU3 algorithm that
follows this procedure.

As with MaxSAT algorithms, this MCS enumeration algorithm is easily ex-
tended to SMT, and the pseudo-code for the ALLMCS-MSU3-SMT algorithm is
presented in Algorithm[Bl In the pseudo-code, the function ReportMCS() reports
the MCS found, and the function BlocksMCSbyRV () blocks the current MCS
from reappearing by adding a blocking constraint to the working formula:

Yw <~ ew U \/ Tw (1)
A(r)=1, r€RV

Blocking MCSes in this way, creating a clause with the negation of the satisfi-
able relaxation variables, is referred to in the paper as blocking by using relaxation
variables.

One requirement for the extension of MSU3-SMT to enumerating MCSes is a
guarantee that the algorithm stops once it has found and blocked all the MCSes.
This is done by adding the code shown in Algorithm [ to line [[6 in Algorithm [I]
The motivation is that once all MCSes have been blocked, calling the SMT solver
without cardinality constraints will return false.

Observe that, the ALLMCS-MSU3-SMT algorithm always reports the MCSes
in increasing size, because it iteratively asks for a MaxSMT solution on the
current . As such, the same algorithm can be used to solve AIIMinMCS by
additionally stopping if the size of a newly found MCS is larger than the previous.

MSU3-SMT is based on the MSU3 MaxSAT algorithm of Marques-Silva &
Planes [I5IT4]. MSU3 is a core-guided MaxSAT algorithm (once that it relies
on unsatisfiable cores) that iteratively improves a lower bound. In the MaxSAT
domain, another core-guided algorithm that also improve a lower bound is the
FM MaxSAT algorithm of Fu & Malik [9]. For MaxSAT, and for some industrial
applications, the FM algorithm performs better than MSU3. Indeed, in recent



MaxSAT Evaluationsﬂ, the algorithms that follow the approach of Fu & Malik [9]
abort on fewer instances than MSU3 in the MS-Industrial and in the WPMS-
Industrial categories. Moreover, section 2] describes how to use the FM MaxSAT
algorithm to create the FM-SMT algorithm.

Following the approach of Liffiton & Sakallah for MCS enumeration, enu-
merating MCSes using the FM-SMT algorithm corresponds to iteratively asking
the FM-SMT solver for a MaxSMT solution and blocking each until no more
solutions can be found. Since FM-SMT also uses relaxation variables, then the
blocking of MCSes by using relaxation variables can be considered. The algo-
rithm would be similar to ALLMCS-MSU3-SMT but using FM-SMT instead of
MSU3-SMT. Nevertheless, using FM-SMT to enumerate MCSes presents some
additional complications.

One problem that arises with this approach is the termination of the algo-
rithm. The original FM MaxSAT algorithm does not include the check done in
line [{ of Algorithm Pl Suppose that FM-SMT does not make the check in line
and that the underlying SMT solver always returns as a core the full formula
(that is ¢ = pw ). Then after blocking all the MCSes, the FM-SMT algorithm
should be able to report that the formula does not have any MaxSMT solu-
tion and exit on line [I8] of the FM-SMT algorithm. Nevertheless, since the core
obtained is the full formula, then the algorithm is always able to add new relax-
ation variables (line [[2)), and it enters a new loop where it continues with new
relaxation variables.

Thus, in order to guarantee that enumerating MCSes with FM-SMT always
terminates, the check done in line [§ of Algorithm [2] has to be performed. In the
original FM MaxSAT algorithm (or also for solving MaxSMT with FM-SMT),
this problem does not arise, since in MaxSAT (MaxSMT) the algorithm returns
after finding the first solution (and not blocking it as in enumeration).

Another problem that arises with the FM-SMT algorithm for enumeration
is the presence of duplicates and supersets of MCSes (which are not themselves
MCSes) as shown in Example [l

Ezample 1. Consider for example the following CNF SMT formula with 5 soft
clauses:

p={=1), (z<1), (<V(y<l), (y<1), (y=1)}

On the first call to the FM-SMT algorithm, the solver finds two cores before
returning a solution. Suppose the cores founds are ¢}, = {(z > 1), (z < 1)} and
vz ={(y > 1),(y < 1)}. The algorithm updates X twice (that is A = 2) and the
working formula to:

pw ={((z=1) V), (z<1)Vra), (z <DV (y<1)),
(y < Vvry), (y=1)Vra)} U
Enc(ry +7r2=1) U
Enc(rs +r4=1)

4 MaxSAT Evaluations, http://www.maxsat.udl.catl
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Suppose the solution reported is such that A(r1) = A(ry) = 1 and A(rs) =
A(rs) = 0, then the enumerating algorithm will report the MCS {(z > 1), (y >
1)} and add the blocking constraint (—ry V —ry) to the working formula.

In the next two iterations of the enumerating algorithm, the FM-SMT algo-
rithm will always report a MaxSMT solution without adding any relaxation vari-
able, and the enumerating algorithm will report the two MCSes {(z > 1), (y <
1)} and {(z < 1), (y > 1)}, which after blocking the MCSes the working formula
is as follows:

ew ={((z=1) V), (
((y < 1) v 7’3),

Enc(r; + 7o =1)
Enc(rs+r4=1)
{(=r1V-rg)} U

r<1)Vr), (x<1)V(y<1)),
1)\/7"4)} U

(—|r1 V _\7“3)} @] {("7“2 \ —\7“4)}

Now ¢y is unsatisfiable and the core returned by the SMT solver contains
all the clauses. The FM-SMT algorithm adds fresh relaxation variables to each
of the soft clauses and a new constraint on the new relaxation variables. Also A
is updated to 3. The resulting working formula is as follows:

ew ={((z>1)VriVrs), (<1)VraVrg), (x<1)V(y<1)Vry),
( <1)VrsVrs), (y=1)VryVre)}t U
(7“1—|—’I“2—1)
EnC(’/‘g +ry = 1) U
EHC(T5+T6+T7+T’8+T911)U
{(=r1 Vv o)} U (= Vorg)h U{(ore Vo) }

The current working formula is satisfiable and one of the solutions of py is
such that A(rg) = A(rs) = A(r9) = 1 and all the other relaxation variables are
assigned 0. This MaxSMT solution would make the enumeration algorithm to
report {(x < 1), (y <1), (y > 1)} as an MCS, which is wrong, because this set
corresponds to a superset of a previous MCS.

The previous example shows the necessity of removing supersets and du-
plicated MCSes that may arise when enumerating MCSes with the FM-SMT
algorithm. The pseudo-code of ALLMCS-FM-SMT is shown in Algorithm [B In
the pseudo-code, the function isSuperSet() obtains the current MCS and checks
if it corresponds to a superset of a previous MCS, in which case it returns true.
As such, an MCS is only reported as an MCS if it is not a superset of a previous
MCS.

The problem of enumerating MCSes with the FM-SMT algorithm is that it
may add relaxation variables to the same clause more than once. When relaxing
a clause that has previously participated in a MCS that has been blocked, then
it allows for the clause to re-occur in a new MaxSMT solution using the new
relaxation variable.

The next section presents two new blocking techniques that do not require
the enumeration of MCSes with FM-SMT to check for supersets or duplicates.



Algorithm 5 The ALLMCS-FM-SMT Algorithm

ALLMCS-FM-SMT ()

L pw o

2 A0

3  while true

4 do (st, A) < FM-SMT (¢, pw, A)

5 if st = true

6 then if (lisSuperSet(p, A))

7 then ReportMCS(y, A)
8 BlockMCSbyRV (¢w, A)

9 else exit

4.1 New Techniques for Blocking M CSes

This section proposes two new techniques for blocking MCSes. The motivation is
to eliminate the need to use relaxation variables for blocking MCSes, as is done
with Blocking by using Relaxation Variables. With these new techniques, MCSes
will remain “blocked” independently of the way the MaxSMT solver manipulates
the relaxation variables.

The first technique is inspired by the relaxation variables and is called Block-
ing by using Auziliary Variables. Blocking by using auxiliary variables consists
of initially transforming each soft clause into a hard clause after adding a fresh
Boolean variable called an auxiliary variable. Additionally, a set of unit soft
clauses is added that corresponds to the negation of each auxiliary variable.
Consider the previous formula of Example [l and suppose that blocking by us-
ing auxiliary variables is to be used. Then the formula given to the MaxSMT
solver is the formula containing the set of soft clauses:

¢* O = {(~a1), (maz), (mas), (—as), (-as)}

and the set of hard clauses:

phard = f((x > 1) Vay), (x<1)Va), (z<1)V(y<1)Vas),
(y <) Vas), (y=1)Vas)}

When the enumeration solver calls the function to block an MCS, then the
blocking constraint to add to the working formula is as in the following Equa-
tion 2 where a; are auxiliary variables.

pw —ow UL(\ —a)} (2)

A(a;)=1

The second technique proposed does not require the addition of extra Boolean
variables or the transformation of soft clauses into hard clauses. Instead, in
Blocking by using Original Literals, the original literals in the clauses are used



for blocking the MCSes. Consider once more the previous formula of Example[I]
and suppose that blocking by using original literals is being used for blocking
MCSes. Suppose the algorithm has just found the MCS {(z < 1), ((z < 1)V (y <
1)), (y < 1)}, then the blocking clause added to the working formula is the clause
((x < 1)V (y < 1)). In the general case, when the enumeration solver calls the
function to block an MCS, then the blocking constraint to add to the working
formula is as in the following Equation B, where (I;, V...V [;;) is the original
literals in a clause that belongs to the current MCS found.

ow —ow U{( iy V. V1)) (3)
A(hl\/\/lbj ):0

Note that since these two techniques deal directly with the MCSes, and not
with the relaxation variables, then enumeration with the FM-SMT algorithm
using these techniques will not report supersets of previous MCSes and as such
does not require the check if the reported MCS is a superset of a previous MCS.

Observe that these two new blocking techniques can be applied not only in
enumeration with the FM-SMT algorithm (and the MSU1-SMT algorithm) but
also with the MSU3-SMT algorithm.

4.2 AIIMCS with Costs

The AIIMCS problem can be extended to weighted variants of MaxSAT /MaxSMT.
Namely, each soft constraint can be associated with a weight. This weight rep-
resents the cost of adding the constraint to a MCS, i.e. of not satisying the
clause.

The goal is then to enumerate all of the MCSes taking into account the sums
of the weights of their clauses. Two approaches can be considered. The first
approach consists of extending the AIIMCS algorithms to handle weights. For
example, this can be done by using a weighted MaxSMT solver with an AIIMCS
algorithm. However, recent results from the MaxSAT Evaluations confirm that
weighted MaxSAT is in practice harder to solve than non-weighted MaxSAT,
and confirms the different complexity classes of these problems.

Nevertheless, a simpler solution exists. Observe that the MCSes of a CNF
formula are independent of the weights associated with the clauses. That is, an
MCS of a weighted CNF formula is also an MCS of the corresponding unweighted
formula and vice-versa. Thus, for the case of weighted formulas, it suffices to use
one of the unweighted AIIMCS algorithms outlined in earlier sections. After-
wards, one just needs to sort the MCSes by increasing (or decreasing) weight.

5 Experimental Results

This section presents a complete experimental evaluation of the enumeration
algorithms described in earlier sections. In what follows, the instances used in
the experiments are described, along with the experimental setup.
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Three classes of instances have been used in this work. The Reveal instances
were generated in the Reveal digital logic verification flow as described in Sec-
tion Bl These instances are characterized by having a single hard clause, with
all other clauses being soft. A total of 145 unsatisfiable instances were obtained
from Reveal Design Automation, Inc. The second class of instances is referred to
as MaxSAT, and it consists of all industrial instances from the MaxSAT Eval-
uations from 2009 to 2011. Both weighted and unweighted industrial instances
are considered, making a total of 1323 instances, where 12 instances are satis-
fiable. The instances were considered in two sets, weighted and non-weighted,
giving 233 weighted instances (6 satisfiable) and 1090 non-weighted instances (6
satisfiable). The last class of instances considered, referred to as SMT-LIB, was
obtained from the SMT-LIB [], a library of SMT benchmarks developed for
testing and validating SMT algorithms. The instances selected are in the SMT-
LIB 1.2 format and belong to one of the following logics: QF _IDL, QF_LIA,
QF_LRA, QF_RDL, QF_UF, QF _UFIDL, QF_UFLIA, QF _UFLRA, QF_UF. All
clauses in this class of instances are considered soft.
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Fig. 4: Cactus plot of SMTLIB instances

Given the large number of instances obtained from SMTLIB, a smaller subset
was selected for the experiments. Each instance was given to the MSU1-SMT
algorithm, and the instances for which MSU1-SMT reported a MaxSAT solution
were then ordered by CPU time used. The first 808 instances in that order were
selected for these experiments.

For the experimental results, both FM-SMT and MSU3-SMT have been im-
plemented on top of yices [8]. We have also implemented the variant of FM-SMT
that uses atMost1l constraints, referred to as MSU1-SMT.

In the experiments, all algorithms were configured to enumerate the com-
plete set of MCSes. The algorithms make use of cardinality constraints, and in
these experiments, the pairwise cardinality network encoding of Codish & Zazon-
Ivry [7] was used for encoding each of the cardinality constraints into Boolean
CNF. The only exception is for the FM-SMT algorithm, which uses the bitwise
encoding [20], as it provided better results for this algorithm.

All the three techniques described in Section M) for blocking one MCS (block-
ing by using relazxation variables, blocking by using auxiliary variables and block-



ing by using original literals), have been considered in the experiments, depend-
ing on the underlying MaxSMT algorithm used. For the ALLMCS-FM-SMT
algorithm, only the blocking by using relaxation variables technique was used.
Note that this is the only algorithm in the experiments which requires a verifi-
cation of duplicated MCSes. The resulting algorithm is referred to as fm-rv-rd,
and it was only tested with the Reveal instances.

For the ALLMCS-MSU1-SMT algorithm, both blocking by using auxiliary
variables and blocking by using original literals were considered for all instances.
The resulting algorithms are referred to as msul-av and msul-ov, respectively.
For the ALLMCS-MSU3-SMT algorithm, all the blocking techniques were tried,
and the algorithms obtained are referred to as msu3-av, msu3-ov and msu3-ro.
Observe that msu3-rv corresponds to the approach of Liffiton & Sakallah [IT].

The algorithms were run on a cluster of Intel Xeon E5450 (3 GHz) nodes
running RedHat Linux v.5 x86-64 with a timeout of 3600 seconds and a memory
limit of 4GB.

Figure [[l shows a cactus plot obtained from the Reveal instances, while Ta-
ble [ shows a summary of the results for each of the algorithms. In the table,
#Sol. represents the number of instances solved by each of the algorithms, Sum
NA (91) represents the sum of cputimes taken by each algorithm on 91 instances
for which all of the algorithms finished within the timeout. Finally, Sum NA
(143) represents the sum of cputimes taken by each algorithm on 143 instances
which were solved by all algorithms except for fm-rv-rd. As can be seen from the
cactus plot and from the number of solved instances in Table [I, the fm-rv-rd is
the worst performing algorithm, aborting in more instances and requiring more
cputime to enumerate even on the 91 instances solved by all the algorithms. This
is due to the need to remove duplicated MCSes and supersets of current MCSes.

The algorithm that solves the largest number of the Reveal instances is msu3-
av, able to solve one more instance than the other msu algorithms. Considering
all the 143 instances where none of the msu algorithms aborts, msul-av is the
fastest enumerating algorithm.

For the non-weighted industrialMaxSAT instances, Figure 2lshows the cactus
plot, while Table 2] summarizes the results for this class of instances. As before,
column #58ol. shows the number of instances solved by each of the algorithms,
and Sum NA (183) represents the sum of cputimes taken by each algorithm on
183 instances that were solved by all algorithms. From the cactus plot, it can be
seen that overall, the msu3 algorithms perform better than the msul algorithms
in this class of instances. Table [2] confirms that msu3 algorithms abort on fewer
instances, and among the msu3 algorithms, msu3-av and msu3-ov are able to
solve 3 more instances than msu3-rv. For the sum of cputimes on instances
solved by all the algorithms, the fastest algorithm for these instances is msul-
ov, as the msul algorithms tend to be faster on the easier instances solved by
all algorithms.

The results with weighted instances are presented in a the cactus plot of
Figure [8] and summarized in Table [Bl Despite these instances being weighted,
the algorithms disregard the weights as suggested in Section Column #Sol



show the same type of result as the in previous tables. Column Sum NA (4)
represents the sum of cputimes taken by each algorithm on 4 instances which
were solved by all algorithms. From the figure and table, it can be seen that
msu3 algorithms actually solve one more instance than msul algorithms but, for
the 4 instances solved by all, msul algorithms are faster than msu3 algorithms,
where msul-ov is the fastest algorithm (over these 4 instances).

The last plot, Figure @ shows the cactus plot with the results obtained
from the SMTLIB instances, while Table @l summarizes. For these instances, the
msu3 algorithms are able to solve 3 more instances than the msul algorithms.
Nevertheless, considering only the 257 instances solved by all the algorithms, the
fastest algorithm is msul-ov.

Overall, it can be seen from the results that the msu3 algorithms solve the
greatest number of instances, and in particular, msu3-av is the only algorithm
that solved all of the Reveal instances. On the other hand, when considering only
instances that are solved by all algorithms, the results suggest that the fastest
algorithms are the msul algorithms, indicating that the easier instances are
solved more quickly by msul algorithms than msu3 variants. On these, msul-av
is the fastest for the reveal instances, while for the other three classes, the fastest
algorithm is msul-ov. There is no substantial difference between the different
blocking techniques when applied to a given algorithm (msul or msu3).

6 Conclusions and Future Work

State of the art algorithms for MCS enumeration of SAT and SMT instances
are based on one concrete instantiation of core-guided MaxSAT algorithms [IT].
This paper proposes improvements to MCS enumeration algorithms, and shows
how these algorithms can integrate other core-guided MaxSAT algorithms. Ex-
perimental results, obtained on a wide range of practical instances of SAT and
SMT, show that the proposed improvements reduce overall running times and
allow solving more problem instances.

The proposed algorithms have been implemented on top of SMT solvers,
using available interfaces. Direct access to the internal state of the SMT solver
is expected to allow further performance improvements.
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