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Introduction to Digital Optics 
Objectives: (to be read before class) 

• To introduce basic models of Digital Optics devices. 
• Your discussion will make use of the “Polarization Ellipse” and Poincaré Sphere. 
• You will apply a Jones Matrix description to understand the combined action of a 

(Polarizer + LCoS SLM + Analyzer). 

In-class Background: 
One of the Digital Optics devices you will be using is a Digital Micro-Mirror Device (DMD), 
an optical micro-electrical-mechanical system (MEMS) that contains a large array of aluminum 
micro-mirrors, which are highly reflective across a very wide range of wavelengths with 
negligible dispersion or absorption (whereas an LCoS SLM would be irreversibly damaged by 
exposure to UV, which would crosslink molecules in the display) and which can rapidly respond 
to input voltages (~ two orders of magnitude faster than an LCoS SLM) by tilting ±12° from 
their unpowered, flat state. These mirrors can be individually controlled to reflect light in either 
of these two different directions, creating binary (two-state) amplitude modulation along these 
directions. While we say that an LCoS SLM in phase-modulation mode is “re-shaping” the 
output beam, we say that a DMD “sculpts” the output, via selective removal (a subtractive 
process akin to applying a chisel to marble). 

Fig. 4. Digital Micro-Mirror Device (DMD chip) Texas Instruments Application 
Report DLPA022 (July 2010), 2-3. 

https://spie.org/publications/fg05_p07-09_polarization_ellipse
https://spie.org/publications/fg05_p10-11_poincare_sphere
http://www.ti.com/lit/an/dlpa022/dlpa022.pdf
http://www.ti.com/lit/an/dlpa022/dlpa022.pdf


Example DMD project: 

Anatolii Kashchuk, working in the lab of Prof. Halina Rubinsztein-Dunlop at the University of 
Queensland, has recently (in 2019) published a method for making “High-speed transverse 
and axial optical force measurements using amplitude filter masks.” You may, if you are 
interested, pursue (and possibly extend) this approach, to take the spatially distributed light 
coming out of an optical trap and, by switching between the three gradient patterns imposed onto 
the DMD, sort the light into one of two photodiodes to be measured as amplitude signals.  

Fig. 5. Variable transmission function programming done by students at IWU: 
shown here are three patterns sent, cyclically, to a DMD: (A) linear gradient 
along the x-direction, (B) similar gradient along the y-direction, and (C) a 
(nominally) radial gradient. 

Fig. 5 shows bitmaps describing the control signals sent to a DMD. While each pixel is either 
100% “on” or “off,” for any input beam that is large compared to the size of the micro-pixels, the 
net effect is a smooth, linear gradient from black to white (from left to right, from top to bottom, 
and from middle outward radially, respectively). Since, in the application described above, the 
distribution of the light energy incident on the DMD can be treated as reflective of the centroid 
position of an optically trapped particle, it follows that as the image of an optically trapped 
micro-particle moves across the DMD, the imposed gradient results in a signal at a (downstream) 
PhotoDiode that is proportional to the centroid position of the optically trapped particle. If the 
optical trap behaves like a parabolic potential well, then from Hooke’s Law we can convert from 
particle displacements to (ultrafast) optical force measurements along a particular direction 
(limited in speed only by the bandwidth of the downstream PhotoDiode, a key point, which may 
allow you to access new science). By cycling between the three gradient patterns that are shown 
in Fig. 5, one can measure force components acting along the x-, y-, and z-directions, 
respectively (at a rate limited by the response time of the DMD array). Our LightCrafter 4500 
DMD is just a fraction of the cost of the research-grade ViALUX systems, but can be updated at 
4400 Hz. (The ViALUX systems update even faster and provide more on-board memory but, as 
described above, this project merely uses the DMD to toggle between three distinct patterns.) 

https://doi.org/10.1364/OE.27.010034
https://doi.org/10.1364/OE.27.010034
https://doi.org/10.1364/OE.27.010034


 

Fig. 1. Replacing fixed optical elements with a dynamically programmable device (Jasper Display) 

Traditional optical elements can be, for a number of experiments, quite difficult to “align” and, 
for a systematic study, may need to be sequentially replaced and re-aligned — a workflow that 
can become drudgery rather quickly, unless you are very “zen.” With Digital Optics we replace 
this series of fixed optical elements with one dynamically programmable device; so, after one 
initial alignment, no further alignment will be required and, at least once you’ve completed this 
course, you’ll see that, with Digital Optics, even that initial alignment can be automatically 
optimized. Clearly, a Digital Optics device can be programmed to replace any one of a set of 
traditional optical elements (see Fig. 1), but what’s more, it can even be programmed to behave 
like a superposition of a number of different optical elements, all at once, including a wide 
variety of very expensive custom components that you would be unlikely to go out and purchase. 

Fig. 2. Digital optics devices, such as the reflective Liquid Crystal-on-Silicon 
(LCoS) above (Meadowlark Optics) are based upon an array of independently 
addressable “pixels.” Unfortunately, even when the device is turned off, this 
pixelation means that output light will be structured, in a manner that depends 
upon diffraction, due to the size of each pixel, and interference, depending upon 
the periodic spacing between pixels. The resulting effect on the output beam is 
sometimes referred to as “diffraction noise” (the topic of next week’s lab). 

https://www.jasperdisplay.com/products/edk/jd955b/
http://dx.doi.org/10.1117/12.818814


In addition to the DMD, our exploration of Digital Optics devices includes liquid-crystal-on-
silicon (LCoS) “Spatial Light Modulators” (SLMs), shown in Fig. 2, which are highly reflected 
grid-like pixelated structures with a liquid crystal solution atop the array of pixel electrodes. 
LCoS-based SLMs in our lab are driven by an 8-bit CMOS circuit, allowing you to select from 

 discrete voltage levels that can be applied to any individual pixel.  

Fig. 3. A reflective Liquid Crystal-on-Silicon (LCoS) chip includes a very large 
array of independently addressable “pixels,” of which only a few are shown: the 
mirror-like electrodes on the right side of this schematic form, in conjunction 
with the transparent ground plane at left, a capacitor. Between the plates of each 
capacitor are long, rigid-rod-like molecules with polar groups that tend to align. 
The surfaces of the device have been made either hydrophobic or hydrophilic, to 
ensure that in the absence of an applied voltage there is a default orientation. 
Applying a small voltage creates a small tilt of nearby molecules. Applying a 
somewhat larger voltage yields a somewhat larger tilt. 

Fig. 3 schematically illustrates that the voltages applied to each pixel adjusts the alignment angle 
of nearby liquid crystal molecules, sandwiched between a transparent ground plane and 
reflective electrodes. Our resulting control over the tilt of the rod-like liquid crystal molecules 
changes the local (pixel-area) refractive index for any incident light along the tilt axis (which 
we call the x-axis). After all, the degree to which electrons can slosh in response to an incident 
field depends upon how the polarization of that input field relates to the orientation of the rod-
like molecules. The spatial extent of the liquid crystal molecules is small compared to the 
wavelength of light utilized, so we can model them as narrow (1D) “wires,” usually represented 
as short straight line segments in schematic drawings, where the electronic polarizability along 
the long axis of the wire is larger than the polarizability along either orthogonal axis. Any 
atomic-scale geometry is unresolvably small, given the wavelengths of light we are working 
with, and so we are really only sensitive to the “effective medium” properties that describe 
averages over thousands of individual molecules or more. For our purposes, these effective 
medium properties are largely described by the index of refraction. The liquid crystal solution 
utilized is a transparent oil, whose viscosity limits the response time, typically to tens of Hz even 
for a reflective device (which, in comparison to a transmissive SLM requires only half the 
thickness of liquid crystal solution to achieve the same phase throw, as discussed below). 

28 = 256



Previously, in introducing birefringent materials, we considered a generic medium characterized 
by one index of refraction, , along the axis corresponding to the long direction of an “average” 
wire-like molecule in a highly oriented liquid crystal solution, …and a different index, , along 
the perpendicular axes. Such a material is said to be “uniaxial” in that only one directly is 
“different.” (By convention, the subscript on the index of refraction characterizing the other two 
directions indicates that they are “ordinary,” while the subscript on the other characterizes it as 
“extraordinary.”) 

Thus, if the orientation of the liquid crystal were adjusted such that a plane-wave input beam 
traveled along what we’ve called the extraordinary-axis, then the polarization of that input beam 
would necessarily be perpendicular to that axis, and so the index of refraction would be , 
regardless of which direction the polarization of that input beam might be rotated. So, for this 
orientation, the liquid crystal would appear to be an “isotropic” material. On the other hand, the 
SLM is constructed such that the input beam travels along one of the ordinary directions, so that 
the response will depend upon the polarization of the input beam: for a polarization that is 
transverse to the long direction of the molecule, the index of refraction remains , but a more 
general polarization direction would be analyzed by breaking it into components, where the 
polarization along the tilt direction is characterized by an index of refraction that we can tune all 
the way from  to , as the liquid crystal molecular orientation is tilted from zero to 90°. You 
should attempt some sketches in your lab notebook, to ensure that you have this concept clearly 
in hand. 

Laser fields are normally quite small in comparison to the molecular fields describing the 
electronic interaction with the ionic cores that are in close proximity, and so the sloshing we 
induce typically corresponds to only a small perturbation away from the equilibrium distribution. 
Such responses are linear, where the displacement is proportional to the laser’s electric field 
strength, and the electrons slosh at the frequency of the applied drive (i.e., the laser). Yet the 
index of refraction is defined to be the ratio of the speed of light in vacuum to the effective speed 
in the material, . In other words, a larger index of refraction corresponds to a slower 
wave speed. You also know that a simple wave travels one wavelength in one period, or . 
The fact that the frequency of the applied field is equal to the frequency of the induced 
polarization means that there are no new frequencies to consider as we move into a slower 
medium (in this linear regime). From , we conclude that as light moves into a medium 
with a slower wave speed (i.e., characterized by a larger index of refraction) it must have a 
shorter wavelength, , where  is the wavelength this beam would have in vacuum. This 
change in wavelength, in turn, changes the effective optical path length for any component of the 
input beam that is polarized along the x-axis. In other words, the SLM behaves like a wave plate 
of tunable “effective” thickness, which you may sometimes see called a variable retarder: as we 
tilt the liquid crystal molecules, we are tuning the relative phase of the ordinary and 
extraordinary components of the output beam. As you learned from your introduction to 
birefringent waveplates, such phase differences can then cause changes in the polarization state 
of the output beam. 
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Fig. 4. Your real experimental layout will differ somewhat from this schematic 

(e.g., you will primarily use reflective SLMs rather than transmissive SLMs), 
but the heart of the setup is still described as: Polarizer + SLM + Analyzer. 
Nota Bene: the x- and y-axes in this schematic are fixed by the SLM orientation, 
and normally differ significantly from the horizontal and vertical. 
[Fig. credit: Lowell McCann, UW-River Falls] 

By setting a polarizer on the input beam and then, following the SLM, an analyzer on the output 
(where, again, we refer to any polarizer placed just before a detector as an “analyzer”), we select 
the kinds of adaptive control that the SLM will have upon the beam (e.g., local control over the 
amplitude of the output beam, or local control over the phase of the output beam, or some 
combination of the two). 

Q1) Describe how to use such an SLM for phase-only modulation. That is, specify , the 
orientation of the transmission axis of the input polarizer, with respect to the extraordinary axis 
of the SLM, then specify , the orientation of the transmission axis of the analyzer with respect 
to the extraordinary axis of the SLM (or, equivalently, you could specify , the orientation of the 
transmission axis of the analyzer with respect to that of the input polarizer) [Note, however, that 
the extraordinary axis of the SLM differs quite a bit from the horizontal direction in the lab!]: 

Q2-Part i) Describe how to use such an SLM for amplitude-only modulation: 

Q2-Part ii) When your set-up is configured for amplitude-only modulation, describe changes in 
the output beam, as you vary a voltage applied to the SLM: 

a) first in terms of the evolution of the Polarization Ellipse, and  
b) then in terms of “trajectories” on the Poincaré Sphere. 

[An interactive visualization is available via the Wolfram Demonstrations Project; 
more extensive discussion of these topics may be found here;] 
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https://spie.org/publications/fg05_p07-09_polarization_ellipse
https://spie.org/publications/fg05_p10-11_poincare_sphere
http://demonstrations.wolfram.com/LightPolarizationAndStokesParameters/
https://www.fiberoptics4sale.com/blogs/wave-optics/104501958-poincare-sphere


Review: (based on Sect. 1.2 - 1.3 of the Jasper EDK model SLM user manual) 

(I) Jones Matrix & Uniaxial Crystals 

The Jones Matrix formalism is a tool in handling problems dealing with the polarization of light. 
It takes advantage of the fact that a simple  matrix can be used represent the polarization 
state of a plane wave.  

 

where  and  are complex numbers, encoding both amplitude and phase. Furthermore, the 
action upon that polarization state, by various optical components, can be simply represented by 
operating upon the input polarization state with appropriate  matrices. The resulting  
matrix represents the final status (polarization direction, amplitude, phase change) of the beam 
after passing through the optical component.  

Fig. 5. A few commonly encountered Jones matrices 

For example, let’s apply this formalism to describe an SLM where the liquid crystal molecular direction 
(characterized by ) is, at the moment, aligned with the x-axis (and the y-axis is characterized by ). 
Referring back to Fig. 4, our first step might be to be to describe the polarization of the input beam in 
terms of its components along the x- and y-axes. The normalized Jones vector for modeling the 
polarization state of the light incident upon the SLM is set, by the first polarizer, to be: 
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Optical Element Jones Matrix

Horizontal Polarizer

Vertical Polarizer

Quarter-wave plate, fast axis at ±45°

[ cos2 θ + i sin2 θ (1 − i ) sin θ cos θ
(1 − i ) sin θ cos θ sin2 θ + i cos2 θ ]

Half-wave plate, fast axis at  w.r.t. horizontalθ

[0 0
0 1]

Linear polarizer, transmission axis at  w.r.t. horizontalθ

[cos 2θ sin 2θ
sin 2θ −cos 2θ]

Quarter-wave plate, fast axis at  w.r.t. horizontalθ

1

2 [ 1 ∓i
∓i 1 ]

[ cos2 θ cos θ sin θ
cos θ sin θ sin2 θ ]

[1 0
0 0]
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[cos(β )
sin(β )]



If this input beam must traverse a total path length of  in the liquid crystal medium (which, for normal 
incidence upon a reflective SLM corresponds to twice the thickness of the liquid crystal solution), then the 
action of the SLM upon this beam is modeled by the following  matrix: 

 

The polarization of the light exiting the analyzer is then predicted to be: 

 

Note: the Jones vector that appears all the way on the right side in the equation above describes 
what we get from the first polarizer. This is then acted upon by the variable retarder (i.e., the 
SLM), and finally is acted upon by the analyzer. In other words, the operator corresponding to 
the final optical element appears furthest to the left (so that it is the final operator to act). 

We began with a normalized Jones matrix, so the square modulus of our result above is simply 
the fraction of the intensity that makes it through, which is to say the transmittance, T: 

 

SLM HW#1: Show this simplifies to: 

  

There are two special configurations that are of great importance when setting up an SLM: 

Case A:   ° and ° Case B:   ° 

In Case (A), the input polarizer and the output analyzer are orthogonal, so no light would be 
transmitted except for the retardation provided by the SLM. Thus, this configuration allows for 
amplitude modulation. On the other hand, in Case (B), the input is polarized along the 
extraordinary direction, and so tilting the liquid crystal molecules will not rotate the polarization 
(meaning that all of the light should pass through the analyzer), but tilting the liquid crystal 
molecules will still have an effect: this configuration allows for phase modulation. 

SLM HW#2: Write the expression for the transmittance for Case (A). 

SLM HW#3: Confirm for Case (B) the transmittance is one, and write the phase shift. 
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