
Abstract—In this paper we explore the application of Counter-
example-Guided Abstraction Refinement (CEGAR) in the con-
text of microprocessor correspondence checking. The approach
utilizes automatic datapath abstraction augmented with auto-
matic refinement based on 1) localization, 2) generalization,
and 3) minimal unsatisfiable subset (MUS) extraction. We
introduce several refinement strategies and empirically evalu-
ate their effectiveness on a set of microprocessor benchmarks.
The data suggest that localization, generalization, and MUS
extraction from both the abstract and concrete models are
essential for effective verification. Additionally, refinement
tends to converge faster when multiple MUses are extracted in
each iteration.

I. INTRODUCTION

Counterexample-Guided Abstraction Refinement
(CEGAR for short) has been shown to be an effective
paradigm in a variety of hardware and software verifica-
tion scenarios. Originally pioneered by Kurshan [16], it
has since been adopted by several researchers as a power-
ful means for coping with verification complexity. The
widespread use of such a paradigm hinges, however, on
the automation of its abstraction and refinement phases.
Without automation, CEGAR requires laborious user
intervention to choose the right abstractions and refine-
ments based on a detailed understanding of the intricate
interactions among the components of the design being
verified. Clarke et al. [9], Jain et al. [14], and Dill et al.
[5] have successfully demonstrated the automation of
abstraction and refinement in the context of model
checking for safety properties of hardware and software
systems. In particular, these approaches create a smaller
abstract transition system from the underlying concrete
transition system and iteratively refine it with the spuri-
ous counterexamples produced by the model checker.
The approaches in [9] and [14] are additionally based on
the extraction of unsatisfiability explanations derived
from the infeasible counterexamples to provide stronger
refinement of the abstract model and to significantly
reduce the number of refinement iterations. All of these
approaches are examples of predicate abstraction which,
essentially, projects the concrete model onto a given set
of relevant predicates to produce an abstraction suitable
for model checking a given property. In contrast,
Andraus et al. [2] describe a methodology for datapath

abstraction that is particularly suited for equivalence
checking. In their approach, datapath components in
behavioral Verilog models are automatically abstracted
to uninterpreted functions and predicates while refine-
ment is performed manually using the ACL2 theorem
prover [15]. 

The use of (near)-minimal explanations of unsatisfi-
ability forms the basis of another class of abstraction
methods. These include the work of Gupta et al. [12] and
McMillan et al. [20] who employ “proof analysis” tech-
niques to create an abstraction from an unsatisfiable
concrete bounded model checking (BMC) instance of a
given depth.

In this paper we explore the application of CEGAR in
the context of microprocessor correspondence checking.
The approach is based on automatic datapath abstrac-
tion as in [2] augmented with automatic refinement using
minimal unsatisfiable subset (MUS) extraction. One of
our main conclusions is the necessity of basing refine-
ment on the extraction of MUSes from both the abstract
and concrete models. Additionally, refinement tends to
converge faster when multiple MUSes are extracted in
each iteration. Finally, localization and generalization of
the spurious counterexamples are shown to be crucial for
fast convergence of the refinement iteration.

The rest of the paper is organized in 4 sections.
Section II reviews the basic CEGAR algorithm and
describes the various refinement strategies that can be
deployed to enhance its performance. Section III briefly
describes datapath abstraction and illustrates the
abstraction and various refinement steps on a simple
example. In Section IV we describe our implementation
of these ideas in the Reveal system and discuss the effec-
tiveness of the various refinement options in the verifica-
tion of a sample benchmark. We conclude in Section V,
with a recap of the paper’s main contributions and sug-
gestions for further work.

II. REFINEMENT STRATEGIES

A sketch of the basic counterexample-guided abstraction
refinement methodology is shown in Algorithm 1. The
detailed design is assumed to be characterized by a sys-
tem of concrete constraints 

where X denotes a suitable vector of variables and
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 is a Boolean consistency constraint that models
a particular component in the design. For example, a 32-
bit adder with inputs A, B, and output S would be repre-
sented by the constraint C(A, B, S) = (S = A + B). The
verification objective can also be expressed as a Boolean
function of the design’s variables. In general we will be
concerned with equivalence between signal pairs, but any
safety property can be handled similarly. Let 
denote the condition that we would like to check for on
the design. The verification task can be expressed as
showing that  is valid, i.e., that it
is a tautology.

CEGAR starts, in line 1, with the construction of an

abstraction  such that

. In other words, each constraint in
abst(X) is a relaxation of a corresponding constraint in

conc(X)1. This type of abstraction, is sound, i.e., if
prop(X) holds on abst(X), then it must also hold on
conc(X) (line 4), but incomplete, i.e., prop(X) may be
violated on abst(X) but still hold on conc(X)). Com-
pleteness is achieved by refining abst(X) to eliminate
such cases. Specifically, if X* denotes an assignment of
values to variables such that

 and 

then X* represents a spurious counterexample that must
be eliminated from the space of consistent assignments in
the abstract model (line 9). Note that this process is
guaranteed to converge assuming that the abstraction is
finite and noting that it shrinks monotonically with each
refinement iteration.

This basic version of CEGAR can be quite inefficient,
requiring a large number of refinement iterations, since
false counterexamples are eliminated one at a time. The
improved version depicted in Algorithm 2 employs sev-
eral techniques aimed at reducing the number of refine-
ment iterations. The common goal of these techniques is
to use the specific counterexample that falsifies the prop-
erty on the abstract model as a seed to generate a large
collection of “related” counterexamples that can then be
simultaneously checked on the concrete model and, sub-
sequently, eliminated at the same time from the abstract
model. Algorithm 2 employs the following violation
enlargement methods:

Localization (line 5a) is basically a cone-of-influence
(COI) reduction that removes irrelevant (don’t-care)
assignments from the counterexample by a syntactic
traversal of the abstract formula.
Generalization (line 5b) replaces the specific values of
the variables in the counterexample with appropriate

equality and dis-equality between pairs of variables.
These relations can now be viewed as a conjunction of
violation constraints viol(X) that satisfy

Minimal Unsatisfiable Subset (MUS) extraction (line
5c) selects a small subset of the constraints from the
unsatisfiable formula 2 that is
still sufficient to explain its infeasibility. Denoting this
subset as expl(X), the set of violation constraints is
now reduced by eliminating from it those constraints
that are not in expl(X) (line 5d).

At this point, viol(X) represents not just one but many
specific counterexamples that violate prop(X) but are
consistent with abst(X). The enlargement of X* to
viol(X) was based solely on information from the
abstract model and the property being checked. The
check in line 6 is now used to determine if any of these
violations is consistent with the concrete model. Failing
this check implies that all of these violations are spurious
and we can refine the abstract model by removing them.
However, an additional enhancement (lines 8a and 9)
makes it possible to utilize the concrete constraints to
enlarge viol(X) further. Specifically, a small number of
MUSes from the unsatisfiable formula

 are extracted and used to select
subsets of viol(X) each of which is sufficient to keep the
formula unsatisfiable. 

1 In general, both design variables and the concrete constraints
that relate them are relaxed.
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Algorithm 1 (Basic CEGAR)
1. abst(X) = relax(conc(X))
2. while (true) {
3. if abst(X) -> prop(X)
4. then {“property holds”; exit}
5. else {// abst(X*) -> prop(X*) == 0
6. if conc(X*)
7. then {“property fails”; exit}
8. else // spurious counter example
9. abst(X) = abst(X) && !X*;
10. }// else(line 5)
11. }// while(line 2)

abst prop viol 0X X X

Algorithm 2 (CEGAR with enhanced refinement)
1. abst(X) = relax(conc(X))
2. while (true) {
3. if abst(X) -> prop(X)
4. then {“property holds”; exit}
5. else {// abst(X*) -> prop(X*) = 0
5a. viol(X) = localize(X*);
5b. viol(X) = generalize(viol(X));
5c. expl(X) = MUS(!abst(X) && viol(X));
5d. viol(X) = viol(X) && expl(X);
6. if conc(X) && viol(X)
7. then {“property fails”; exit}
8. else // spurious violation
8a. while (expl(X) = newMUS(conc(X)&& viol(X))) 
9. abst(X) = abst(X) && !(viol(X) && expl(X));
10. }// else(line 5)
11. }// while(line 2)

abst violX X

abst prop viol 0X X X
abst viol 0X X

conc violX X



III. DATAPATH ABSTRACTION REFINEMENT

The focus of our work is the application of the CEGAR
framework, particularly the afore-mentioned enhanced
refinement strategies, in the context of hardware corre-
spondence checking. Specifically, we address the task of
verifying that an optimized microprocessor implementa-
tion is compliant with its functional specification. The
implementation and specification are assumed to be
given using a hardware description language, such as
Verilog, and together are regarded as the concrete model.
The correctness criterion, i.e., the property that must
hold to insure that the implementation is functionally
equivalent to the specification, depends on the nature of
the optimizations performed to obtain the implementa-
tion. In particular, pipelined implementations require
alignment of the programmer-visible implementation and
specification states which can be accomplished, for
example, by flushing [8]. The specifics of the correctness
criterion, while important, are orthogonal to the abstrac-
tion refinement flow and can be assumed, for our pur-
poses, to be provided by the user along with the
specification and implementation.

The concrete model is relaxed by treating datapath
elements as uninterpreted functions (UFs) and uninter-
preted predicates (UPs) that operate on unbounded
terms [6]. This is justified by the fact that, generally
speaking, design optimizations add significant complex-
ity to an implementation’s control logic while, mostly,
preserving its datapath components. Datapath abstrac-
tion, thus, yields a compact representation that preserves
the control interactions in the concrete model while
maintaining functional consistency of the abstracted
datapath elements. The resulting abstract model can
now be viewed as a set of constraints—a formula—in
CLU, a quantifier-free first-order logic with counter
arithmetic and lambda expressions [6], and used in lieu
of the detailed bit-level concrete model to check satisfac-
tion of the desired correctness condition.

To illustrate the salient features of datapath abstrac-
tion refinement consider the example Verilog “design” in
Fig. 1. The verification objective is to prove that signal p
is always true, indicating that the design satisfies the
condition . The formula representing

the concrete constraints of this design is written by
inspection as

(1)

Using the semantics of bit vector operations, such as
extraction, concatenation, and shifting, along with the
standard Boolean connectives, this formula can be trans-
lated in a straightforward fashion to propositional con-
junctive normal form (CNF) so that it can be checked for
satisfiability by standard SAT solvers. In fact, for this
simple example it is quite easy for a modern SAT solver
to prove that  is unsatisfiable which is the
same as saying that  is valid. 

Our objective, however, is to establish this result
using CEGAR. A possible abstraction of this design is:

(2)

where detailed bit vector operations have been replaced
by UP and UF symbols. For example, EX1 is a UP that
corresponds to extracting the most significant bit of a,
and SR2 is a UF that corresponds to a right shift of b by
two bits. Variables in this abstract formula that corre-
spond to bit vectors in the concrete formula are now con-
sidered to be unbounded terms. They can be compared
for equality to enforce functional consistency (given two
terms t1 and t2 and a single-argument UF F,

) but are otherwise unin-
terpreted having lost their concrete semantics. On the
other hand, variables in the abstract formula that corre-
spond to single bits in the concrete formula (such as m

module example();
wire [3:0] a, b;
wire m = a[3]; // msb
wire l = a[0]; // lsb
wire c = m? a >> 1 : a;
wire d = l? b >> 2 : c;
wire e = m? a : a >> 1;
wire f = l? {2’b00, b[3:2]} : e;
wire p = !(a == 0) || (d == f);

endmodule;

Fig. 1. Verilog design example used to illustrate abstraction and 
refinement
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and l) retain their Boolean semantics and can be com-
bined with the standard Boolean connectives. The
remaining symbols in the formula represent the CLU
built-in functions for counting (succ), decision (if-then-
else or ite) and the smallest term (zero).

When Algorithm 2 is invoked on this example, it ter-
minates with a proof of validity after two refinement
iterations (see Table I). The counterexample produced in
the first iteration is localized by eliminating irrelevant
assignments, namely those that correspond to the “else”
branches of the the ite operators involving variable l as
well as other assignments that depend on them. Next,
the remaining relevant assignments are generalized into
the violation constraint 
which, in this case, cannot be enlarged further using
MUS extraction from the abstract formula. Upon check-
ing this violation constraint on the concrete formula it is
found to be spurious, and leads to the creation of two
simpler explanations: 1) the least significant bit of a can-
not be 1 when a is 0, and 2) shifting b right by two bits is
equivalent to concatenating zeros to the left of b’s two
most significant bits. The abstract formula is now refined
to eliminate these two violations, i.e., at the start of the
second iteration the correctness condition is checked
against .

In the second iteration, localization is unable to elimi-
nate any assignments from the counterexample. How-
ever, generalization retains only three of the assignments
as well as the equality between t and u from the first
iteration, and deduces that a and s are not equal. MUS
extraction identifies that the assignment to m is immate-
rial to the current violation and can be safely removed.
Checking this violation constraint on the concrete for-
mula shows that it is still spurious, and identifies the

minimal explanation “shifting zeros yields zeros!” The
concrete formula was thus able to remove the constraints
l = 0 and t = u as irrelevant to the current violation.
When this violation is eliminated, by refining with

, the algorithm terminates proving
that p is always true.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented the above refinement strategies in the
Reveal system which performs verification of hardware
designs using datapath abstraction. Reveal consists of
the following components:

Vapor [2] for abstracting designs written in behavioral
Verilog to the UCLID language.
UCLID [6] for converting the abstracted design to a
formula in the CLU logic.
Wave for encoding the CLU formula in propositional
logic, specifically in the conjunctive normal form suit-
able for SAT solvers [7].
zCore and zMinimal [23] for extracting a single MUS
from a CNF instance. To obtain an MUS from the
abstract model, we convert the CLU expression in
Algorithm 2 (line 5c) to a CNF instance using Acker-
man encoding [1].
CAMUS [19] for extracting one or more MUSes from a
CNF instance.

We ran the experiments on an 64-bit 2.4-GHz AMD pro-
cessor with 4GB of RAM running Linux.

To establish a baseline, we ran Algorithm 2 by dis-
abling MUS extraction from both the abstract (line 5c)
as well as the concrete (line 8a) formulas. In all cases,
the procedure had to be aborted, even for simple designs,
suggesting that MUS extraction is essential for refine-
ment. We then ran another set of experiments in which
localization and generalization were disabled forcing
MUS extraction to be based on the specific counterexam-
ples produced. Again, verification failed to finish in the
allotted time in all tested cases, suggesting that localiza-
tion and generalization are also essential for effective
refinement. 

We then performed a series of experiments using dif-
ferent combinations of MUS-based refinements with
localization and generalization enabled. For ease of expo-
sition, we will use refine(x, y) to denote refinement with:

 MUSes extracted using the abstract formula
 MUSes extracted using the con-

crete formula
We used zCore and zMinimal to extract single MUSes,
and CAMUS to extract multiple and all MUSes. The
number of MUSes produced by CAMUS in the “multi-
ple” mode can be controlled by a user-specified parame-
ter and is typically between 3 and 7.

Table II shows the results of verifying two different
properties on the PDLX benchmark [25] with various
refinement combinations. This benchmark consists of 686
Verilog lines and 396 latches. In the first set of experi-
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ments, the property being checked is the equivalence
between the implementation and specification register
files using a buggy implementation in which the ALU
output is stuck at 0. In the second set of experiments,
the correctness condition is the equivalence of the imple-
mentation and specification program counters; the imple-
mentation in these experiments was bug-free. Both of
these criteria are based on the Burch and Dill [8] corre-
spondence checking scheme of pipelined microprocessors.
The columns in the table give the total verification time
in seconds (T), the number of refinement iterations (I)
and, where applicable, the number of MUSes extracted
using the concrete model (M). A time out of 600 seconds
was used in all experiments. 

For the buggy design, the only refinement strategy
that did not time out was refine(1, some). For the bug-
free design, on the other hand, verification with refine-
ments that employed one or several MUSes extracted
from the concrete model finished within the allowed
time. In both cases, however, the best performance was
obtained with the refine(1, some) combination.

Further analysis of these results reveals that the use of
MUSes involves a trade-off between the effort to extract
them and their effectiveness in refining the abstraction.
This can be seen by comparing refine(x, all), refine(x, 1)
and refine(x, some). In the first case, the excessive time
needed to extract all MUSes seems to negate their utility
for refinement. Comparing the other two scenarios, we
note that extracting several MUSes per refinement itera-
tion seems to always yield fewer iterations, and shorter
overall verification times, than does the extraction of just
one MUS in each iteration.

V. CONCLUSIONS AND FUTURE WORK

In this work we explored the use of MUS extraction for
refinement of datapath abstractions in the CEGAR veri-
fication flow. We found that extraction of MUSes from
both the abstract and concrete models is necessary for
faster convergence. We also found that performance
tends to improve when refinement is based on the extrac-
tion of a small number of MUSes, rather than a single
MUS, from the concrete model in each iteration. Addi-
tionally, we introduced counterexample localization and
generalization, and demonstrated their necessity for
speeding up convergence of the refinement iteration.

The robustness and scalability of the verification
framework described here can be enhanced further by
incorporating several additional improvements. For
example, faster MUS extraction from the abstract model
may be possible if the extraction algorithm were to oper-
ate directly on the abstract CLU formula rather than on
its lower-level CNF Boolean encoding. Additionally,
extracting multiple MUSes from the abstract model, akin
to the extraction of multiple MUSes from the concrete
model, may yield a further reduction in the number of
refienemnt iterations and, possibly, overall verification
time. Finally, by analyzing the structure of the MUSes
extracted from the concrete model, it may be possible to
generalize them into universal rules (templates) that can
be stored in a rule base that grows with the usage of the
system and that can be consulted when verifying other
designs.
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