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GRAPHICAL ANALYSIS

(Excerpted from “The Art of Experimental Physics,” by Preson & Dietz)

®

A purpose of many experiments is to find the
relationship between measured variables. A good
way to accomplish this task is to plot a graph of
the data and then analyze the graph. These guide-
lines should be followed in plotting your data:

1. Use a sharp pencil or pen. A broad-tipped
pencil or pen will introduce unnecessary inac-
curacies.

2. Draw your graph on a full page of graph

paper. A compressed graph will reduce the

accuracy of your graphical analysis.

Give the graph a concise title.

The dependent variable should be plotted

along the vertical () axis and the independent

variable should be plotted along the horizontal

(x) axis.

5. Label axes and include units,

6. Sclect a scale for each axis and start each axis

at zero, if possible.

Use "error bars to indicate errors in measure-

ments, for example,

7.

Data point { 1 Error range

®

Draw a smooth curve through the data points.

If the errors are random, then about one-third
of the points will not lie within their error
range of the best curve.

The microcomputer is a powerful too} for data

s

- analysis. Commercial software is available that
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handles data and instructs the microcomputer to
carry out graphical analysis. See your instructor
about the availability of this software for your
laboratory. -

As an example consider the study of the speed
of an object (dependent variable) as a function of
time (independent variable). The data are as fol-
lows:

Speed (m/s)
0.45 + 0.06
0.81 +0.06
0.91 + 0.06
1.01 4 0.06
1.36 + 0.06
1.56 + 0.06
1.65 4 0.06
1.85 1- 0.06
2.17 £ 0.06

Time (s)
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Using the above guidelines, the data are graphed
in Figure 1.7.

The graphed data show that the speed v is a
linear function of the time r. The general equation
for a straight line is

y=mx+b (22)

where m is the slope of the line and b, the vertical
intercept, is the value of y when x = 0. Let p = ¥,
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v (m/s)

FIGURE 1.7 Speed versus time. The graphed data, »
versus !, show a linear relation.

x =1, a =m, and v, = b; then,
v=at+u, (m/s) - (23)

This is the form of the equation for the line drawn
through the data, where v, is the value of the
velocity at t =0 and a is the slope of the line that
is the acceleration of the object. From the graph
we see that vy = 0.32 m/s. To determine the slope
select two points on the line, but not data points,
which are well separated, then

o done . Av 235040 (mjs)
P N T T 10.0-0.5 (s)

- 1.95 (my/s)

TR 0.20 m/s? (24)

The equation for the line is

v =0.20 +0.32 {m/s) (25)

The data plotted in Figure 1.7 are analyzed in
the section on “Curve Fitting,” page 23, as an
example of linear regression.

As a second example, let us consider the study
of the distance traveled by an object as a functxon
of time. The data are as follows:
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Distance (m)

0.20 + 0.05
0.43 +0.05
0.81 +0.05
1.57 +0.10
2.43+0.10
3.831 +£0.10
4.80 3-0.20
6.39 + 0.20

Time (s)
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The data are graphed, using the above guidelines,
in Figure L.8.

In this instance a straight line through the data
points would not be acceptable. An inspection of
the graph suggests that d is proportional to 17,
where n > 1; for example, d may be a quadratic
function of time and, hence, n = 2.

Suppose that we know the theoretical relation
between d and ¢ is

d =lat? (m) (26)

where a is the object’s acceleration. Often it is
useful to know if the data agree with the theory. If
the data follow the above theoretical relation,
then a graph of 4 versus r? should result in a
straight line.

d (m)

t(s)

FIGURE 1.8 Distance versus time. The graphed data, d
versus !, show a nonlinear relation.
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T T T T T T where p is the absorption coefficient, a constant

7 —~ that depends on the wavelength of light and the

- absorbing properties of the sample. Suppose 7 is

- measured as a function of x, and the data are

— plotted as is shown in Figure 1.11.

- From the smooth curve it would be difficult to

- determine the relationship between I and x, that

_ is, it would be difficult to conclude the data obey q

o Lambert’s law. ‘7%

. A good way to determine the experimenta N

o relationship between I and x is to use semilog M

paper. Semilog paper has a logarithmic y axis (it

automatically takes logarithms of data plotted)

and a regularly spaced x axis. The data are plot-

ted on semilog paper in Figure I.12. Note that

! there is never a zero on the logarithmic axis, and 7 -fé’sj"“_’fe
0 10 20 30 40 50 60 70 that when reading values off of a logarithmic axis ‘D“'SMS

£2(s?) you read the logarithm of the value and not the & ¢ =

FIGURE 1.9 Plotting d versus t? yields a linear relation. value, for example; log 9 and not 9. _ 7
The smooth clirve drawn through the dafais a

straight line with a negative slope and the inten.

a

. The graph in F igzure L9 indicates that d is a sity at the point on'the vertical axis intercepted' by
linear function of +* and, hence, that the data the curve is I,. Lambert’s law does agree with this
agree with the theoretical relation. The equation result as can be seen by taking the logarithm of
for the straight line is : Lambert’s law:

d=mt*+d, (m) 2N log I=log(l, e ~*¥)

=loge "+ log I,
= —ux log e + log I,
= —0.434ux + log 1, (unitless) (29)

where m is the slope and d, is the vertical inter-
cept.

PLOTTING DATA ON SEMILOG PAPER A N Y B S B (N R
100 k- -
Often the relationship between the measured vari- 90 | N
ables is not linear. For example, consider the a0
intensity of light I transmitted through a sample n
of thickness x, shown in Figure 1.10, where I, is 70 - ~
the incident intensity of the light. - I 60 i
Lambert’s law states the theoretical relation- jf) 50 L
ship between the dependent variable 7 and the ~ n
independent variable x: 40 -~ =
30 |- _
Te=Jye (W/ecm?) (28) a0
10 |- _

—f

PR
FIGURE 1.11 Light intensity versus sample thickness,
FIGURE L.10 /; is the incident light intensity, x is the showing a nonlinear relation. From the
sample thickness, and / is the transmitted graph it is not clear if the data obey Lam-
intensity. bert's law or not.

x {cm)
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FIGURE 1.12 Light intensity versus sample thickness. The linear
relation obtained on semilog paper shows that the
data obey Lambert’s law.

Again, the general equation of a straight line is EXERCISE 27

of the form:

Suppose the functional relation between the de-
y=mx+b (30) pendent variable y-and the independent variable x

is given by

Now let y =logl, m = —0.434u, and b =log I,.

Then, if log I is plotted vertically and x is plotted y=ae *+b

horizontally, the curve will be a straight line with

slope —0.434u and vertical intercept log I,. Using where a and b are nonzero constants. Explain why m“"

semilog paper, I is plotted on the logarithmic axis; a graph of y versus x on semilog paper would not
the vertical intercept on this axis is J,. Note that give a straight fine. =

-’

the slope of the line drawn through the data
points may be used to calculate u:

_A(log 1) _log 10—log 100 _ PLOTTING DATA ON LOG~LOG PAPER

= = (0,294 cm ™!
Ax  (3.80—0.40) cm 94 cm , |
(31) Log~log paper is used to obtain a straight line

plot when y and x satisfy a power-law relation:

siope

From Lambert’s law the theoretical slope is -
y =cx" (32)
slope = —0.434
where ¢ and » are constants. For example, the

By equating theoretical and experimental slopes, semimajor axis R of the orbit of a planet is related
we find that to its period (time for one revolution around the
sun) T

—~0.434y = —0.294 cm ™! .
R*=KT? or R=KPT? (33)
and
where K is a constant. R is nonlinearly related to
= +0.678 cm™! T.

(31
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FIGURE 1.13 Planets: Semimajor axis versus period. The linear relation
on log-log paper indicates R and T obey a gower law of
the form of equation 32..

A straight-line plot is obtained in the following
way. Take logarithms

log R = log(K'2T%%)
=log T%? + log KV°

=2/3log T +log XK' (34)
Let y =log R, x =log T, m =%, and b = log K'/.
Then a plot of log R versus log T would be a
straight line. Log-log graph paper automatically
takes the logarithm of the plotted data. A log—log
graph is shown in Figure 1.13.

The units used are years and astronomical
units (AU), where 1 AU is the semimajor axis of
earth’s orbit. (The errors shown in the graph are
fictitious.) The slope of the log-log plot is

_A(log R) _log 10> —log 10°

lope = -
SOPC = R(log T) ~ log 10° —log 109
2-0 2
=2=3 (35)

Note that the slope of the log-log plot is the
exponent of the power law relation. For example,
the power law relation y = cx” plotted on log—log
paper has a slope equal to n. Hence, a log—log
plot is a good way to determine the exponent in a
power law relation.

Another way to obtain a straight-line plot is to

T {years)

plot y versus x” or R versus T% on regular graph f‘!i Shonld
paper (see Figure 1.14). N Diseatss?
A problem with plotting R versus 72 is that )~ <"
values of R less than about 1 AU cannot be
plotted with much accuracy.
In units of years and astronomical units the
constant X is one, and an inspection of the curve
in the figure shows a slope of approximately one.
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FIGURE 1.14 Planets: R versus T%?, showing a lincar
relation. This graph requires knowing the
exponent in the power-law relation,



