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Abstract

Explaining the causes of infeasibility of Boolean formulas has practi-
cal applications in numerous fields, such as artificial intelligence (repairing
inconsistent knowledge bases), formal verification (abstraction refinement
and unbounded model checking), and electronic design (diagnosing and
correcting infeasibility). Minimal unsatisfiable subformulas (MUSes) pro-
vide useful insights into the causes of infeasibility. An unsatisfiable for-
mula often has many MUSes. Based on the application domain, however,
MUSes with specific properties might be of interest. In this paper, we
tackle the problem of finding a smallest-cardinality MUS (SMUS) of a
given formula. An SMUS provides a succinct explanation of infeasibility
and is valuable for applications that are heavily affected by the size of the
explanation. We present (1) a baseline algorithm for finding an SMUS,
founded on earlier work for finding all MUSes, and (2) a new branch-and-
bound algorithm called Digger that computes a strong lower bound on the
size of an SMUS and splits the problem into more tractable subformulas
in a recursive search tree. Using two benchmark suites, we experimentally
compare Digger to the baseline algorithm and to an existing incomplete
genetic algorithm approach. Digger is shown to be faster in nearly all
cases. It is also able to solve far more instances within a given runtime
limit than either of the other approaches.
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1 Introduction

Explaining the causes of infeasibility of Boolean formulas has practical appli-
cations in numerous fields, such as electronic design, formal verification, and
artificial intelligence. In design applications, for example, a large Boolean func-
tion is formed such that a feasible design is obtained when the function is sat-
isfiable, and design infeasibility is indicated when the function is unsatisfiable.
An example of this is the routing of signal wires in a field-programmable gate
array (FPGA) [26]. A solver returning “Unsatisfiable,” without further analysis
of the causes of unsatisfiability, provides no clue as to what design constraints
must be modified to make the design feasible.

In formal verification, certain implementations [2, 3, 19] of the counterexam-
ple guided abstraction refinement (CEGAR) paradigm [21] utilize infeasibility
analysis. In CEGAR, abstraction is used to derive a compact model from a
given concrete model (e.g., a circuit), and a property of interest is verified on
the abstract model. If the property can be violated on the abstract model, any
counterexample must be checked for feasibility, as infeasible counterexamples
may arise due to the loss of information inherent in most abstraction proce-
dures. Pinpointing the infeasibility identifies the relevant difference between
the abstract and concrete models w.r.t to the counterexample; this difference is
used to refine the abstract model and eliminate the infeasible counterexample.
Several CEGAR-based applications have used infeasibility analysis, some em-
ploying bit-level Boolean formulations (e.g., [2] and [19]) and others (e.g. [3])
utilizing word-level formulations such as Satisfiability Modulo Theories (SMT).
In artificial intelligence, local inconsistencies of a knowledge base might arise
after augmenting it with new information. Identifying and fixing the causes of
such inconsistencies is required before the knowledge base can be used.

Unsatisfiable formulas often contain a great deal of information that is ex-
traneous to their infeasibility; a “minimal” explanation of the infeasibility that
excludes irrelevant information is useful in many applications. The definition
of minimality varies among application domains. For Boolean formulas in con-
junctive normal form (CNF), a useful notion of minimality is the following.
Consider an unsatisfiable CNF formula ϕ. An unsatisfiable subformula (US) of
ϕ is a minimal unsatisfiable subformula (MUS) if it becomes satisfiable when-
ever any of its clauses is removed. An unsatisfiable formula could have many
MUSes, and, depending on the application domain, we might be interested in
just those with certain properties.

For example, in identifying inconsistent parts of a knowledge base, we may
be interested in finding the MUS with the smallest number of clauses. Since
such an MUS is a succinct description of one inconsistency in the knowledge
base, it can be of great value for the repairing process. In hardware verification
applications, the quality of refinement affects the number of iterations in the
abstraction-refinement flow [2, 3]. While a US represents a set of spurious
behaviors (states or transitions), an MUS represents a larger set of spurious
behaviors because it contains fewer constraints. For example, a verification flow
could generate the US “x + 1 = x AND x = 3,” while an MUS of the system
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is more general: “x+ 1 = x.” Thus, MUSes are more effective at reducing the
number of refinement steps required.

In this paper, we tackle the problem of finding a smallest cardinality MUS
(SMUS) of a given formula. We present two approaches we have developed to
solve this problem. The first is a modification of an existing algorithm that was
developed for computing all MUSes. Second, we present a new algorithm that
utilizes similar techniques but splits the problem into small, tractable subformu-
las and employs a recursive branch-and-bound approach on these subproblems
to increase efficiency. We compare these two approaches with each other and
with a third algorithm from the literature that uses incomplete local search to
find small, often minimum USes.

This paper is organized as follows. In Section 2, we introduce basic defini-
tions and some of the concepts underlying our work. Section 3 reviews previous
work in the area, including a description of an existing algorithm for approxi-
mating SMUSes using local search. We present our algorithms, the modification
of an existing system as well as our new branch-and-bound approach, in Sec-
tions 4 and 5. Finally, we present empirical results and analysis in Section 6
and conclude in Section 7.

2 Preliminaries

This work is focused on finding SMUSes of Boolean formulas in conjunctive nor-
mal form (CNF), though later we briefly discuss how to apply our techniques
to other forms of constraint systems as well. Throughout these definitions and
the entire paper, we will use “minimum” and “maximum” to describe sets that
are the smallest and largest (in terms of cardinality) with some defining prop-
erty and “minimal” and “maximal” to describe sets that cannot be reduced or
enlarged without losing some defining property.

2.1 Boolean Formulas and Satisfiability

Formally, a CNF formula ϕ is defined as follows:

ϕ =
∧

i=1...n

Ci

Ci =
∨

j=1...ki

aij

where each literal aij is either a positive or negative instance of some Boolean
variable (e.g., x3 or ¬x3, where the domain of x3 is {0, 1}), the value ki is the
number of literals in the clause Ci (a disjunction of literals), and n is the number
of clauses in the formula. In more general terms, each clause is a constraint of
the constraint system ϕ. We will often treat CNF formulas as sets of clauses,
so equivalently:

ϕ =
⋃

i=1...n

Ci

3



A CNF instance is said to be satisfiable (SAT) if there exists some assignment
to its variables that makes the formula evaluate to 1 or TRUE; otherwise, we
call it unsatisfiable (UNSAT). The problem of deciding whether a given CNF in-
stance is satisfiable is the canonical NP-Complete problem to which many other
combinatorial problems can be polynomially reduced. A SAT solver evaluates
the satisfiability of a given CNF formula and returns a satisfying assignment
of its variables if it is satisfiable. The associated problem of MaxSAT is an
optimization problem for which the goal is to find a satisfiable subset of clauses
with maximum cardinality.

The following unsatisfiable CNF instance ϕ will be used as an example
throughout this paper. We use a shorthand for representing CNF wherein we
omit the conjunction operators (∧) between clauses, implicitly specifying the
conjunction as is common with multiplication in arithmetic.

ϕ = (x1 ∨ x2)(¬x1 ∨ x2)(¬x2 ∨ x3)(¬x2 ∨¬x3)(x2 ∨ x4)(¬x4 ∨¬x5)(¬x4 ∨ x5)
(x4 ∨ x6 ∨ x7)(x4 ∨ x6 ∨ ¬x7)(x4 ∨ ¬x6 ∨ x7)(x4 ∨ ¬x6 ∨ ¬x7)

We will refer to individual clauses as Ci, where i refers to the position of the
clause in the formula (e.g., C3 = (¬x2 ∨ x3)).

2.2 MUSes and MCSes

The definition of a Minimal Unsatisfiable Subformula (MUS) is fundamental
to this work, as is the closely related concept of a Minimal Correction Subset
(MCS). As mentioned earlier, an MUS is a subset of the clauses of an unsatisfi-
able formula that is unsatisfiable and cannot be made smaller without becoming
satisfiable. An MCS is a subset of the clauses of an unsatisfiable formula whose
removal from that formula results in a satisfiable formula (“correcting” the in-
feasibility) and that is minimal in the same sense that any proper subset does
not have that defining property. Any unsatisfiable formula can have multi-
ple MUSes and MCSes, potentially exponential in the number of constraints
(see Appendix A for examples). Formally, given an unsatisfiable formula ϕ, its
MUSes and MCSes are defined as follows:

Definition 1. Given an unsatisfiable formula ϕ, a set of clauses U ⊆ ϕ is an
MUS if U is unsatisfiable and ∀Ci ∈ U, U − {Ci} is satisfiable.

Definition 2. Given an unsatisfiable formula ϕ, a set of clauses M ⊆ ϕ is an
MCS if ϕ−M is satisfiable and ∀Ci ∈M, ϕ− (M − {Ci}) is unsatisfiable.

Any MaxSAT solution will provide an MCS; the clauses not satisfied by a
particular MaxSAT solution are an MCS. However, not all MCSes correspond
with MaxSAT solutions, because MaxSAT is concerned with maximum cardi-
nality only, while MCSes are defined in terms of irreducibility (inaugmentability
of the complementary satisfiable set of clauses), which includes minimum car-
dinality correction sets as well as others of larger size.

Our example formula ϕ and its three MUSes are depicted visually in Figure
1. The MUSes are also listed below (in general, we will use MUSes(ϕ) and
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Figure 1: The example formula ϕ and its MUSes

MCSes(ϕ) to refer to the complete collections of each subset type for any given
formula ϕ). Additionally, ϕ has 24 MCSes, not shown here: 16 with two clauses
and 8 with three. Therefore, it also has 16 MaxSAT solutions, each of which
satisfies all but two clauses.

MUSes(ϕ) = {{C1, C2, C3, C4}, {C3, C4, C5, C6, C7}, {C6, C7, C8, C9, C10, C11}}
MUS1(ϕ) = (x1 ∨ x2)(¬x1 ∨ x2)(¬x2 ∨ x3)(¬x2 ∨ ¬x3)
MUS2(ϕ) = (¬x2 ∨ x3)(¬x2 ∨ ¬x3)(x2 ∨ x4)(¬x4 ∨ ¬x5)(¬x4 ∨ x5)
MUS3(ϕ) = (¬x4 ∨ ¬x5)(¬x4 ∨ x5)(x4 ∨ x6 ∨ x7)

(x4 ∨ x6 ∨ ¬x7)(x4 ∨ ¬x6 ∨ x7)(x4 ∨ ¬x6 ∨ ¬x7)

The algorithms discussed in this paper rely on an important connection
between MUSes and MCSes noted in [17] and [5] and exploited in [4] and [22, 23]
for finding all MUSes of constraint systems. Specifically, every MUS of a formula
ϕ is a minimal hitting set of the complete set of ϕ’s MCSes. A hitting set of a
collection of sets C is a set that contains at least one element from every set in
C. A minimal hitting set is a hitting set such that every one of its elements is
the sole representative for at least one set in C; in other words, removing any
one element would cause it to lose the “hitting set” property. So in the case of
the MUS/MCS link, every MUS contains at least one clause from every MCS,
and the minimality of the MUS mirrors the minimality of the fact that it is a
minimal hitting set. This connection is useful in that it provides a method to
produce all MUSes of a formula: first find all MCSes, then compute all minimal
hitting sets of the MCSes.

To understand this connection more intuitively, note first that the presence
of an MUS in a constraint system C makes C infeasible. One must somehow
“neutralize” every MUS in C to produce a satisfiable system. Because it is
minimal, an MUS can be neutralized, or made satisfiable, by removing any
one constraint from it. Therefore, an MCS of C, whose removal “corrects” the
system (making it satisfiable), must contain at least one constraint from every
MUS in C: an MCS of C is a hitting set of all MUSes of C. Further, an MCS
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is a minimal hitting set of the MUSes, as its minimality (remove one constraint
and it no longer corrects the infeasibility because it no longer hits one of the
MUSes) mirrors that of a minimal hitting set of MUSes. Every constraint in
either an MCS or a minimal hitting set of the MUSes is necessary in that it hits
some MUS that the other constraints in the set do not. A similar argument in
the other direction can show how MUSes are minimal hitting sets of the MCSes
of a system, though it is not as intuitive.

In addition to MUSes and MCSes, we will refer to unsatisfiable subsets
(USes) and correction sets (CSes), which are simply MUSes and MCSes, respec-
tively, without the criterion of minimality. As an example, given any unsatisfi-
able formula, the entire formula is both a US and a CS.

2.3 SMUSes

The target of the algorithms in this paper is a Smallest Minimal Unsatisfiable
Subformula (SMUS).

Definition 3. Given an unsatisfiable formula ϕ, a set of clauses S ⊆ ϕ is an
SMUS if S is an MUS of ϕ and ϕ has no MUSes with fewer clauses than S.

The example formula has a single SMUS: MUS1(ϕ) = {C1, C2, C3, C4}.
With 4 clauses, it is smaller than the other two, with 5 and 6 clauses respec-
tively. In general, a formula may have multiple SMUSes with equal cardinality.
We use |SMUS(ϕ)| to refer to the size of any SMUS of ϕ.

3 Previous Work

The previous work in the area of minimal unsatisfiable subformulas has generally
been divided into that which is more theoretical, related to complexity bounds,
etc., and that which is more applied, developing and implementing algorithms
to be investigated experimentally.

In some of the earliest theoretical work related to MUSes, Papadimitriou
and Wolfe [28] showed that recognizing a minimal unsatisfiable formula (i.e., is
ϕ an MUS?) is DP -complete. A DP -complete problem is equivalent to solving
a SAT-UNSAT problem defined as: given two formulas φ and ψ, in CNF, is it
the case that φ is satisfiable and ψ is unsatisfiable? This result implies that
algorithms for computing MUSes will require superpolynomial time.

Certain subclasses of unsatisfiable formulas do have tractable solutions to
these problems, however. Minimally unsatisfiable formulas always have posi-
tive deficiency [1, 10], where deficiency is the difference between the number of
clauses and variables. Davydov et al. [10] gave an efficient algorithm for rec-
ognizing minimal unsatisfiable formulas with deficiency 1. Büning [7] showed
that if k is a fixed integer then the recognition problem with deficiency k is in
NP, and he suggested a polynomial time algorithm for formulas with deficiency
2. Kullmann [20] proved that recognizing a minimal unsatisfiable formula with
deficiency k is decidable in polynomial time, and Fleischner et al. [12] showed
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that such formulas can be recognized in nO(k) time, where n is the number of
variables. Szeider [31] improved this result and presented an algorithm with
time complexity O(2kn4).

The concept of deficiency has been applied to quantified Boolean formulas
(QBFs) also; Büning and Zhao [8] present a definition of minimal false formu-
las. A minimal false formula is a QBF in CNF that is false but becomes true
when any clause is removed. A notion of deficiency for minimal false formulas
is defined and it is shown that any minimal false formula must have positive
deficiency. In [8], a polynomial time algorithm for deciding minimal falsity for
formulas with deficiency 1 was presented.

Dasgupta and Chandru [9] classify MUSes into three categories based on
properties of their literals. They also present upper bounds on the sizes of
MUSes for 2-CNF and 3-CNF formulas. For a 2-CNF formula, an m-literal
MUS has at most O(2m) clauses, and for a 3-CNF formula, an m-literal MUS
has at most O(1.62m−1) clauses.

In one of the earliest implemented algorithms for computing small unsat-
isfiable subformulas, Bruni and Sassano [6] employ an “adaptive core search”
procedure that ranks clauses based on their hardness. The hardness of a clause
is defined as a weighted sum of how often the clause is visited during a complete
search algorithm and how often it is involved in conflicts. Starting from a small
initial set of hard clauses, the unsatisfiable core is built by an iterative pro-
cess that expands or contracts the current core by a fixed percentage of clauses
(chosen based on hardness) until the core becomes unsatisfiable. The quality
(i.e., size and minimality) of the unsatisfiable core produced by this procedure
is highly dependent on the particular settings of three parameters that guide
the process.

Other approaches to producing unsatisfiable cores have arisen from work
aiming primarily to verify “unsatisfiable” results returned by SAT solvers. They
share a common theme of identifying an unsatisfiable core by distinguishing
those clauses involved in the proof of unsatisfiability. These techniques also do
not guarantee minimality, and their outputs are often not minimal. Goldberg
and Novikov [14] record conflict clauses during a SAT solver’s search and verify
each using Boolean constraint propagation. By verifying the conflict clauses
in reverse chronological order and only checking those that are needed to form
previously checked clauses, the process can identify a subset of the original
clauses needed to form the final conflict; such a subset is an unsatisfiable core.

Zhang and Malik [33, 34] use a resolution proof generated by the SAT solver
and use it to derive an unsatisfiable core in a similar way. A resolution proof
is a directed acyclic graph (DAG) whose leaf vertices correspond to the for-
mula’s original clauses. Every other vertex has exactly two predecessors and
corresponds to the consensus clause obtained from those of its predecessors.
The set of original clauses in the transitive fan-in of the root (an empty clause
representing the final conflict) are returned as the unsatisfiable core. For any
of these procedures that produce non-minimal cores, smaller cores, though not
necessarily MUSes, can be obtained by repeatedly applying the procedure until
no further reduction in size is obtained.
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Oh et al. [27] instrument a CNF formula with clause-selector variables: for
any clause Ci, make it C ′

i = ¬yi ∨ Ci; this allows a SAT solver to enable and
disable clauses by assigning TRUE or FALSE, respectively, to any particular yi.
In their algorithm, AMUSE, they utilize information from a DPLL-style search
to implicitly search for a US instead of a satisfying assignment of the original
formula. They note that AMUSE can be biased to favor particular variables,
enabling them to find multiple USes if they favor variables that did not appear
in previously found USes.

Gershman et al. [13] extend the approach in [33, 34] to produce smaller cores.
They use the concept of “dominators” in resolution proofs to look for reformu-
lations of the graph with fewer leaf nodes (original clauses). Their algorithm,
Trimmer, can produce smaller cores than Zhang and Malik’s algorithm alone
(though the results are still not necessarily minimal).

Huang [18] converts the problem of checking whether a formula is an MUS
to a model counting problem on a new formula obtained by augmenting the
original formula with “minterm” selector variables. Binary decision diagrams
are used to perform model counting on the original formula. This approach can
also be used to minimize unsatisfiable cores to proper MUSes.

Grégoire et al. [15] apply local search to the problem of computing MUSes.
They employ a scoring heuristic based on clauses’ relations to others with which
they share literals to identify which clauses are more or less likely to be included
in some MUS. Scores are recorded within a local search, and clauses deemed un-
likely to participate in an MUS are removed. The last unsatisfiable set of clauses
(before removing the final clause which makes it satisfiable) is an approximate
MUS (unsatisfiable core). The authors extend this approach to 1) compute
one MUS exactly (using a procedure that “fine tunes” the approximation), 2)
compute “strict inconsistent covers” (sets of MUSes that share no clauses with
one another), and 3) approximate the set of all MUSes (relying on removing
a clause from the formula to find each subsequent MUSes, and thus finding at
most a number of MUSes linear in the size of the formula, as compared to the
potentially exponential number of MUSes present).

Two systems for computing all MUSes of a constraint system exactly have
been developed, both based on the connection between MCSes and MUSes noted
in Section 2.2. Bailey and Stuckey [4] developed an algorithm for finding all
MUSes of a constraint system and applied it to the problem of type-error diag-
nosis in software verification. They employ an interleaved approach, computing
MUSes as MCSes are found. The other approach was developed by Liffiton et
al. [22, 23] as a serial, two-phase algorithm called CAMUS (for Compute All
Minimal Unsatisfiable Subsets). CAMUS is explained in detail in Section 4. In
[22], the authors performed an experimental comparison of Bailey and Stuckey’s
approach, adapted to Boolean satisfiability, with CAMUS, finding that CAMUS
was consistently faster by several orders of magnitude on those instances.

For the focus of this paper, computing an SMUS of a Boolean satisfiabil-
ity instance, there are two previous approaches. Lynce et al. [24] presented an
algorithm that computes an SMUS by implicitly searching the space of all un-
satisfiable subformulas. This is achieved by adding “selector variables,” called
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S variables, and extending a DPLL-like SAT solver to search for an assignment
that makes the formula unsatisfiable while minimizing the number of S variables
set to 1; such an assignment corresponds to an SMUS. While this approach im-
plicitly searches the space of the USes to find the SMUS, the algorithm we
describe in this paper implicitly searches the space of the MUSes, which can
be exponentially smaller, and employs several techniques to prune this space
during the search.

Zhang et al. [32] developed an approach to compute an SMUS using the
first phase of CAMUS coupled with a greedy genetic algorithm (GGA) to find
small MUSes. They generate all MCSes of an instance using the first phase
of CAMUS, thus facing the same intractability issues as CAMUS in that phase.
If it can generate all MCSes, then GGA uses a greedy construction to produce
seeds for a genetic algorithm (GA) that encodes sets of clauses as genomes
and utilizes the standard GA approaches of mutations, crossover, etc. to search
for a minimum hitting set of the MCSes. Because the genetic algorithm is an
incomplete local search, GGA can not guarantee the minimality of the result;
in practice it returns either an SMUS or a small US whose size is within a few
percent of the number of clauses in an SMUS. We experimentally compare our
algorithm to GGA in Section 6.

4 Computing an SMUS with CAMUS

One of the simplest approaches to finding an SMUS of a formula is to generate
all of its MUSes and then select one with the fewest clauses. However, the
complete set of MUSes can be intractably large, as the number of MUSes may
be exponential in the size of the original formula. While this makes the approach
intractable in the general case, it does provide a useful baseline against which the
performance of other algorithms can be compared. Furthermore, our branch-
and-bound algorithm utilizes this approach on subsets of the input formula,
with the idea being that these subsets will be small enough that the exhaustive
approach will finish in a reasonable amount of time.

The baseline algorithm we use for these purposes is a variant of the CAMUS
algorithm presented in [23], modified to use branch-and-bound to avoid some
of the intractability of generating all MUSes. CAMUS exploits the connection
between MCSes and MUSes described in Section 2.2 to generate all MUSes of a
given formula. Because satisfiable subsets of constraints are easier to find than
unsatisfiable subsets, in the sense that problems in NP are easier than those
in co-NP, CAMUS operates in two phases: 1) compute all MCSes of a given
formula, 2) compute all MUSes of the formula by finding all minimal hitting
sets of the MCSes in a recursive tree. The first phase is unchanged, but we
have modified the second phase in this work. Instead of computing all minimal
hitting sets (MUSes), we added a branch-and-bound capability to the recursion
tree to prune large portions of the tree and produce only the smallest hitting
set (an SMUS). We call this variant CAMUS-min.
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4.1 Finding MCSes

The first phase of both CAMUS and CAMUS-min utilizes a standard SAT solver
to find MCSes. Every clause Ci in ϕ is augmented with a clause-selector variable
yi to produce C ′

i = (yi → Ci) = (¬yi ∨ Ci). An assignment of TRUE to a par-
ticular yi implies the original clause Ci, essentially enabling or hardening that
clause. Assigning FALSE to yi likewise disables Ci by satisfying C ′

i. The aug-
mented clauses, conjoined, form ϕ′. Any satisfying solution to ϕ′ thus indicates
a satisfiable subset of ϕ by the set of yi variables assigned TRUE. A satisfying
solution with a maximal set of yi variables assigned TRUE describes an MCS;
the yi variables assigned FALSE correspond to the clauses left unsatisfied or
“removed,” forming an MCS.

To find MCSes, we iteratively solve ϕ′ with additional constraints that maxi-
mize the number of yi variables assigned TRUE and blocking clauses that require
at least one clause from every MCS found thus far be enabled. For example,
to block the MCS {C4, C9, C17}, the clause (y4 ∨ y9 ∨ y17) is added to ϕ′, re-
quiring that no future solution disables all three of those clauses at once. This
procedure finds all MCSes of a formula in increasing order of size, halting when
ϕ′ along with the blocking clauses is unsatisfiable. For complete details please
refer to [23].

4.2 Computing (S)MUSes from MCSes

The algorithm in the second phase of CAMUS recursively generates all MUSes
from the set of all MCSes produced in the first phase. At every recursive step,
it selects a clause from the MCSes to include in a growing MUS and an MCS
in which it appears. It then alters the remaining MCSes to remove any others
that include that clause and to remove any clauses in the chosen MCS from
other MCSes. The alterations ensure that no further choices would make that
clause redundant within the constructed MUS. At every step, a clause and an
MCS in which it occurs can be selected arbitrarily from the remaining set to
produce different MUSes, and thus the algorithm branches on all such choices
to recursively generate all MUSes.

For CAMUS-min, we calculate a lower bound on the size of the smallest MUS
that can be constructed below any node by summing the number of clauses
chosen above the node with the size of an approximation of the maximal inde-
pendent set (MIS) of the remaining altered MCSes. Every node in the recursion
tree is operating on a set of sets, either the complete set of MCSes in the root
node or some smaller set of altered MCSes in the other nodes. An MIS of the
(potentially altered) MCSes will be pairwise disjoint and thus the number of
sets it contains is a lower bound on the number of clauses that must still be
selected to hit all remaining MCSes. The approximation we use is a greedy
heuristic called MIS-quick [16] that iteratively selects the smallest remaining
set and removes any other sets that intersect it. It finishes when no sets remain,
all having been removed due to either selection or intersection with a selected
set.
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Figure 2: The operation of the recursive second phase of CAMUS-min using
MIS-quick to compute lower bounds and prune subtrees.

Figure 2 illustrates an example of using this lower bound to prune portions
of the recursive tree and return an SMUS. (We have not used the running
example from Figure 1 because it would be too large.) In this example, the
algorithm is given the set of MCSes {{1, 4}, {1, 6}, {1, 7}, {2, 3}, {2, 5}} (using
“1” as shorthand for C1, for example). The MIS-quick routine could return
two independent sets at this node {{1, 4}, {2, 3}}, indicating that the lower
bound on the size of any MUS is 2. In the first branch, the MCS {1, 4} and
clause 1 are chosen. The MCSes are altered by discarding those that contain 1;
removing the other clause in the chosen MCS, 4, from those that remain; and
removing any altered MCSes that are now supersets of another; thus node 2 of
the recursive tree has the altered MCSes {2, 3} and {2, 5}. Here, MIS-quick
will return just a single set (e.g., {2, 3}) and so the lower bound is still 2: one
clause chosen in this path plus one independent set.

The next choice, of clause 2 and MCS {2, 3}, results in an empty set of
MCSes in node 3, thus the chosen clauses along this path are an MUS: {1, 2}.
The upper bound is set to its size, 2, and the algorithm backtracks. When it
returns to node 2, the upper bound is equal to the lower bound estimated from
MIS-quick, so any further branches below the node are pruned. Backtracking
to node 1 produces a similar result, as the lower bound there is again equal to
the upper bound. The algorithm terminates, having found an SMUS, {1, 2},
and having pruned any subtrees in which an equal-sized or larger MUS would
have been found.

With this lower bound provided by MIS-quick, CAMUS-min can prune any
branches of the recursion tree that are proven to contain no MUSes smaller
than the smallest found thus far. This prunes out large portions of the tree,
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decreasing runtime substantially, and the last MUS produced will be an SMUS.
The pruning induced by the lower bound does greatly decrease the runtime,
but only for the second phase of CAMUS-min. The first phase is unaffected,
and it still must generate all MCSes of the formula before the second phase
can commence. This can be intractable, because the number of MCSes can be
exponential in the size of the formula.

5 Computing an SMUS with Digger

As noted, any approach to computing an SMUS that generates all MUSes or
even just all MCSes of a formula can hit severe scalability issues, as both of these
sets can be exponentially large in the worst case. The algorithm we describe
here (first presented in [25]) attempts to avoid this intractability with a branch-
and-bound approach that breaks the problem into smaller, more tractable sub-
problems and uses a robust lower bound along with the standard “best so far”
upper bound to significantly reduce the amount of work done in finding an
SMUS. While the algorithm still searches the complete space of all MUSes, it
is more efficient than existing alternatives due to these heuristics. We call this
algorithm Digger.

The execution of Digger on our running example is shown in its entirety
in Figure 6. We have placed it later because it is only fully explained by the
combined contents of the following four subsections (Sections 5.1 through 5.4),
but we will refer to relevant pieces of it throughout this section to illustrate the
example. In the figure, we have used numbers in place of Ci for ease of reading;
for example, 4 is used in place of C4.

5.1 Disjoint MCSes

The operation of Digger’s branching as well as its lower bound calculations come
from a heuristic of finding disjoint MCS covers.

Definition 4. A disjoint MCS cover D for a formula ϕ is a subset of ϕ’s
MCSes such that (1) the intersection of any two MCSes in D is empty, and
(2) the conjunction of all clauses in the MCSes in D, which we will call ϕD, is
unsatisfiable (the MCSes in D together “cover” an entire MUS).

One can equivalently define a disjoint CS cover by simply removing the min-
imality criterion for the correction sets in the above definition (replace “MCS”
by “CS”).

5.1.1 Properties of Disjoint MCS Covers

A disjoint MCS cover D and its corresponding ϕD have several interesting and
useful properties. First, because it is unsatisfiable, ϕD must contain at least
one MUS, and, as it is a subset of ϕ, any MUSes of ϕD are also MUSes of
ϕ. Secondly, D is easy to compute, relative to computing the complete set of
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MCSes of ϕ. In the worst case, D is linear in size of the formula, which contrasts
with the potentially exponential number of MCSes in ϕ. Every MCS in D must
contain at least one clause, and it cannot contain any clauses in any other MCS
in D; thus, there can be at most 1 MCS in D for every clause in ϕ.

A third useful property of D is stated in the following theorem:

Theorem 1. Given a disjoint MCS cover D for a formula ϕ:

|SMUS(ϕ)| ≥ |D|

Proof. Any MUS in ϕ must contain at least one clause from every MCS of ϕ.
Thus, any MUS in ϕ must contain at least one clause from every MCS in D.
Because any two MCSes in D are disjoint, there is no way to select a clause that
covers more than one MCS; therefore, any MUS in ϕ must contain at least |D|
clauses.

This theorem states that |D| is a lower bound on the size of SMUS(ϕ).
This lower bound can be used to prove that a candidate SMUS is the smallest
possible, as described in more detail in Section 5.3. This theorem is also valid
for a disjoint CS cover (notice that the proof of the theorem does not rely on
the minimality of the MCSes in any way), and we will make use of this fact
briefly when discussing optimizations in Section 5.5.

5.1.2 Generating a Disjoint MCS Cover

A disjoint MCS cover can be generated by a procedure very similar to that used
to find all MCSes in CAMUS (described in Section 4). The only difference is
that instead of creating a blocking clause for each MCS that prevents finding
the same MCS again, we block each clause in the MCS separately. For example,
given that we find an MCS {C4, C9, C17}, we create three new blocking clauses:
(y4), (y9), and (y17). This hardens the three clauses independently, requiring
that they always be satisfied in future solutions. With these clauses hardened,
any additional MCS found can not intersect any found previously. Eventually,
these hard constraints will altogether include an MUS, at which point they will
be unsatisfiable and the MCSes collected thus far will be a disjoint MCS cover.
(Because of this similarity between the two approaches, we were able to use, with
that one minor change, the same framework in our implementation of Digger as
was used in CAMUS and CAMUS-min.)

A more generic way of understanding this procedure is to think of it in
terms of MaxSAT. An initial MCS can be found by solving MaxSAT for
the unsatisfiable formula ϕ. The clauses not satisfied by the solution are an
MCS. Then, further MCSes are found by iterative solutions to MaxSAT for
ϕ with the clauses in all MCSes found so far hardened. This will force the
solutions to leave only new clauses unsatisfied, so the new MCSes found will
not intersect any found earlier. Figure 3 shows pseudocode for this approach in
terms of MaxSAT. Here, MaxSAT(ϕ,hardened) returns the set of clauses left
unsatisfied when satisfying as many clauses in ϕ as possible given that those in
hardened must be satisfied.
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DisjointMCSes(ϕ)

1. hardened ← ∅
2. while (isSAT(hardened))

3. newMCS ← MaxSAT(ϕ,hardened)

4. hardened ← hardened ∪{newMCS}
5. return hardened

Figure 3: An algorithm for finding a disjoint MCS cover of ϕ

On our running example formula in Figure 6, execution of this algorithm
could first find any one of the several 2-clause MCSes in ϕ (each of the 16
MaxSAT solutions for ϕ satisfies all but 2 clauses). For example, it could find
{C3, C7}, which is then added to hardened. Those two clauses are satisfiable, so
the loop iterates, this time finding a MaxSAT solution where C3 and C7 are sat-
isfied. The MCS returned in this case is {C4, C6}. Now, there are no MaxSAT
solutions that satisfy all but 2 clauses and satisfy C3, C4, C6, and C7, but there
are ways to satisfy all of these while leaving 3 clauses unsatisfied. So MaxSAT
returns {C1, C5, C8}. At this point, the clauses accumulated in hardened be-
come unsatisfiable, because they contain MUS2(ϕ) = {C3, C4, C5, C6, C7}, and
the loop terminates. The subroutine returns the disjoint MCS cover it found:
D = {{C3, C7}, {C4, C6}, {C1, C5, C8}}.

5.2 Branching

Digger utilizes a recursive branch-and-bound tree to find an SMUS. Every node
in the tree (each recursive call) takes as input a subset of the original formula’s
clauses and upper and lower bounds on the size of any SMUS within that subset.
The output of a node (returned to the parent) is the smallest MUS found in
that subset if any are found that are smaller than the upper bound. Therefore,
running the algorithm consists of a single call to start the recursion at the root
node with inputs of the entire formula and initial, unconstrained bounds.

Unlike a standard branch-and-bound tree, in which solutions are only found
at the leaves, Digger investigates some subset of the MUSes in every node of
the tree, including the root node. Within each node, it uses the disjoint MCS
heuristic to select a sample set of clauses ϕD. As discussed above, ϕD contains
at least one MUS. The CAMUS-min algorithm described in Section 4 is used to
exhaustively generate all MCSes of ϕD and compute an SMUS. This SMUS of
ϕD is then a candidate SMUS of ϕ.

In our running example in Figure 6, we have so far found a disjoint MCS cover
D = {{C3, C7}, {C4, C6}, {C1, C5, C8}}, so ϕD = {C1, C3, C4, C5, C6, C7, C8}.
ϕD contains only one MUS, which CAMUS-min finds as an SMUS. This MUS,
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{C3, C4, C5, C6, C7}, is now a candidate SMUS for ϕ.
To branch, Digger creates subformulas to pass to recursive calls below the

current node. Ideally, these subformulas should:

1. all together contain every MUS not in the subset checked in the node;

2. not share MUSes with the subset investigated within the node;

3. not have any MUSes in common between themselves.

Only property 1 is required, because it ensures that the recursion will in-
vestigate every MUS in the formula passed to a node, either within the node
itself or in one of the branches below it. Properties 2 and 3 are good for effi-
ciency, as both avoid redundant work. The branching heuristic used in Digger
has properties 1 and 2 but not 3, so it may investigate an MUS in more than
one branch.

Digger forms a subformula for each branch by removing the clauses in one
MCS of ϕD from ϕ. We will refer to the MCSes of ϕD as {δ1, δ2, . . . , δn}, so
each subformula is some ϕ− δi. Note that the MCSes of ϕD are not necessarily
the same as the MCSes in D itself (which are MCSes of ϕ). Removing any
MCS of ϕ from ϕ yields a satisfiable subformula by the definition of MCS, but
removing an MCS of ϕD from ϕ could yield a still-unsatisfiable subformula with
more MUSes to investigate.

Property 2 holds for these subformulas because removing any MCS of ϕD

removes at least one clause from every MUS in ϕD from ϕ. This guarantees
that no MUSes of ϕD will be present in ϕ− δi.

To prove that this algorithm is complete, we must prove that every MUS in
ϕ is contained in ϕD or at least one of ϕ − δi. To do this, we will make use of
the following theorem from [23], with a proof in [5]:

Theorem 2. The set of all minimal hitting sets of the MCSes of a formula ϕ
is equal to the set of all MUSes of ϕ.

A corollary of this theorem is directly useful in our completeness proof:

Corollary 1. Any hitting set of MCSes(ϕ) is an US of ϕ.

This follows from the facts that every hitting set must contain a minimal
hitting set and every US must contain at least one MUS.

Additionally, we make use of the following lemma:

Lemma 1. Given ϑ = ϕ− {c1, c2, . . . , ci}:

MUSes(ϑ) = {x : x ∈ MUSes(ϕ) ∧ x ∩ {c1, c2, . . . , ci} = ∅}

This states that the MUSes of a formula ϑ formed by removing clauses from
another, ϕ, will be a subset of the MUSes of ϕ: those that do not contain any
of the removed clauses.

With these facts, we can prove the following theorem, which proves property
1 for Digger’s branching heuristic:
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Theorem 3. Given a CNF formula ϕ, a subformula ϕD ⊆ ϕ, and the MCSes
of ϕD {δ1, δ2, . . . , δn}:

MUSes(ϕ) = MUSes(ϕD) ∪
n⋃

i=1

MUSes(ϕ− δi)

Proof. By contradiction: Assume there is an MUS M ∈ MUSes(ϕ) contained in
neither ϕD nor any of the ϕ− δi subformulas.

M must contain at least one clause from every δi, otherwise it would be
contained in a ϕ − δi subformula, by Lemma 1. Therefore M must contain a
hitting set of {δ1, δ2, . . . , δn}, the MCSes of ϕD.

By Corollary 1, a hitting set of MCSes(ϕD) contains an MUS of ϕD. There-
fore, M must contain an MUS of ϕD, and because M is an MUS itself, then M
must be an MUS of ϕD, a contradiction.

Therefore, we know that a recursive search that investigates all MUSes in
ϕD and all ϕ− δi subformulas as described must investigate every MUS in ϕ.

In our running example, the MCSes of ϕD are {C3}, {C4}, {C5}, {C6}, and
{C7}. The recursion will thus branch from this node to explore ϕ−C3, ϕ−C4,
and so on. In Figure 6, we have chosen to branch on {C5} first, so the second
search node is passed ϕ− C5.

5.3 Bounds

Upper and lower bounds on the size of the SMUSes are calculated for the current
subproblem at every search node. The upper bound is the size of the smallest
MUS found thus far in any previous node in the tree. The lower bound calcula-
tion is derived from the heuristic for selecting a subset of clauses. The number
of disjoint MCSes found in the initial discovery of D to form ϕD is a lower
bound on the size of the MUSes in ϕ, as proven in Theorem 1. Therefore, any
MUS found of size |D| must be an SMUS.

Furthermore, we can improve this bound slightly in some cases:

Theorem 4. Given a disjoint MCS cover D for a formula ϕ and a subformula
ϕD formed by conjoining the clauses in every MCS in D:

If |SMUS(ϕD)| 6= |D|, then |SMUS(ϕ)| ≥ |D|+ 1

Proof. By contrapositive: Assume the negation of the consequent of the impli-
cation, namely |SMUS(ϕ)| < |D|+ 1.

From Theorem 1, we know that |SMUS(ϕ)| ≥ |D|; therefore, given our
assumption, we know that |SMUS(ϕ)| = |D|. Every MUS of ϕ must contain at
least one clause from each MCS in D, thus every one of the |D| clauses in any
SMUS of ϕ must be in some MCS of D. For this to be true, these MUSes of ϕ,
each of size |D|, must be contained in ϕD. Because |SMUS(ϕD)| ≥ |D| and ϕD

contains an MUS of size |D|, it must be the case that |SMUS(ϕD)| = |D|. We
have thus proven the contrapositive, so the original implication is true.

16



Another way of stating this is the following: if ϕ has an MUS of size |D|,
then that MUS must be contained in ϕD. We now have a lower bound on the
size of an MUS of ϕ in the case where an SMUS of ϕD has more than |D| clauses.
This can be used in two ways: (1) When an SMUS of ϕD has size |D| + 1, it
must be an SMUS of ϕ as well; (2) If no SMUS of ϕD reaches the lower bound,
then any MUS of a subformula ϕ−δi (see Theorem 3) of size |D|+1 is an SMUS
of ϕ.

The running example shown in Figure 6 returns an MUS of size 4 from the
second search node. Because this is one more than its parent’s lower bound (4),
the search can terminate immediately, having proven with Theorem 4 that it is
an SMUS of ϕ.

5.4 The Algorithm

The pieces mentioned thus far are composed into the Digger algorithm shown
in pseudocode in Figure 4. It is a recursive algorithm that operates on subsets
of the original formula, returning an SMUS of its input formula ϕ if one exists
that is smaller than the given upper bound UB and ∅ otherwise. The initial call
to Digger is given the complete formula ϕ for which we wish to find an SMUS
and an unrestrictive upper bound such as UB = |ϕ| + 1. The computations
performed in each node and the resulting branching are shown in Figure 5.
Figure 6 illustrates a possible run of Digger on the example formula ϕ.

First, Digger performs a simple satisfiability check, returning ∅ if ϕ is SAT.
This is required because some of the formulas passed to the routine by recursive
calls could be satisfiable, containing no MUSes. Continuing, the algorithm
explores a subset of the MUSes of the current subproblem using D, a disjoint
MCS cover of ϕ. First, the lower bound on |SMUS(ϕ)| is calculated as |D|, and
∅ is returned if this proves that ϕ has no MUSes smaller than UB (the smallest
size found earlier). If the current branch is not terminated due to LB ≥ UB, the
algorithm further uses D to produce a subformula of ϕ, denoted ϕD, by taking
the union of every clause in every MCS in D. This subformula is explored
by using CAMUS-min to produce an SMUS of ϕD, and all MCSes of ϕD are
generated in the process. The SMUS of ϕD is returned if it is proven to be the
smallest by hitting the lower bound on size; otherwise, if it is an improvement,
it is stored in candidate and its size is recorded as a new upper bound.

At this point, the algorithm has calculated a lower bound on the size of an
SMUS of ϕ and explored a subset of its MUSes, producing a candidate SMUS. If
the candidate has not been proven to be an SMUS, then the algorithm explores
the remaining MUSes of ϕ by generating subformulas as described in Section
5.2 that taken together will contain all of the MUSes of ϕ not in ϕD. To do
this, the algorithm generates one subformula for each MCS δi of ϕD: ϕ − δi
(removing all clauses in δi from ϕ). Figure 5 illustrates this branching and the
computations that produce it.

A recursive call to Digger passed ϕ−δi and an upper bound from the smallest
MUS found thus far will produce an SMUS of ϕ − δi or ∅ if it has no MUSes
smaller than the bound. An SMUS of ϕ− δi is a candidate for being an SMUS
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Digger(ϕ, UB)

1. if (isSAT(ϕ))

2. return ∅
3. D ← DisjointMCSes(ϕ)

4. LB← |D|
5. if (LB ≥ UB)

6. return ∅
7. ϕD ←

⋃
MCS : MCS ∈ D

8. (SMUSD, allMCSesD)← CAMUS-min(ϕD)

9. if (|SMUSD| = LB or |SMUSD| = LB + 1)

10. return SMUSD

11. candidate← ∅
12. if (|SMUSD| < UB)

13. candidate← SMUSD

14. UB← |SMUSD|
15. foreach (δi ∈ allMCSesD)

16. SMUSbranch ← Digger(ϕ− δi, UB)
17. if (SMUSbranch 6= ∅)
18. if (|SMUSbranch| = LB + 1)

19. return SMUSbranch

20. candidate← SMUSbranch

21. UB← |SMUSbranch|
22. return candidate

Figure 4: The recursive algorithm for finding an SMUS of a formula ϕ

Figure 5: An illustration of the computation and branching of one call to Digger
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Figure 6: An illustration of Digger’s search tree on the example formula ϕ

of ϕ. If any SMUS of a particular ϕ − δi is proven to be an SMUS of ϕ by
the lower bound, it is returned immediately. Otherwise, the candidate SMUS
and upper bound are updated (Digger would have returned ∅ if it was unable to
improve on the upper bound it was given). If, after exhaustively searching all
branch subformulas, no candidate has reached the lower bound and ended the
search at this node early, then the smallest MUS found (stored in candidate)
will contain an SMUS for ϕ, and so it is returned.

5.5 Optimizations

The algorithm has been presented in a basic form to aid explanation and un-
derstanding. The following optimizations are not necessary for its functioning,
but they do provide greater performance, mainly by avoiding redundant work.
As presented, every recursive call to Digger is passed nothing more than a sub-
formula ϕ − δi and the size of the best SMUS candidate found so far. A great
deal of information from the parent can be reused in the child node, however.

Reusing D: Because MUSes(ϕ − δi) ⊆ MUSes(ϕ) (by Lemma 1), we know
that the lower bound of the parent applies to the child as well. Furthermore,
the source of this lower bound, D, is still relevant. Every MCS in D from the
parent, after removing any clauses in δi, will be a correction set (not necessarily
minimal) of ϕ− δi, and because we simply removed clauses, these sets will still
be disjoint. Therefore, we can use D and LB derived from it as seeds for finding

19



a disjoint CS cover for ϕ − δi. This can greatly reduce the time spent finding
MCSes in lower levels of the recursion tree.

With our running example as shown in Figure 6, this optimization would
allow us to take D = {{C3, C7}, {C4, C6}, {C1, C5, C8}} and remove δ3 = {C5}
to get D′ = {{C3, C7}, {C4, C6}, {C1, C8}}. Each of the three sets in D′ is a
correction set of ϕ− δ3, so the search for MCSes in node 2 can be seeded with
D′ (by adding blocking clauses for the clauses in D′ before any search) and an
initial lower bound of 3. Then the search is only needed to find one further
MCS, {C2, C9}, which is added to D and increments the lower bound to 4.

This optimization is not a guaranteed performance increase, because the
CSes in D′ may include a large number of unneeded clauses due to their non-
minimality, thus increasing the size of ϕD in a lower level, but in our experiments
it almost always boosts performance.

Further exploiting Theorem 4: The upper and lower bounds can be used
to prune branches one level earlier than described in some cases. If UB = LB+ 1
going into the foreach loop on line 15, then the subroutine can return early.
From Theorem 4, we know that if no SMUS of size |D| was found in ϕD, any
SMUS of ϕ must have at least |D|+1 (i.e. LB+1) clauses. Thus, if we reach line
15 and UB = LB + 1, any SMUS of ϕ must be at least as large as UB, the best
found earlier, so no further search is required. This will happen in branches
where a good upper bound MUS has been found earlier but the lower bounds
are not quite high enough to prune further search in other ways.

Improved use of bounds: The upper and lower bounds can also be used
along with the optimization of reusing D to cut short calls to subroutines.
DisjointMCSes can use the upper bound and the lower bound received from
the parent to exit early with a failure if it finds a number of new disjoint MCSes
(disjoint from the MCSes received from the parent as well) equal to the difference
of the two bounds.

For example, if the algorithm trace shown in Figure 6 were to branch using
δ1 = {C3} first (instead of δ3 = {C5} used in the figure), the optimization
of reusing D would pass D′ = {{C7}, {C4, C6}, {C1, C5, C8}} and a seed lower
bound of 3 to node 2 of the recursive tree. The call to DisjointMCSes would
normally find 3 more MCSes with this seed: {C9}, {C10}, and {C11}; however,
because UB = 5, it can terminate after finding just two, because this already
proves that LB will be at least equal to UB, even though we do not know the
exact lower bound. It has accumulated a total number of disjoint CSes equal
to the size of the smallest MUS found thus far, proving that any MUS of the
current subformula must contain at least as many clauses.

Likewise, both UB and LB can be passed to CAMUS-min to provide the branch-
and-bound construction in its second phase with both an initial upper bound
(UB-1) to help early pruning and a lower bound for exiting early if it is reached.
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5.6 Further Recursion

One of the products of the call to CAMUS-min on line 8 is an SMUS of ϕD. As
mentioned, however, CAMUS-min can suffer from intractability in some cases.
Digger returns an SMUS, so why not use it there instead?

The fact is that Digger itself, without that call to CAMUS-min, has no ability
to produce an SMUS. It provides a method for splitting up the problem into
smaller tractable subformulas and performing a branch-and-bound search, but
it relies on CAMUS-min to compute MUSes.

Simply replacing that call with another call to Digger would thus result in
infinite recursion, never progressing past that line. However, Digger can still be
used there to a limited extent. For example, one could call Digger in that spot
until a certain recursion level has been reached, at which point CAMUS-min
would be used instead to produce an SMUS and proceed. Alternatively, the al-
gorithm could switch to CAMUS-min once the repeated calls to DisjointMCSes
reach a fixed point, returning the same set of MCSes on two successive calls.
We refer to this as the “fixed point heuristic.”

This modification of Digger causes increased overhead by replacing a single
call to CAMUS-min with an embedded recursive search; however, it can avoid
passing CAMUS-min an intractable instance by pruning down the problem even
further prior to passing it on. We report on a few instances in which this
approach is beneficial in the following section.

6 Experimental Evaluation

We experimentally evaluated both the CAMUS-min and the GGA approaches
alongside the Digger algorithm to compare their performance and to gain insight
into the performance of Digger on real-world instances. For the latter point, we
were interested in determining how effective Digger’s heuristics are at pruning
its search space by examining the shape of the recursive search trees. We do
not perform a comparison to the earlier SMUS algorithm presented in [24]; its
reported results for a set of very small instances (60 or 75 variables, 120 clauses)
have runtimes of hundreds or thousands of seconds, and its search of the space of
USes is much less efficient, algorithmically, than searching the space of MUSes
with Digger’s pruning heuristics.

We implemented both CAMUS-min and Digger using code that was as sim-
ilar as possible; both were written in C++ on top of MiniSAT version 1.12b
[11]. Digger uses CAMUS-min explicitly in one of its steps, and we wrote the
DisjointMCSes function with the same approach used to find MCSes in the
CAMUS family. All executables were compiled using GCC 4.1.2. We used the
same executable for the first phases of CAMUS-min and GGA, while an exe-
cutable for GGA’s second phase was provided by the author, Jianmin Zhang
(though we were only able to obtain an early, not-fully-optimized implementa-
tion). All experiments were run under Linux (Fedora 7) on a 3.0GHz Intel Core
2 Duo E6850 with 4GB of RAM.
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6.1 Overall Performance

We evaluated the performance of the algorithms on two sets of real-world un-
satisfiable CNF instances. The first is a set of automotive product configuration
benchmarks [29, 30] that have previously been shown to have a wide range of
characteristics with respect to each instance’s set of MUSes. While all of the
instances have around 4000–8000 clauses1, they range from having just a single
MUS to intractably large sets, such as C202 FW SZ 118, for which analysis of
the MCSes shows that it has exactly 2127 (about 1038) MUSes. Likewise, the
sizes of the MUSes range from 8 clauses up to at least 670, representing between
about 0.1% and 13% of an instance’s clauses.

Table 1 shows the results for all 84 instances. The first three columns list
the instance name and its size. Every instance was run on each of the three
algorithms with a timeout of 600 seconds (for CAMUS-min and GGA, each phase
was given a separate 600 second timeout). The runtimes are indicated in the
next three columns, with a “-” indicating a timeout was reached without finding
an SMUS. The fastest of the three results is bolded. The size of the SMUS found
by Digger is reported in the next column. For instances in which Digger did not
finish, we report the lower bound on the size of any SMUS as well as an upper
bound (if any was found before the timeout) as “(lb:ub)”. Finally, we report
the size of the US found by GGA in the last column.

Of the 84 instances, CAMUS-min was able to finish 44 within the timeout,
while Digger completed all of those and others for a total of 75. In certain
cases, CAMUS-min was slightly faster than Digger; in the vast majority of the
instances, however, Digger was much faster, sometimes by several orders of
magnitude. GGA is generally competitive with CAMUS-min, solving just 5 more
instances within its timeouts, and neither is consistently faster than the other.
GGA is saddled with the same requirement to find all MCSes as CAMUS-min,
facing the same intractability problems in its first phase. Its incomplete local
search frequently results in finding an SMUS, and it was almost always within
one or two clauses of the minimum. However, on those instances where GGA
outperforms the other algorithms, it never finds an SMUS (for C220 FV SZ 55,
this is proven in a later experiment reported in Table 4 below).

Note that these runtimes for Digger are also several orders of magnitude
faster than those reported in [25] for an earlier implementation of the same
algorithm. This substantial difference can mainly be attributed to two im-
plementation differences: (1) the implementations use different solvers for the
DisjointMCSes subroutine (MiniSAT here versus PBS in [25]) and (2) here
we use CAMUS-min with branch-and-bound in the second phase, as opposed
to using the basic CAMUS algorithm to generate all MUSes and selecting the
smallest, as the earlier implementation did.

Table 2 contains results for running the algorithms on eight benchmarks
from the DIMACS set arising from circuit diagnosis. They are similar in size to
the product configuration instances except for ssa6288-047, which has approxi-

1This is after removing the duplicate clauses that artificially inflate the size of each instance
and its set of MUSes.
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Runtimes (sec)
Name #V #C CAMUS-min GGA Digger |SMUS| |GGA|
C168 FW SZ 107 1583 5939 − − 0.27 47
C168 FW SZ 128 1583 4777 − − 0.184 92
C168 FW SZ 41 1583 4727 − − 0.185 26
C168 FW SZ 66 1583 4751 − − 0.083 16
C168 FW SZ 75 1583 4744 − − 0.128 48
C168 FW UT 2463 1804 6756 − − 1.06 35
C168 FW UT 2468 1804 6754 − − 0.729 33
C168 FW UT 2469 1804 6767 − − 2.5 32
C168 FW UT 714 1804 6754 − − 0.059 9
C168 FW UT 851 1804 6758 0.127 0.127 0.087 8 8
C168 FW UT 852 1804 6756 0.126 0.127 0.087 8 8
C168 FW UT 854 1804 6753 0.122 0.122 0.086 8 8
C168 FW UT 855 1804 6752 0.129 0.13 0.086 8 8
C170 FR RZ 32 1528 4067 0.133 0.493 0.191 227 228
C170 FR SZ 58 1528 4083 0.215 0.184 0.073 46 47
C170 FR SZ 92 1528 4195 0.065 0.133 0.109 131 131
C170 FR SZ 95 1528 4068 0.113 0.122 0.809 52 54
C170 FR SZ 96 1528 4068 2.452 3.142 0.387 53 55
C202 FS RZ 44 1556 5399 100.45 3.909 0.093 18 21
C202 FS SZ 104 1556 5405 16.02 6.847 0.2 24 24
C202 FS SZ 121 1556 5387 0.037 0.038 0.053 22 22
C202 FS SZ 122 1556 5385 0.04 0.041 0.055 33 33
C202 FS SZ 74 1556 5561 − − 0.179 150
C202 FS SZ 84 1556 5479 − − − (212:)
C202 FS SZ 95 1556 5388 − 782.376 0.091 7 8
C202 FS SZ 97 1556 5452 35.9 20.018 0.128 28 30
C202 FW RZ 57 1561 7434 0.181 0.459 0.275 213 213
C202 FW SZ 100 1561 7484 − − 0.182 23
C202 FW SZ 103 1561 9024 − − 8.64 148
C202 FW SZ 118 1561 7562 0.855 0.364 0.955 129 130
C202 FW SZ 123 1561 7437 0.063 0.066 0.094 36 36
C202 FW SZ 124 1561 7435 0.046 0.048 0.077 33 33
C202 FW SZ 61 1561 7490 − − 0.323 18
C202 FW SZ 77 1561 7611 − − 0.262 156
C202 FW SZ 87 1561 7696 − − − (356:)
C202 FW SZ 96 1561 7599 − − − (207:)
C202 FW SZ 98 1561 7438 − − 0.119 7
C202 FW UT 2814 1820 9957 − − − (13:16)
C202 FW UT 2815 1820 9957 − − − (13:16)

Table 1: Experimental results for automotive product configuration benchmarks
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Runtimes (sec)
Name #V #C CAMUS-min GGA Digger |SMUS| |GGA|
C208 FA RZ 43 1516 4254 4.699 5.389 0.067 8 10
C208 FA RZ 64 1516 4246 0.116 0.384 0.16 212 212
C208 FA SZ 120 1516 4247 0.043 0.045 0.048 34 34
C208 FA SZ 121 1516 4247 0.039 0.041 0.047 32 32
C208 FA SZ 87 1516 4255 0.227 0.208 0.412 18 19
C208 FA UT 3254 1805 6153 0.173 0.179 0.129 40 42
C208 FA UT 3255 1805 6156 0.197 0.205 0.133 40 41
C208 FC RZ 65 1513 4491 − − 0.073 12
C208 FC RZ 70 1513 4468 0.138 0.414 0.17 212 212
C208 FC SZ 107 1513 4554 − − 0.098 44
C208 FC SZ 127 1513 4469 0.026 0.028 0.043 34 34
C208 FC SZ 128 1513 4469 0.028 0.031 0.043 32 32
C210 FS RZ 23 1608 4911 − − 0.37 31
C210 FS RZ 38 1607 4900 537.3 133.854 0.331 25 27
C210 FS RZ 40 1607 4891 0.131 0.256 0.144 140 140
C210 FS SZ 103 1607 4915 − − 0.108 45
C210 FS SZ 107 1607 4902 − 186.341 0.067 15 15
C210 FS SZ 123 1607 5062 1.527 0.612 0.251 176 176
C210 FS SZ 129 1607 4894 0.032 0.035 0.052 33 33
C210 FS SZ 130 1607 4894 0.03 0.033 0.051 31 31
C210 FS SZ 55 1608 4917 − − 0.169 41
C210 FS SZ 78 1607 5071 − − 0.197 170
C210 FW RZ 30 1629 6407 − − 43.7 35
C210 FW RZ 57 1628 6390 − 348.361 0.12 25 27
C210 FW RZ 59 1628 6381 0.158 0.284 0.191 140 140
C210 FW SZ 106 1628 6405 − − 0.248 49
C210 FW SZ 111 1628 6393 − 450.489 0.093 15 15
C210 FW SZ 128 1628 6401 − − 0.161 22
C210 FW SZ 129 1628 6595 1.888 0.964 0.341 176 176
C210 FW SZ 135 1628 6384 0.047 0.048 0.072 33 33
C210 FW SZ 136 1628 6384 0.042 0.046 0.07 31 31
C210 FW SZ 80 1628 6560 − − 0.274 171
C210 FW SZ 90 1628 6977 − − − (272:)
C210 FW SZ 91 1628 6709 − − − (268:)
C210 FW UT 8630 1891 8511 − − 0.561 30
C210 FW UT 8634 1891 8504 − − 0.617 23
C220 FV RZ 12 1530 4017 0.135 0.13 0.057 11 11
C220 FV RZ 13 1530 4014 0.097 0.095 0.053 10 10
C220 FV RZ 14 1530 4013 0.035 0.037 0.041 11 11
C220 FV SZ 114 1530 4305 9.77 20.049 0.161 132 132
C220 FV SZ 121 1530 4035 0.077 0.088 0.068 58 60
C220 FV SZ 39 1530 4788 − − − (202:205)
C220 FV SZ 46 1530 4014 3.162 2.789 0.066 17 17
C220 FV SZ 55 1530 5281 − 18.62 − (297:) 302
C220 FV SZ 65 1530 4014 0.289 0.288 0.051 23 23

Table 1: Experimental results (cont.)
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Runtimes (sec)
Name #V #C CAMUS-min GGA Digger |SMUS| |GGA|
bf0432-007 1318 3668 708 650.559 6.4 1151 1161
bf1355-075 3761 6778 − − 0.258 150
bf1355-638 3760 6768 − − 0.269 152
bf2670-001 4853 3434 − − 1.72 132
ssa0432-003 1266 1027 2.69 6.494 0.124 309 317
ssa2670-130 4849 3321 − − 1.36 656
ssa2670-141 4843 2315 1.204 65.371 1.77 1246 1246
ssa6288-047 17303 34238 − − −

Table 2: Experimental results for circuit diagnosis benchmarks

mately ten times as many variables and six times as many clauses compared to
the average sizes of the automotive benchmarks. CAMUS-min and GGA are able
to solve three of them given the 600 second timeouts, while Digger solves all but
one (the largest). Again, Digger is much faster than both CAMUS-min and GGA
except in ssa2670-141, where CAMUS-min is slightly faster. The sizes of the
SMUSes in these instances are larger than those of the product configuration
benchmarks, ranging from 2% to 50% of each instance’s clauses.

Overall, we see that the three algorithms have adequate performance on
many instances, but Digger greatly outperforms the alternatives both in run-
time and in the number of solved instances. Its manner of splitting up the
problem and using a branch-and-bound approach, implemented on top of the
same techniques as CAMUS-min, are providing this increased performance; in
the following, we look more closely at the search tree itself.

6.2 Search Tree Statistics

The shape of the search tree gives us a better idea of how the Digger algorithm
operates and can point to potential improvements. We recorded search tree data
for all of the trials we ran, and from them we drew the following observations:

On all 7 of the circuit benchmarks and 70 of the 74 product configura-
tion instances that finished within the 600 second timeout, Digger required no
branching or search to find an SMUS. For all of these, the SMUS was contained
in ϕD and the lower bound obtained from D proved it was minimum (Digger
returned on line 10 of the pseudocode in Figure 4). We see that the disjoint
MCS heuristic often provides a means to quickly generate a subformula that
contains an SMUS as well as a robust lower bound to prove its minimality.

Eight of the product configuration instances had more than one search tree
node; 5 finished, and 3 timed out. Table 3 contains search tree statistics for
these instances. We report whether the instance finished within the timeout,
the number of nodes explored, the percentages of these that were SAT (returning
in line 2 in Figure 4) or pruned by the bounds (returning in line 6 in Figure 4
or due to the pruning optimization described in Section 5.5), and the depth and
average branching factor of the search tree.
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Name Fin. Nodes %SAT %Prune Depth AvgBranch

C168 FW UT 2469 Y 39 46.2 51.3 2 38.0
C202 FW UT 2814 N 1687 2.6 96.9 4 248.9
C202 FW UT 2815 N 1686 2.6 96.9 4 248.9
C208 FA SZ 87 Y 23 56.5 39.1 2 22.0
C210 FS RZ 23 Y 22 54.5 36.4 3 40.0
C210 FS RZ 38 Y 19 57.9 31.6 3 34.0
C210 FW RZ 30 Y 942 41.7 56.2 4 47.1
C220 FV SZ 39 N 6566 76.9 22.7 4 240.1

Table 3: Search tree statistics for instances with more than one node

From these statistics, we can see that the trees are uniformly wide and
shallow. Most nodes are not expanded due to being either satisfiable or pruned
because the lower bound computed for the subformula exceeded the size of
the smallest MUS found thus far. Those that are expanded to search further
have a fairly high branching factor, however, and in those instances on which
Digger reached the timeout, it only reached a maximum tree depth of 4, despite
exploring thousands of nodes. The five instances that did finish all had much
lower branching factors and thus smaller search trees.

Digger timed out in the first call to CAMUS-min in six of the product config-
uration instances. These are the instances for which no upper bound on |SMUS|
is reported in Table 1, because no MUS was produced. While the disjoint MCS
heuristic did reduce the size of the instance greatly, ϕD was still too large for
CAMUS-min to solve within the timeout. It is in these cases that the variant of
Digger described in Section 5.6 becomes quite useful.

Table 4 contains results for running that variant of Digger (using the fixed
point heuristic to control the recursion) on these six instances. The “LB” column
lists the size of the lower bound, “UB” gives the size of the smallest MUS found,
and the final column contains the time in seconds at which the MUS that set that
upper bound was found. (In the instances not reported in Table 4, the variant
generally performed similarly to the results in Table 1, but it had slightly higher
runtimes due to the increased overhead.)

Time (sec)
Name LB UB to UB

C202 FS SZ 84 212 214 2.95
C202 FW SZ 87 356 361 12.49
C202 FW SZ 96 207 209 6.08
C210 FW SZ 90 272 276 3.35
C210 FW SZ 91 268 273 2.83
C220 FV SZ 55 297 297 1.55

Table 4: Results for the variant of Digger described in Section 5.6

On C220 FV SZ 55, this variant of Digger was able to find an SMUS in 1.55
seconds, which compares well with the standard version that timed out after 600
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seconds. The variant quickly found small MUSes, close to the lower bound, for
all of the other five instances, but it was unable to prove that they were SMUSes
(by exhausting the search space of remaining MUSes) within the timeout. In
those cases, an improved lower bound could prune a great deal of that search,
and it could in fact prove that those candidates found so early on (the source of
the UB size in Table 4) are SMUSes to avoid that search entirely. Overall, we
can see that this variant provides a means to quickly obtain a small MUS close
to the lower bound in cases where the standard version times out in a call to
CAMUS-min.

7 Conclusions and Future Work

Understanding the causes of infeasibility of Boolean formulas is a problem of
interest in various theoretical and practical areas of computer science. Minimal
unsatisfiable subformulas provide useful explanations of infeasibility. We have
presented two algorithms for finding an SMUS of a Boolean formula, i.e., an
MUS with the least number of clauses. Both algorithms utilize the relationship
between MCSes and MUSes in their operation. The first, CAMUS-min, follows
an approach to generate all MUSes from the complete set of MCSes but searches
for the smallest of these, and it presents baseline results for a “simple” solution,
in the sense that it follows directly from a system for enumerating all MUSes.
The second algorithm, Digger, uses the relationship to partition a given problem
into more tractable subformulas as well as to compute a strong lower bound on
the size of an SMUS as it searches. This bound is the basis for a branch-and-
bound procedure that finds an SMUS by recursively branching on subformulas.

We have presented novel experimental results on two benchmark suites com-
paring these two algorithms with each other and with a third from the literature
that is similar to our first algorithm but which uses a genetic algorithm to per-
form an incomplete local search to minimize the size of the MUS found. The
results show that Digger greatly outperforms both of the other approaches, pri-
marily due to its ability to avoid the intractability of computing all MCSes of
a formula, which is a requirement of both of the other techniques. Further,
experimental data shows how our lower bound computation is robust, helping
to find an SMUS and often sufficing to prove its minimality without branching
on subformulas at all.

One direction for future work is to improve the lower bound used in Digger.
In those instances where an SMUS is not found in the first search node, thus
requiring branching, the size of an SMUS is often very close to the lower bound.
If the lower bound could be improved by just a few clauses in these cases, the
algorithm would avoid a great deal of work spent searching to prove that the
candidate found early on is in fact the smallest.

Finally, we should note that all of these algorithms can be easily extended
to find SMUSes of constraint types beyond Boolean Satisfiability. All three
are built on the basic operation of finding MCSes of a constraint system and
performing computations on those MCSes. Finding an MCS is a simple opti-
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mization problem, very similar to MaxSAT, which can be easily implemented
using existing solvers for any constraint type. The operations performed on the
MCSes themselves need no knowledge of the semantics of the MCSes, and they
are treated as nothing more complex than sets of elements from a finite domain.
Therefore, all three algorithms can be adapted to other constraint types by
simply replacing their implementation of the MCS-related subroutine. Another
area of future work will be to do just this, applying these techniques to other
constraint types and applications thereof.
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A Example CNF Formulas

A.1 Exponential Number of MUSes

The following formula, parameterized for n, has 2n MUSes, each of size 2n+ 1.
(Clauses have been written as implications for clarity; each implication (a→ b)
is simply (¬a ∨ b) in CNF.)

ϕexpMUSes = (c0)
∧ (c0 → a1) ∧ (c0 → b1) ∧ (a1 → c1) ∧ (b1 → c1)
∧ (c1 → a2) ∧ (c1 → b2) ∧ (a2 → c2) ∧ (b2 → c2)
...
∧ (cn−1 → an) ∧ (cn−1 → bn) ∧ (an → ¬c0) ∧ (bn → ¬c0)

This formula has 3n variables and 4n + 1 clauses. Every MUS contains
(c0) and, for each of the n groups of 4 related implications, either the 2-clause
implication chain through ai or that through bi. These n binary choices lead to
the instance containing 2n MUSes.

A.2 Exponential Number of MCSes

In addition to the fact that the set of MUSes can be exponentially large, the
complete set of MCSes is potentially exponential in the size of the original
instance as well. For example, any instance with n pairwise disjoint MUSes
each having k clauses (e.g., {{C1, C2, C3}, {C4, C5, C6}, . . .}) will have kn MCSes
with n clauses each. One simple example is:

ϕexpMCSes = (x1,1) ∧ (x1,1 → x1,2) ∧ (x1,2 → x1,3) ∧ · · · ∧ (x1,k−1 → ¬x1,1)
∧ (x2,1) ∧ (x2,1 → x2,2) ∧ (x2,2 → x2,3) ∧ · · · ∧ (x2,k−1 → ¬x2,1)
...
∧ (xn,1) ∧ (xn,1 → xn,2) ∧ (xn,2 → xn,3) ∧ · · · ∧ (xn,k−1 → ¬xn,1)

Each line is independent, sharing no variables with the others, and each is
an MUS. There are n · k clauses, n MUSes, and kn MCSes.
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