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Introduction 

 The subject of statistical data analysis is regarded as crucial by most scientists, since 
error-free measurement is impossible in virtually all experimental sciences, natural or social. 
Experimentalists gather data with the aim of formulating a physically reasonable model to 
describe a particular phenomenon. But, given an experimental data set, how does one know 
whether it agrees with a theoretical prediction? There is no guarantee that a theory will describe 
the real situation — the basis of science is the demand that any idea be validated experimentally. 
To know whether your measurement is consistent with theory or not, you need to know whether 
the uncertainty in the measurement is smaller or larger than the discrepancy between the 
measurement and the theoretical prediction. In symbols we would say that if  denotes the 
theoretically predicted value of a given quantity, while  denotes the best experimental 
estimate, and denotes the uncertainty expected in the measurement, then the theory is 
consistent with experiment only if 

                                  (S-1) 

 The next question is how to determine  for a particular experiment and measurement 
apparatus. The candid truth is that  is often estimated from one's knowledge of the precision of 
the measuring device (sometimes this is called an “external” determination). For example in 
measuring the length of an object using a meter stick whose finest marks are 1 mm apart, one 
should attempt to make measurements to a fraction of 1 mm. Depending upon the object being 
measured, and the ability to clearly align the ruler with the object, one might estimate, for 
example, that  would be about 0.5 mm (but you might estimate something different from 
that!). You should be aware that when scientists refer to experimental error, they usually mean 
the uncertainty in their measurement, which is a measure of precision and not accuracy. With 
this in mind, we realize that the spread observed in a series of repeated measurements allows us 
to determine uncertainties based upon statistics (sometimes called an “internal” determination). 
 It is important to keep in mind the distinction between systematic and statistical 
uncertainty. Imagine that because of the humidity in Central Illinois at this time of year, the 
meter stick you are using has swelled in length by a small amount. In that case, it will 
underestimate by a corresponding amount the length of any object it is used to measure. We call 
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that sort of uncertainty systematic and try to design experiments to avoid it, because if it is 
overlooked, it will lead to an incorrect (inaccurate) result, despite a full statistical analysis which 
might give us a measure of the precision of our technique. You may end up finding some 
example of insidious systematic errors in this lab. Statistical uncertainty, on the other hand, is the 
uncertainty that is due to small random events beyond our control, that do not lead to bias in 
either direction. Statistical uncertainty can be reduced by repeating measurements, and it can be 
accurately determined from the spread of values that occur. Therefore we prefer it to systematic 
error. ;) 
 The following material is devoted mostly to determination of statistical uncertainty and 
something called the propagation of uncertainty. The theoretical results you will learn below are 
mathematically exactly true for a certain, commonly encountered type of statistical uncertainty 
(i.e., based on a Gaussian distribution). [See note at end of write-up] 

Dealing with Systematic Error  

 Generally speaking, a series of independent measurements allow us to reduce random 
errors, but independent experiments are required to gauge systematic errors. Still there are often 
simple checks that allow you to subtract offsets or drift which might otherwise be included in 
your dataset. Imagine you have been assigned to determine whether a particular radiation source 
represents a health hazard. To determine the health hazard, you might use a radiation detector 
called a Geiger counter to measure incoming high-energy particles given off by atomic nuclei as 
they undergo radioactive decay. However, if you turned on your detector, even with no source of 
radioactivity nearby, you would detect background radiation. This is because high-energy 
particles, mostly electrons and gamma rays, arrive at the earth from space every moment. These 
“cosmic rays” set off your detector, and they cannot be eliminated. In addition, there are some 
radioactive nuclei in building materials, so that the bricks and mortar of our lab building are 
emitting radiation, too! Even our bodies contain unstable 40K nuclei that contribute slightly to the 
background radiation level. This background intensity (number of counts per unit time) 
represents a source of systematic uncertainty, since it adds to any measurement of radiation we 
make in the room. We would need to subtract off this background intensity from our 
measurement of any extra intensity caused by our radioactive source. The quantity of interest, the 
source intensity, is 
  (S-2) 

where  indicates the source intensity,  the total intensity, and  the background intensity. The 
uncertainty in our measurement of  still needs to be determined. 
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Determining Statistical Uncertainty 

 It stands to reason that repeating measurements is a good way to increase the precision of 
the overall process. (You would never poll only three people to establish an approval rating for 
the President.) It turns out that from a reasonably large sample of measured values we can also 
accurately estimate the uncertainty! 
 Let’s suppose that, here, N is the number of groups reporting measurements, supplying us 
with N independently made measurements, {I1, I2, …IN}, of some quantity I, such as the 
background radiation intensity. Then the best estimate of the actual value of I is the mean (or 
average) of the N values. 
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 We also want to deduce , the uncertainty associated with this measured value. We can 
estimate this quantity from the spread of individual values of the Ii’s that occurred. It should also 
depend on how many measurements were made, but we’ll deal with that after we decide how to 
characterize the spread of values obtained. Statisticians and physicists have devised an accepted 
measure of the spread of values that occur in a distribution and call it the standard deviation, σ. It 
is defined in terms of an average of the deviation of the individual measurements from the 
average value . (If we just averaged the deviations from the mean, we would get roughly zero, 
since the measurements above and below the mean would almost cancel out. Therefore we 
average the square of the deviations, to get rid of the signs of those deviations, and take the 
square root at the end to get a measure with the right units.) The definition of σ will be 

 .  (S-4) 

Eq. (S-4) is a bit of a pain even on a calculator and it can be shown that the following expression 
is equivalent for large N, so we usually use it: 

  (S-5) 

The second term under the square root sign is just , so that part is easy to obtain. The only real 
new punching of calculator buttons is the accumulation of the sum of the squares of the Ii’s in the 
first term. 

NOTE: If N is a relatively small number, the uncertainty estimated from (S-5) is 
slightly underestimated. (After all, if N = 1, you would get σ = 0 erroneously.) To 
approximately correct for this underestimate, use  instead of N in equation S-5 
if N is less than 10 or so. 
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 One might be tempted to assume that σ is also a good estimate of . That is, if you took 
many identical data sets and used each of them to compute , one might suppose that the 
standard deviation of that set of  would be σ. That is not the case. Particularly for large N we 
will know  considerably more accurately than  ± σ. In fact you would find that if we all 
did another measurement, thereby doubling N, we would find that σ itself would not change 
appreciably, since it is just a measure of the natural spread in values resulting from our 
measuring procedure, and yet our knowledge of  would be improved. It can be shown that a 
better estimate for the error bar is the so-called standard deviation of the mean, σm, given by 
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Thus we would typically say we have determined I to be . The exact meaning of this 
statement is discussed in texts on Error Analysis, but the following interpretation is good enough 
for most purposes: there is about a 2/3 chance that the actual value of I lies in the interval 

, and a 95% chance that it is in the interval , and a 99.7% 
chance that it is in the interval , etc. In many situations scientists will choose 
caution, and would report the uncertainty, , as being larger than σm, e.g. 2σm, but context 
determines whether caution of this sort is appropriate or inappropriate. Our advice is that you let 
your audience know, explicitly, what choices you’ve made. 

Propagation of Uncertainties 

 It frequently happens in experimental science that the desired quantity depends on several 
other quantities, each of which has an associated uncertainty. In that case we need to know how 
to compute the uncertainty in the final quantity from those of the measured quantities. This 
process is called “propagation of uncertainty.” 
 This topic is treated in numerous texts, such as Experimentation: An Introduction to 
Measurement Theory and Experiment Design, by D.C. Baird or Data Reduction and Error 
Analysis for the Physical Sciences, by P.R. Bevington and D.K. Robinson. We will simply 
summarize several simple results that will be useful to you in this course. First, suppose that you 
have measured two quantities, a and b, that are added or subtracted to produce a final result. If 
we may presume that there are no correlations between the fluctuations in our measurements of 
a and the fluctuations in our measurement of b, then the best estimate of the uncertainty of the 
sum or difference is 
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Ībest Ībest
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We say that the uncertainties are added “in quadrature.” Note that if the two uncertainties are 
equal, the resultant uncertainty is larger than either one alone by a factor of . Also, if the 
uncertainty in one is less than about 1/4 of the other, its contribution to the overall 
uncertainty is negligible. 
 In other experiments, you may be multiplying or dividing two quantities. In that case, the 
relative or fractional uncertainties that are added in quadrature: 

 . (S-8) 

This implies, for example, that if  is 2.0% of a and  is 4.0% of b, then  is  

[(0.020)2 + (0.040)2]1/2, or 4.5%, of ab. 
 There are more complicated rules for other manipulations. For example, if you raise a 
measured value to a power the relative uncertainty is scaled by that power 

  (S-9) 

where it has been assumed that there is no uncertainty in n, only in a.  

Such rules can be summarized as follows: for function of two independent variables, 
: 

  (S-10) 

If z is a function of more than two variables the equation is extended by adding similar terms. 

 NOTE:  These results are mathematically exact only for Gaussian distributions. Some 
sorts of data, radioactive counting measurements for example, actually follow 
Poisson distributions, which are slightly different. However, the error introduced by 
this fact is often relatively small. 
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