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Abstract—In today’'s SoC design cycles, debugging is one of extended to industrial problems. More recently, severblde
the most time consuming manual tasks. CAD solutions strive ging techniques based on formal techniques such as Boolean
to reduce the inefficiency of debugging by identifying error - gayisfiapility (SAT) [10] and Quantified Boolean Formula

sources in designs automatically. Unfortunately, the capacity and .
performance of such automated techniques must be consider- (QBF) [5] have demonstrated great promise and encouraged

ably extended for industrial applicability. This work aims to further research in formal techniques for debugging. Oespi
improve the performance of current state-of-the-art debuging these successes, the capacity and performance of both tra-

techniques, thus making them more practical. More specifically, ditional and newer debugging techniques must be greatly
this work proposes a novel design debugging formulation based improved to make debugging practical for industrial profse

on maximum satisfiability (max-sat) and approximate max-sat. Thi K | f K with th . f
The developed technique can quickly discard many potential IS WOrK proposes a novel Irameworx wi e amo

error sources in designs, thus drastically reducing the size of the greatly reducing the run-time of state-of-the-art debugge
problem passed to an existing debugger. The max-sat formulation This technique presents the first maximum satisfiabilityxma
is used as a pre-processing step to construct a highly optimized sat) formulation for design debugging. The formulation is
debugging framework. Empirical results demonstrate the effec- .,nstrycted using the constraints corresponding to the err
tiveness of the proposed framework as run-time improvements . . .
of orders of magnitude are consistently realized over a state-of- neous design, the mpgt symulus,.a.nd the .expecte(.j correct
the-art debugger. response. The formulation is unsatisfiable, since the iacor
l. INTRODUCTION deS|gn_ cannot produce the correct response, and it can only
be satisfied if some of the constraints are removed. An all-
Functional verification tasks dominate the effort of consolution max-sat solver can iteratively find maximal satisfi
temporary VLSI and SoC design cycles. A major step efble subsets of the constraints. The complement of any of
functional verification is design debugging, which deteresi these subsets is a set of constraints whose removal makes
the root cause of failed verification tasks such as simuiatithe problem satisfiable. These constraints will be shown to
or equivalence checking. For example, when a simulatigrrespond directly to the erroneous gates or components in
run fails because a design’s behavior is inconsistent vith the design. The proposed max-sat technique is developed for
specification, debugging identifies the components resplens combinational and sequential circuits as well as for proisle
for the discrepancy. with single or multiple input stimuli and expected respanse
Hardware debugging is overwhelmingly performed manu- The proposed technique is an alternative approach to
ally in the industry today. Designers and verification eegis hardware debugging which can be easily enhanced to over-
must analyze the failed verification instances, the desigh aapproximate solutions. The over-approximation allows dor
the specification to realize which design components oridsloctrade-off between the tool’s performance and the resaiutio
are the root cause of the failure. Due to the “guess-andkéhethe solutions. More specifically, approximation can redihnee
nature of the problem, this task is accepted as one of the mpsiblem complexity and thus require less run-time at the cos
time-consuming processes of the VLSI and SoC design cycles.finding larger, less precise solutions. Although not éxac
As design complexities nearly double with every generason this approach can be employed as a pre-processing step that
does the daunting debugging effort. Clearly, automatedigleb filters solutions for a second stage exact debugger. Thendeco
ging solutions are needed to increase a designer’s delmiggilebugger benefits from having fewer suspect error sources
and verification efficiency. which translates into faster run-times. The combined ttep-s
Automated debugging is a computationally intensive prollebugging framework reduces the complexity of both stages,
lem since its complexity increases dramatically with theesi resulting in an efficient debugging solution.
of the design, the length of the error traces and with the A suite of experiments on combinational and sequential
number of errors present in the design. There is a ridircuits for single and multiple vectors are conducted to
history of debugging techniques and algorithms developdémonstrate the benefit of the proposed framework. On aver-
over the last decades which seek to tackle this problem [&he, the over-approximation technique quickly elimin&2%
[2], [6]. Although efficient for relatively small design ldks of the suspects. The second stage debugger uses the filtered
and particular design types, these solutions have not besrspects to find the exact error sources in a fraction of the ti



it would take otherwise. Overall, performance improversenit can greatly increase the performance of the algorithnhas t
of 200 times or two orders of magnitude over a state-of-tlie-&earch space is reduced exponentially.
debugger are observed consistently. This work uses the MCS techniques outlined above for
In the next section, background is provided on the maglebugging. Although not precise in the general case, the
sat approach used as well as on design debugging. Secitdtimn max-sat is used throughout to refer collectively to the
presents the proposed max-sat approach for combinatioteihniques above for simplicity.
circuits _and Sec. IV extends this for sequential circu_itsl arg Automated Design Debugging
for multiple vectors. Sec. V present the over-approxinmtio Th bl fdesian debuaai d fault di .
technique and the overall framework developed for opti-, . € problems oldesign debuggingand fault diagnosis
mal performance, respectively. Experiments are preseinted\r’]vh'ch oceur "?“ .d|fr_e.rent stages of the VLSI design qycle,
Sec. VI followed by the conclusion in Sec. VII. ave st.rong §|m|lar|t|es. The latter occurs when a fabeitat
chip fails during the testing phase due to the presence of
Il. BACKGROUND manufacturing defects [10], while design debugging oceirs
the early stages of the design cycle, when the implemented
design does not meet its functional specifications. In this
The algorithm from [8] is used to solve a generalization gfaper the terminology and assumptions are those of design
the max-sat problem. While max-sat is concerned with findirdebugging, however, the proposed techniques can apply to
a satisfiable set of clauses with maximum cardinality, this cfault diagnosis as well.
be generalized to find Maximal Satisfiable Subsets (MSSes).The input of the design debugging problem is an erroneous
An MSS is a satisfiable subset of a formula’s clauses thatdscuit C, a set of input stimulil for which the design fails
maximal in the sense that adding any one of the remainirgrification, and the corresponding correct output respe@s
clauses would make it UNSAT. Any max-sat solution is ofhe component$ andO, also called input/output vectors, can
course an MSS, but MSSes can be different (smaller) sizesbesobtained from simulation-based verification tools onfak
well. In this work, thecomplementsf MSSes, sets of clausestools such as equivalence checkers and model checkers.
whose removal makes the instance satisfiable, are of interesAn error source at the circuit-level exhibits an erroneous
Just as an MSS is maximal, its complement is minimal, amesponse at the primary outputs for at least one of the pedvid
we refer to such a set as a Minimal Correction Set (MCSJ)ectors. In this paper, a model-free diagnosis strategy is
This work makes use of two following techniques developeadsed, which can “detect” any type of gate/module error. The
as extensions to the algorithm from [8]: error cardinality NV, is the maximum number of simultaneous
« Finding all MCSes up to sizé error sources the debugger assumes exist in the circuit. The
« Grouping clauses to produce "approximate” MCSes complexity of design debugging increases exponentially wi
the error cardinality [11]. A design debugging tool mustrat

Finding all MCSes up to size: is performed by the all possible solutionsi.e. all potential error tuples up to the
algorithm AlIMCSes from [8], which was developed as the. X L€ alp P P

first phase of an approach for finding all Minimal Unsatisfabl>2¢ °F the error cardinality.

Subsets (MUSes). This procedure solves consecutive @atimi Traqlmonally, _”?EthOF’S based on simulation, path-tracing

; - ; . . ._and binary decision diagrams have been used to tackle the

tion problems, finding MCSes in order of increasing size . X

. - . . esign debugging problem [1], [2], [6]. Recently, SAT-bdise

(equivalent to finding their complementary MSSes in order . . .
. . Strategies [10] have been proven to be effective as their

of decreasing size). MCSes are returned as they are found ; ) X
: AR efformance increases with that of the underlying SAT sslve

and execution can be stopped when a size limit is reache

his approach formulates the design debugging problem by

The second ability, of grouping clauses, depends on t(r:lgnstructing circuit constraints, translating it to a Besoi

way the algorithm uses clause-selector variables. Evenysel formula in Conjunctive Normal Form(CNF). and giving it

- . ; . el
CL'S augmented with a new varlgb@, producmgCi " to an all-solution SAT solver. Note that deriving a CNF
(i + Ci) = (yi — C;). Wheny; is assigned TRUE, the Lo : . ; X .
oriinal clauser. must be satisfied. while when is FALSE from a circuit is a simple linear time algorithm as there is

g ’ ' N '__ a one-to-one correspondence between circuit gates and CNF

C! is satisfied, essentially disabling the original clauseisTh . . ; .
gives a standard SAT solver the ability to enable and disag%mulas. Table I shows five basic gates along with their CNF

A. Maximum Satisfiability

constraints implicitly within the normal backtracking seta representations.

By assigning the samg variable tomultiple clauses, a set ‘yz NoTE) cate | (Hy():'_“fﬂm |

of clauses can be treated as a single higher-level conistrain J = AND (21,79, . 20) @+ @2 +9) - @+ )

(the conjunction of all clauses given the sagneariable) that S (Tfl T A Thy)
1+y) @2 +y) - @a )

y = OR(z1,22,...,2Zn)

can be enabled and disabled at once. Using this approach, (i+z2+ - +Tn+7)

each MCS is a minimal set ajroups of constraints whose y = XOR(z1,2) imty inty
removal makes the instance satisfiable. This leads to an over Y = MUX (s, 21, 22) (@1 +y+s) @ +y+9)

approximation of an MCS of the original clauses, because (@247 +5) @ +y+3)

extra clauses will be included in groups even though they may TABLE |

not be necessary. The benefit of the over-approximatiorsis th GATE TO CNF TRANSLATION



[1l. DEBUGGING COMBINATIONAL CIRCUITS WITH corresponding to the many potential error sources at thee gat
MAX-SAT level. These are more commonly known as equivalent errors

or faults in the diagnosis literature [1]. Note that the reaio

of the clausga) also satisfies the problem, however since this

constraint is not part of the circuit component of the CNE. (

C), it is not considered as an error clause.

®=1-0-CNF() For the debugging technique to be complete, all equivalent

This CNF problem is naturally unsatisfiable because the &T0rS must be found. Each of these is known as a suspect
roneous circuit cannot produce the correct output resporfagCr Source because it may fix the problem such that erraneou
under the given input vector. Since the inconsistency berweC!rCUit produces the correct response for the given mpollme

a circuit's actual and correct response is due to some gags-| AS @ result, the AlIMCSes algorithm of Sec. II-A is used
error sources, the unsatisfiability of the problem is duehto tto find all error clauses and consequently all gate-levarerr
clauses derived from these error sources. In other words, fiy'SPECtS-

clauses that are at conflict in the CNF correspond to theitircuy  grror Clause Cardinality

level error sources from which they are derived. Therefibre,
circuit-level errors can be identified by finding the CNFdev
error clauses

Given an erroneous circuff, an input stimulug/, and the
corresponding correct output respor@ea CNF formula can
be produced as follows.

Since the solution space for the AlIMCSes algorithm is
exponential, an explicit limit for the maximum cardinality

The max-sat approach in Sec. II-A can identify Maxima(P]c th_e MCS_es_ is_, advised to prevent memory e>_<p|osion. n
Satisfiable Subsets (MSSes) whose complements are Minirﬁ%ﬁcnce’ this limit, called therror clause cardinality must

Correction Sets (MCSes). These MCSes represent sets Sfrelatively small due to memory and performance considera
clauses whose removal from the CNFE make the probIe. ns. The error clause cardinality determines the corapkts

satisfiable. In the formul& constructed using the constraints.arwl.eﬁiden.Cy of the. prop_oseq technique. .

1, O, andCNF(C), the MCSes map directly to error clauses. Smce_ this wprl_< s primarily concerned .W'th gate-level

Once the error clauses are identified through MCSes, the gangl‘.'ggmg the limit usgd must correspond with the gatetleve
dinality of conventional debuggers. In Sec. Il the error

level suspects are found by mapping each clause to the g%ﬁ‘é S ) ) )
it is originally derived from as described in Sec. Il. cardinality N, is defined as the maximum gate tuples that
may be responsible for the erroneous behavior. At the level

of the CNF encoding, the error clause cardinality must

a a
0 0 be set to a value such that all the gate-level errorsvat
b c 1 b c can be found using the proposed max-sat approach. Thus

1 @—el 1 @—e 0 completeness in this context is with respect to the gatetlev
d d debuggers such as [5]. The following theorem proves that the
(@ (b) proposed approach is complete for a given valueVgf

Theorem: The algorithm AIIMCSes called on the problem
® =10 -CNF(C) with a limit of N, is complete if N,
is equal to [the maximum number of clauses derived for any

For example, consider the correct and erroneous circuitsingle gate in the CNFk,.
Fig. 1 (a) and (b) where gaté is mistakenly implemented as Proof: Proof by contradiction. Suppose there is a gate-level
an AND gate instead of a@R gate. Under the input stimuluserror not identified by the proposed approach using the error
{a =0,b=1,d = 1} the circuit has a response ¢¢ = 0} cardinality limit N... Since AlIMCSes iteratively finds sets of
instead of the correct response{ef= 1}. The corresponding clauses with cardinality 1 up t&, the gate-level error must be
erroneous CNF for the circuit and the input/output vectoes acaused by more thai,. clauses. Howevety. is equal to the
shown below. maximum number of clauses derived from any one gate times

— Ny, so the error must be caused by more tidgngate-level
(@) - (b) - (d) - (e)_ sources. Therefore the error is not found using converitiona
(a-i—E)-(b—i—E)-(ﬁ—}-i)—i—c) deb : ithV . either. [
(c+e)-(d+e)-(c+d+e). epuggers with sy Sltner. e
In many circuit-based SAT problems, the circuit is first con-

Here, the max-sat approach described in Sec. II-A can retwerted to a 2-input AND-INVERTER graph and then translated
the MCS (a + ¢) as a solution because removing this clausato CNF [4], [7]. In such a CNF formula, the maximum
from the CNF makes the formula satisfiable. Notice that thisimber of clauses from any gate is 3, thiis= 3x N,. Using
clause is derived from the erroneous gdte this value forV, results in finding all the solutions found using

The above example illustrates how the removal of an erroonventional debuggers withV,. In CNF formulas derived
clause can help identify the error source. Further analysis from arbitrary circuits where the number of clauses geeerat
the example demonstrates that there are other clauses stahgreatly vary from one gate to another, the proposed max-
as (¢ + €) whose removal can satisfy the problem. Indeedat debugging technique may return more solutions than the
more than one error clause may exist in a given problegate-level debugger for a giveV,. As discussed further

Fig. 1. Correct and erroneous circuit



in Sec. V this scenario does not pose a problem under tinethe original sequential circuit will fix the problem in all
proposed framework. time-frames.

B. Error Group Cardinality The proposed max-sat debugging technique can be extended

The previous section presented a limit for the error claud® handle sequential designs efficiently. First, the setaien
cardinality to guarantee completeness for the proposed &fjcuit is converted to an ILA and then translated into CNF.
proach. Although complete, increasing the error clausdicar>iMilar to the previous formulation the CNF is then con-
nality is not always desired as the complexity of the debaggi Strained with input stimulus and output respongeand O
problem is exponentially related to the error cardinaktgre, esulting in
the grouping ability described in Sec. II-A is used to redilnee
complexity of the problem while maintaining completeness. & =1-0-CNF(ILA(C)).

Grouping all clauses derived from the same gate together
allows the max-sat solver to “enable” or “disable” all of 80  The second step is to account for the replication due to the
clauses simultaneously. In effect, this gives the solver thLA by grouping all clauses derived from the same gate but
ability to treat each gate as a single high-level constrairitom any time-frame. As a result, clauses from a particular
leading to solutions (MCSes) found directly in terms of thgate will be “enabled” and “disabled” at once irrespectife o
gates. Under this problem restriction, theor clause-group the time-frames they represent.
cardinality, N., required to find gate-level errors can be
effectively V.

Theorem: By grouping all clauses derived from the same
gate together, the proposed technique is complete if thor err
clause-group cardinalityV., = N,.

Proof: Since each group has a one-to-one correspondence
with a circuit gate, when a group is found as part of an MCS,’
all clauses corresponding to the original gate are “digfble d
by the AlIMCSes algorithm. Thus every solution found by (@) (b)
AlIMCSes maps to a set of the original gates. Hence, lim-
iting the group cardinality is equivalent to limiting thetga
cardinality.(] . L

Re-visiting the example of Fig. 1, grouping the clauses of qu example cqn5|der t_he erroneous sequential circuit show
gate A together with the clause-selector variahilg and the M F19- 2(a) and its ILA in Fig. 2(b). Here, the gaté has

clauses of gatéB together with the clauses-selector variabIBeen erroneously implemented as /éND gat_e instead of an
y, results in the following CNF OR gate. As a result, the output of in the first and second

time-frames should be 1 instead of 0. Note that the input

Fig. 2. Erroneous sequential circuit and its ILA represgoita

(@-(d)-(d)-(e) _ stimulus and correct response are also shown in Fig. 2(8. Th
(a+c+ya)- (b+C+7Ya) - @+b+c+ya) corresponding CNF for the constrained ILA is shown below.
(c+€e+yB)-(d+e+7yp) (C+d+e+7n).
V. EXTENSION TO SEQUENTIAL CIRCUITS AND (at) - (01) - (dY) - (')
MULTIPLE VECTORS (a' +cl)- (0 +cl)- (al +81 )
) ) L . (a* +eb) - (d* +el) - (al +db +et)
Debugging sequential circuits is similar to that of combina (@ +a?) - (c' + @)
tional circuits except that their behavior must be modetedaf )@
finite number of clock cycles. These clock cycles are necgssa (@®+¢2)- (B + %) (a® + 52+ ¢?)
to excite and observe the errors. A popular approach for (a® +¢? ;Q(dz +eh) (@t d )
modeling sequential circuits is to use the time-frame exjmam (¢ +a%) - (¢* + a?)
. . : : (%) - (d%) - (¢%)
technique or the Iterative Logic Array (ILA) representatio (@ +3) - B+ @+ P+ )
The_se techniques replicate a circuit’s transition retgtialled (@ + ) (B +B)- (B + P+ )
a time-frame, and connect the current-state and the next-
state of adjacent time-frames together. In effect, the evetipi In the above example, the clauses corresponding toAyate

circuit is transformed into an “unfolded” combinationatatiit both time frames 1 and 2 are responsible for the discrepancy
that can be debugged like any other combinational circuit. between the actual and correct response. Specificallye thes
Since the complexity of debugging increases exponentialye (b' + c!) and (b*> + c2). However, by grouping all clauses
with the number of error sources, debuggers must be carefierived from gated together and those from gai# together,
not to consider the “replicated” gates across time-frantes iarespective of the time-frames, the single group soluii®n
unique error sources. For example, a single gate-levet arro returned. Below is the modified CNF based on grouping
an ILA with 3 time-frames may appear to have 3 distinct erraauses from gated (B) together with the clause-selector
locations, however, replacing the functionality of a senghte variableys (yp).



stage 1

(a') - (1) - (a"

—
®
—
~—

)
(at +E +7a)- (' +c +7a) - (‘zl + 111—0— ct +72) erégg%%“s max—sat | Over-approximat stage 2 exact
(' +e' +7p) - (d' +e' +7p) - (al +d" + €' +7p) ™| debugger suspects | exact suspects
(Cli a?) - (¢! +a?) input/output| (AlIMCSes) debugger
_ (b?) - () - (e*) vectors
(@*+ A +7a)- (0 + A +7a) - (a® + 02 + * + 7a) TG
(@®>+e+7p) - (d®+ e +7p) - (a® + & + € + )

(@ +d%) - (+

(%) - (d°) - (e

(@ +S+72)- P+ S+72) (a3 +03+ S +72)
(@®+e3+78) - (d®+e®+7B) - (a3 + & + e +7B)

Fig. 4. Max-sat debugging framework

Grouping clauses may increase the effect of error masking,
in which some error sources may not be detected as they are
. masked by others [3]. This also occurs in traditional diaimo

For debugging problems with multiple vectord, = techniques when error-free models are used. For instance,
{1, I, ...}, 0 = {01, 0, ...}, the union of the CNF problems consider the gates shown in Fig. 1 and a pair of errors on
for each vector results in a single constraint system. Iemthyates A and B. In this scenario, the single model-free error,
words the CNF corresponding to the circuit,is again repli- A, masks the pair solution of and B.
cated for each vector. Similar to the approach for sequentia Similar scenarios can occur when grouping clauses together
circuit, all clauses derived from the same gate, regarddéssespecially if the groups are made arbitrarily. For instance
which replica ofC' they occur in, must be grouped togethegonsider the CNF illustrated in Fig. 3 where some clauses are
and treated as a single error source. It should be noted thajuped in4 and other are grouped iB. Further consider a
the groupings for multiple vectors and sequential circisith®  pair of error clauses illustrated by the “X”. Here, the sing|
addition to the gate groupings discussed in Sec. IIl. solution identifying groupd masks the pair solutiod and B.

It should be emphasized that error masking is not uniquegto th
proposed technique as it occurs in gate-level and hiemaathi

In practice, debugging via an exact max-sat formulatiaffebugging as well [3].
may not be practical, as the number of groups and clauses
under consideration can be quite high thus resulting in ad'ha A- Efficient Max-sat Framework
max-sat problem. The proposed max-sat strategy can bg easilThis section presents a performance optimized debugging
modified to perform an over-approximation instead of findinframework using the discussed max-sat technique. The com-
exact solutions. The benefit of the over-approximation & thplexity of conventional debugging techniques such as SAT-
the speed and resolution trade-off can be adjusted for thased tools depend to a large extent on the number of
problem: reducing the resolution or granularity of the §ols  suspects that must be considered. In the past, divide and
found yields decreased run-time. conquer schemes based on the problem hierarchy have proven

The over-approximation is achieved by grouping clausggneficial [3]. Here, the approximate max-sat approach can
together as described in Sec. II-A and finding the MCSég used as a filter to remove the majority of the suspects by
in terms of the groups. Note that the groupings discussgdickly finding over-approximate solutions. Subsequerstiy
here are in addition to those presented in Sec. Il and Iéxact debugging approach can be used and will benefit greatly
Different grouping strategies can be easily formulatedjimgn by not having to consider all the original suspects duriisg it
from random groupings to those based on a circuit’s topologyalysis.
or structure. Similarly, groups can differ in cardinalitsorin Any type of grouping can be used; however, in the remain-
a single clause to thousands of clauses. For instance, ad#t clauses are grouped in sets of sizeaccording to their
of clauses can be grouped together if they are in the sagwresponding circuit-level topology. Every group consaiy
fanout-free cone which is similar to the dominator debuggirclauses (except for one group that contains the remainder of
technique introduced in [10]. Another example is groupinghe clauses in the CNF) from gates in close proximity to one
based on a high-level modules derived from RTL similar tanother. For sequential circuits and multiple vectors gitweip
the technique of [3]. Intuitively, generating groups based size isG'x [the total number of replications] as described in
the circuit’s structure or modularity may be advantageo@ec. IV. Fig. 4 illustrates the flow of the proposed framework
as fewer solutions/suspects may be returned comparedwigere the suspects are first filtered by the max-sat engine and
arbitrary grouping schemes. then processed by the exact debugger. The optimal value of
G, found experimentally, determines how the debugging effor
is divided between the two stages.

—
|
~

V. DEBUGGING WITH APPROXIMATE MAX -SAT

Clauses derived from circuit

clause group VI. EXPERIMENTS

4 X The proposed framework is implemented in C++ using

the max-sat algorithm (AlIMCSes) in [8] and the SAT-based
B debugging engine in [5] as a second stage debugger. Six com-

binational and ten sequential circuits from ISCAS85, ISBAS

and ITC99 benchmarks as well as OpenCores.org [9] are used

Fig. 3. Error masking in clause groupings



Circuit and debugging info || Debug || Max-sat20+debug ‘

name # # # # error time max-sat debug total time | X
gates | vecs | repl. locs (sec) # grps | # suspects [ % susp red | time (sec) | time (sec) (sec) improv.
mot-combl 2,162 1 1 4 4.79 3 49 97.73% 0.03 0.05 0.08 59.88
mot-comb?2 5,487 1 1 13 54.50 13 178 96.76% 0.13 0.24 0.37 147.30
mot-comb3 || 11,268 1 1 16 357.67 14 189 98.32% 0.27 0.47 0.74 483.34
6288 3,466 1 1 75 67.96 48 536 84.54% 0.45 1.23 1.68 40.45
c7552 2,644 1 1 248 25.66 74 789 70.16% 0.11 3.11 3.22 7.97
ch315 1,884 1 1 11 4.83 7 99 94.75% 0.04 0.07 0.11 43.91
rsdecoder 12,041 1 2 11 572.68 7 126 98.95% 0.67 0.65 1.32 433.85
spi 2,012 1 21 19 80.54 12 194 90.36% 1.15 2.99 4.14 19.45
erp 2,449 1 3 13 36.09 11 179 92.69% 0.20 0.25 0.45 80.20
ac97 15,599 1 6 4 [TO] 3 58 99.63% 2.22 1.45 3.67 | >980.93
reactimer 265 1 512 7 51.81 6 89 66.42% 47.58 6.15 53.73 0.96
divider 5,248 1 15 4| 1,160.39 3 52 99.01% 14.58 1.32 15.90 72.98
bl4 5,695 1 22 45 || 1,377.86 36 627 88.99% 11.17 50.75 61.92 22.25
b15 8,938 1 13 32 [TO] 40 645 92.78% 96.99 65.82 162.81 >22.11
$15850 10,481 1 2 19 747.36 12 183 98.25% 0.53 0.71 1.24 602.71
$38584 21,006 1 14 58 [TO] 34 566 97.31% 28.02 36.00 64.02 > 56.23
rsdecoder 12,041 4 8 11 [TO] 7 126 98.95% 2.88 2.01 4.89 | > 736.20
spi 2,012 4 81 4 264.07 6 107 94.68% 4.95 4.39 9.34 28.27
erp 2,449 4 12 4 73.71 5 101 95.88% 0.82 0.52 1.34 55.01
ac97 15,599 4 23 4 [TO] 3 58 99.63% 9.95 5.05 15.00 | > 240.00
reactimer 265 411,745 6 172.30 6 89 66.42% 2,845.80 21.48 2,867.28 0.06
divider 5,248 4 71 4 [TO 3 52 99.01% 54.74 5.44 60.18 > 59.82
bl14 10,114 411,216 — MO — — — MO — — —
b15 8,938 4 62 - TO - — - [TO - - -
515850 10,481 4 8 19 TO 12 183 98.25% 2.21 3.64 5.85 > 615.38
$38584 21,006 4 178 35 MO 20 365 98.26% 626.45 376.62 | 1,003.07 > 3.59

Fig. 5. Max-sat+debug versus standalone debugger

to construct several design debugging problems. The esteneframework with a grouping size off = 20. For sequential
circuits are obtained by manually changing the functiapalf designs and multiple vectors the actual number of clauses pe
a single gate at random. The failing test vectors are gesgbragroup is 20 times the number of circuit replicas. Figure 5
by running pseudo-random simulations until an erroneoasmpares max-s2ii+debug to the standalone debugger of [5].
response is observed. Experiments are conducted using tRtws 1 — 6 report experiments with combinational circuits
single and four failing test vectors. The performance of thgiven a single failing test vector, arfd— 16 (17 — 26) report
proposed framework utilizing the max-sat pre-processsg éxperiments with sequential circuits given one (four)ifajl
compared against the efficiency of the SAT-based debuggitegt vector(s). The first four columns contain the circuit's
engine in [5] without pre-processing. In all experiment® t name, its size in gates, the number of test vectors used,
size of the clause group error cardinalily., is set to one and the total number of circuit replicas needed. The fifth
to find the single error sources. In addition to the grouplumn ¢ error locy gives the total number of potential error
created for the over-approximation, clauses are also gupocations that could explain the faulty behavior of the @itc
together based on the circuit replicas as discussed in 8ec. (the complete set). These are the locations expected to be
Experiments are conducted on a Pentium IV 2.8 GHz Linweturned by both approaches when available. The sixth aolum
platform with a 1GB memory limit and 3600 seconds time-outjives the run-time of the standalone debugger. An entry of

In order to determine the effectiveness of the overall debud O] denotes a time-out, and [MO] denotes a memory-out.
ging framework of Sec. V-A as a function of the group size  The remaining columns present the results of our proposed
experiments are conducted on several representativeitsirciframework. The first four# grps # suspects% susp red
Fig. 6 (a) and (b) shows two such experiments, using circuihd time (sec) report the number of groups (@b x # repl.
€6288 and mot-comb3, where three curves representing the
run-times of the over-approximate max-sat stage, the exact
debugging stage, and the combined run-times are prese~

for several group sizes. The run-time of max-sat increa: - [,“:g;gsa‘ °-SL/:?$J§N
abruptly as the group size becomes very small, and it reac zs —— total —— total

o
>

a maximum when the exact method is used (singIe-cIa@
groups). However, as the group size increases, the rundfmn;“’
the second stage debugger increases as it must consider 15,
more suspects due to the over-approximation. The combi
curve shows the total run-time of the overall framework o= ————0n—e—— R T
minimized with group sizes of roughly 10 to 20 clauses. clause grouping size clause grouping size

In the remaining, “max-sa0+debug” refers to the proposed (a) c6288 (b) mot-comb3

run—gme (sec)
=

o
)

Fig. 6. Run-time versus clause grouping size
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VIl. CONCLUSION
clauses) returned by the AIIMCSes algorithm in any MCS; This work presents an efficient two stage debugging frame-
the number ofsuspectvariables identified by those groupswork which uses a novel max-sat problem formulation. First,
each corresponding to a potential gate-level error souhee; it is shown that the debugging problem can be solved exactly
percent reduction in the number of suspect gates; and thith a max-sat formulation. The approach is extended for
run-time of this first stage. The true benefit of the proposesquential circuits and for problems with multiple vectdka
technique is evident when considering the number of suspegter-approximation technique is developed to take adgenta
that are filtered by the first stage with relatively small time. of the strengths of the max-sat techniques. This technique
For instance consider the circuit ac97 with a single vectaonsiders groups of clauses together and can thus make
The approximation technique rules out 99.64% of the suspedecisions based on the groups instead of the individuateku
in just 2.22 seconds. On average, the number of suspectJlie over-approximation technique is used as a pre-proagssi
reduced by over 92%. step that filters the majority of suspects and reduces the

The run-time in seconds of the second stage debugger ugiigPlem complexity drastically for any debugger used in the
the suspects of the first stage is shown in colutebug time second stage. Experiments demonstrate overwhelming run-

(sec) Finally, thetotal time (seckolumn shows the combinedtime improvements of two orders of magnitude on average.
run-time of the proposed framework. This number is compared REFERENCES
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