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LAB	6:	Transmission	of	Information	
So	far,	we’ve	only	considered	electrostatics,	where	a	fixed	potential	landscape	is	
established	across	some	region,	encouraging	charge	to	flow.	We	will	soon	discuss	why	
information	is	typically	encoded,	physically	(across	a	wide	range	of	engineered	systems)	as	
voltage	levels.	In	the	case	of	(naturally	occurring)	nerve	impulses,	we	associate	
transmission	of	information	with	a	change	in	potential	that	travels	out,	much	like	a	wave	
pulse	propagating	along	a	taut	string.	In	a	neuron,	this	change	in	potential	travels	along	an	
axon	as	information	to	be	transferred	through	a	synapse	to	other	neurons	or	muscle	cells.	
For	tonight’s	lab,	it	is	important	to	note	that	a	single	neuron	can	be	a	meter	or	more	long	
(e.g.,	those	connecting	our	toes	to	our	spinal	cord).	We’re	interested	in	the	“operational	
constraints”	of	such	an	information	transmission	system.	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

Structure	and	properties	of	a	transmission	line:	
Nerve	impulses	are	electrical	signals.	Whether	you	are	
seeing	or	hearing	something,	controlling	a	muscle,	or	just	
thinking,	the	transmission	process	along	a	nerve	cell,	or	
neuron,	is	the	same:	a	sufficient	stimulus	received	by	the	
cell	body	initiates	a	change	in	potential	difference,	
which	physiologists	(people	who	study	the	physics	of	
living	systems)	call	the	action	potential.	
To	understand	the	transmission	of	an	action	potential,	we	model	the	axon	as	a	long,	thin	
cylinder,	like	a	pipe	or	cable.	The	axoplasm,	or	fluid	inside	the	axon,	contains	mobile	ions,	
making	it	something	of	a	conductor	(not	nearly	as	good	as	copper	or	anything	like	that	–	
the	resistivity	of	axoplasm	is	many	orders	of	magnitude	higher	than	that	of	any	metal,	but	it	
clearly	still	works!).	A	very	thin	membrane	encloses	the	axoplasm.	The	material	outside	the	
membrane,	the	extracellular	medium,	has	roughly	the	same	resistivity	as	the	axoplasm	
does.	It’s	sometimes	said	that	the	membrane	is	an	insulator,	but	different	kinds	of	very	
small	channels	within	the	membrane	can	allow	specific	ions	to	pass	under	particular	
conditions.	(Sounds	like	pretty	complicated	hardware	and,	like	many	computing	systems,	it	
is!	We’ll	only	highlight	a	few	key	aspects.)	The	point	is	that	although	the	resistivity	of	the	
membrane	is	higher	than	that	of	axoplasm,	the	membrane	is	far	from	a	perfect	insulator.	
When	it’s	not	carrying	an	action	potential,	the	potential	inside	the	axon,	relative	to	outside,	
is	about	-70	mV,	the	resting	potential	difference.	[In	part,	this	arises	because	the	sodium	ion	
concentration	is	higher	outside	the	axon	than	inside,	but	that’s	not	a	detail	we’ll	need.]	
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Inner	workings	of	the	action	potential:	
The	neuron’s	cell	body	integrates	incoming	electrical	
signals,	sending	the	resulting	signal	to	the	axon.	If	that	
increases	the	potential	drop	across	the	membrane	by	
more	than	about	20	mV	(from	-70	mV	to	a	threshold	of	
about	-50	mV),	then	voltage-gated	channels	open	and	
allow	sodium	ions	to	flow	into	the	axon:	this	is	the	
beginning	of	the	action	potential.	Driven	by	both	the	
concentration	gradient	and	the	potential	gradient,	Na+	
ions	continue	to	pour	in	until	the	membrane	potential	difference	changes	from	-70	mV	to	
about	+30	mV,	a	process	referred	to	as	depolarization.	Because	the	local	region	into	which	
Na+	ions	have	flowed	is	now	positive,	positive	ions	will	want	to	flow	away	from	it,	which	
forces	them	to	move	along	the	axon.	Some	of	this	electrical	current	traveling	along	the	axon	
leaks	through	the	membrane	into	the	extracellular	fluid	and	back	to	the	negative	region	
outside	the	axon	at	the	site	of	the	beginning	of	the	action	potential.	[Fig	4]	But,	if	we	look	
downstream	a	bit,	positive	ions	have	moved	along	the	axon,	and	so	the	membrane	potential	
difference	here	has	become	less	negative.	Once	the	threshold	potential	difference	is	
reached,	voltage-gated	Na+	channels	in	this	new	section	of	the	membrane	will	open,	
initiating	a	new	depolarization,	which	regenerates	the	action	potential.	In	this	way,	a	
change	in	membrane	potential	difference	travels	along	the	axon.	In	each	local	region,	it	only	
takes	a	millisecond	or	so,	after	the	start	of	the	depolarization,	for	the	voltage-gated	Na+	
channels	to	close,	and	the	resting	potential	to	be	reestablished.	In	short,	the	figure	above	is	
all	you	really	need:	Fig	4	reiterates	that	we	associate	transmission	of	information	with	a	
change	in	potential	that	travels	out,	much	like	a	wave	pulse	propagating	along	a	taut	string.	
	
Prelab:	
1.	Distinguish	between	resistance	and	resistivity.	
	
	
	
	
	
	
	
2.	Describe	an	example	of	exponential	decay	that	you’re	familiar	with.	Sketch	and	label	a	
relevant	graph.	Why	is	it	exponential	decay,	and	not	some	other	decreasing	function?	
	

(Fig	4)	Membrane	potential	
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INVESTIGATION	1:	HOW	FAR	CAN	A	POTENTIAL	DIFFERENCE	PASSIVELY	SPREAD	
ALONG	AN	AXON?	
	
In	this	lab	exercise,	you	will	apply	a	change	in	potential	difference	across	your	(model	of)	a	
membrane	at	one	end	of	a	(model	of	an)	axon,	and	then	you’ll	examine	how	small	the	
potential	difference	across	the	membrane,	∆Vmem(x),	will	become,	at	different	distances	x	
from	the	starting	point.	This	loss	in	signal	strength	is	a	key	issue.	
	
Activity	1:	Designing	a	model	circuit.	
We’ll	start	with	the	very	simplest	model	that	we	can	imagine.	If	we	find	that	our	model	is	
too	simple	to	help	us	answer	the	questions	that	we’ve	posed,	we’ll	successively	refine	it	
until	we	find	that	it’s	useful	in	the	context	of	these	questions.	
	
Let’s	say	that	the	left	end	of	the	axon	is	depolarized	–	the	inside	of	the	axon	switches	from	
negative	to	positive	–	as	in	the	start	of	an	action	potential.	We	can	model	this	by	drawing	
(in	blue,	below)	a	schematic	battery	symbol	across	the	membrane.	Since	this	is	the	
membrane	potential	difference	at	one	end	of	the	axon	(x	=	0),	we	label	it	∆Vmem(x=0).	
	

	
	
	
	
	
	
	
	
1.	If	you	were	to	complete	a	single	loop,	starting	at	the	positive	terminal	of	the	battery	and	
moving	a	bit	along	the	axon	before	allowing	for	current	to	leak	out	to	the	extracellular	fluid	
on	the	above	diagram,	show	the	path	of	conventional	current	inside	and	outside	the	axon	
(i.e.,	go	ahead	and	explicitly	make	a	drawing,	of	the	current	flowing	from	the	positive	of	the	
battery	to	the	negative	of	the	battery).	
	
Now’s	let’s	think	about	that	path:	What	circuit	element	should	we	use	to	model	each	part?	
	
2.	What	circuit	element	should	we	use	to	model	the	inside	of	the	axon	–	the	axoplasm?	
Why?	Draw	this	circuit	element	in	the	path	of	the	current	and	give	it	an	appropriate	
symbol.	
	
	
	
	
3.	What	circuit	element	should	we	use	to	model	the	membrane?	Why?	Draw	this	circuit	
element	in	the	path	of	the	current	and	give	it	an	appropriate	symbol.	
	
	
	
	

+x	0	

∆Vmem(x=0)	
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4.	Now	consider	the	outside	of	the	axon.	Since	the	extracellular	fluid	is	characterized	by	
resistivity,	we	might	model	it	as	a	resistor.	But	explain	why	the	resistance	outside	of	the	
axon	must	be	small	compared	to	the	resistance	inside	the	axon,	and	why	it’s	therefore	
reasonable	to	neglect	it.	(Hint:	Think	about	the	cross-sectional	area	through	which	current	
can	flow	outside	of	the	axon	compared	to	inside…)	
	
	
	
	
	
	
	
Hopefully,	you’ve	now	created	a	very	simple	model	of	the	flow	of	current	in	an	axon	in	
response	to	a	change	in	the	membrane	potential	difference	applied	at	one	end	of	the	axon.	
Is	it	adequate	for	our	purposes?	Remember,	we	want	to	learn	how	the	change	in	membrane	
potential	difference	varies	along	the	axon.	Our	very	simple	model	is	a	good	description	of	
the	first	short	segment	of	axon,	say	1	mm	in	length.	Let’s	imagine	a	long	axon	as	a	chain	of	
many	short	segments.	(Fig	5)	Each	segment	may	be	characterized	by	its	individual	Raxon	and	
Rmem.	
	
	
	
	
	
	
	
5.	In	the	space	below,	extend	your	diagram	in	order	to	depict	this	more	sophisticated	
model.	Show	at	least	3	segments.	Carefully	label	each	circuit	element.	Remember	to	label	
the	battery	∆Vmem(0).	Also	label	the	potential	differences	across	each	of	the	Rmem’s	as	
∆Vmem(1),	∆Vmem(2),	etc.		
	

(Fig	5)	Axon:	chain	of	many	segments	
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6.	A	typical	“unmyelinated	axon”	is	10	µm	in	diameter,	with	a	10-nm	thick	membrane.	
The	resistivity	of	axoplasm	is	around	1.0	Ω•m	(Yes,	those	really	are	the	correct	units!).	On	
the	other	hand,	we’ll	take	the	membrane	resistivity	to	be	1.0´108	Ω•m.	Calculate	values	
for	Raxon	and	Rmem	for	each	segment.	(Hint:	To	help	you	think	about	the	resistance	of	the	
membrane,	imagine	unrolling	the	membrane	flat.	What	is	the	“length”	of	this	resistor?	
What	is	its	“area”?)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
7.	Estimate	appropriate	values	for	Raxon	and	Rmem	for	each	segment	for	your	model	circuit,	
and	justify	your	choices.	(Since	the	physical	and	geometric	quantities	we	gave	you	for	a	
typical	unmyelinated	axon	are	only	approximate,	it	will	not	be	necessary	to	try	to	exactly	
match	your	calculated	values.	In	addition,	you	should	consider	whether	you	need	to	look	
for	resistors	close	to	your	calculated	values,	or	if	only	the	relative	values	of	Raxon	and	Rmem	
are	important,	or	if	perhaps	even	that	constraint	can	be	relaxed	as	we	look,	somewhat	
generically	at	the	behavior	of	this	type	of	model	circuit.)	
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Activity	2:	Qualitative	reasoning	with	your	model	circuit.	
	
Soon	you’ll	build	your	model	circuit	and	make	measurements.	But	first,	let’s	see	if	it	can	
help	us	perform	some	qualitative	reasoning,	to	enable	us	to	predict	how	the	membrane	
potential	difference	should	vary	with	distance	from	the	starting	end	of	the	axon.		
	
1.	Write	Kirchhoff’s	loop	rule	for	the	first	segment	in	your	model.	[Write	it	in	terms	of	the	
potential	difference	across	the	membrane	at	the	end	of	the	axon	∆Vmem(0),	the	potential	
difference	across	the	1	mm-length	of	axoplasm	∆Vaxon	and	the	potential	difference	across	
the	membrane	1	mm	from	the	end	∆Vmem(1)].	Use	the	equation	you	wrote	to	figure	out	how	
∆Vmem(1)	compares	with	∆Vmem(0).		
	
	
	
	
	
	
	
	
2.	Now	write	Kirchhoff’s	loop	rule	for	the	second	segment	in	your	model,	in	a	similar	way.	
How	does	∆Vmem(2)	compare	with	∆Vmem(1)?		
	
	
	
	
	
	
	
	
3.	Now	write	Kirchhoff’s	loop	rule	for	the	third	segment	in	your	model.	How	does	∆Vmem(3)	
compare	with	∆Vmem(2)?		
	
	
	
	
	
	
	
	
	
4.	What	is	the	general	trend	in	∆Vmem(x)	as	x	increases?	
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From	your	above	analysis,	it	should	be	clear	that	∆Vmem	decreases	as	you	go	further	and	
further	from	the	left	end	of	the	axon.	But	can	we	be	more	specific?	If	we	create	a	
mathematical	model	for	∆Vmem(x)	as	a	function	of	distance	from	the	left	end	of	the	axon,	
what	functional	form	would	we	expect?	As	a	reminder,	common	possibilities	include:	
	
(1)	linear	with	a	negative	slope	(rate	of	change	of	the	graph	would	be	constant),		
(2)	inverse	(the	product	of	the	x-	and	y-axes	of	the	graph	would	then	be	constant),	or	
(3)	exponential	decay	(percent	change	would	then	constant).		
	
5.	It	should	help	to	consider	the	behavior	of	∆Vmem(x)	in	the	limiting	cases.	Examine	the	
behavior	of	your	model	circuit:	As	x	approaches	0,	what	happens	to	∆Vmem(x)?	As	x	becomes	
very	large,	what	happens	to	∆Vmem(x)?	Compare	with	the	behavior	of	each	of	the	possible	
functional	forms.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
6.	Make	your	best	guess	for	the	functional	form.	Explain	any	reasoning	you	may	have.	
Sketch	the	corresponding	graph	of	∆Vmem(x)	vs.	x.		
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Activity	3:	Building	your	model	circuit	and	making	measurements.	
	
1.	It’s	time	to	explore	your	model	circuit	with	real	components	on	a	circuit	board.	
	
2.	Use	a	voltage	probe	to	measure	∆Vmem(x)	for	x	=	0	to	10,	and	record	your	data	in	Igor	Pro.	
You’ll	only	need	ONE	COLUMN,	and	you	can	begin	graphing	your	data	as	soon	as	you’ve	
entered	two	data	points.	–	Just	let	the	x-axis	be	“calculated”	(i.e.,	the	point	#).	
	
	
	
	
	
3.	Try	to	create	a	mathematical	model	for	your	data,	based	on	the	functional	form	that	you	
reasoned	out	above.	Try	one	or	more	different	possibilities	if	necessary.	When	you	achieve	
a	good	fit,	write	your	model	equation	below.	Attach	a	printout	of	your	graph.	
	
	
	
We	define	the	distance	along	the	axon	at	which	the	potential	difference	has	fallen	to	1/e	or	
0.37	of	the	initial	value	the	length	constant	of	the	axon,	denoted	by	l.		
	
	
	
	
4.	Using	your	model	equation,	determine	the	“length	constant”	of	your	model	circuit.		
	
	
	
	
5.	Compare	the	length	constant	to	the	typical	length	of	an	axon.	Can	a	change	in	the	
membrane	potential	difference	applied	at	one	end	of	a	typical	axon	make	it	all	the	way	to	
the	other	end?	Explain.		
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You’ve	shown	why	passive	transmission	of	a	change	in	membrane	potential	difference	isn’t	
feasible:	in	order	for	an	action	potential	to	still	be	detectable	after	travelling	the	full	length	
of	an	axon,	it	has	to	be	regenerated	at	regular	intervals	as	it	travels	along	the	axon.	The	
point	of	this	lab	exercise	was	to	show	why	that	is	so.	
	
Everything	that	follows	is	just	a	set	of	possible	INITIATIVES:		
	
WHAT	ADAPTATIONS	ALLOW	AN	ACTION	POTENTIAL	TO	TRAVEL	FASTER?	
How	fast	does	an	action	potential	travel	along	an	axon?	You’re	probably	aware	that	it’s	
finite	–	no	one	has	truly	instant	reflexes.	Yet,	nothing	in	the	model	that	you’ve	devised	has	
anything	to	say	about	how	fast	it	travels.	In	fact,	your	model	suggests	that	the	process	is	
nearly	instantaneous,	as	it	is	for	the	usual	resistive	circuits	that	you’ve	studied	in	here.	We	
need	to	extend	our	model	in	order	to	understand	why	it	takes	time	for	an	action	potential	
to	travel	along	an	axon.	

Let’s	take	a	closer	look	at	the	membrane	of	an	axon.	[Fig	7].	The	channels	are	the	
paths	through	which	ions	flow	(with	some	resistance).	The	equivalent	resistance	of	all	of	
these	parallel	channels	in	a	single	segment	is	Rmem.	Now	take	away	those	channels	and	what	
do	you	have	left?	An	insulating	layer	with	conducting	fluids	on	each	side.	That	should	
remind	you	of	a	familiar	device	–	a	capacitor.	The	membrane	is	therefore	properly	viewed	
as	a	resistor	and	capacitor	in	parallel.	[Fig	8]	As	current	travels	along	the	axon	and	enters	
each	new	segment,	it	takes	time	for	charge	to	build	up	on	the	capacitor,	and	thus	it	takes	
time	for	the	potential	difference	across	the	membrane	to	reach	its	final	value.	We	refer	to	
the	time	it	takes	the	membrane	potential	difference	to	reach	63%	of	its	final	value	as	the	
time	constant	t,	equal	to	the	product	of	the	resistance	and	the	capacitance	of	the	membrane	
in	a	segment.	It’s	only	after	several	time	constants	that	the	membrane	potential	differences	
reach	the	approximate	values	that	you	obtained	in	Investigation	1.		

	
	
	
	
	
	

	
	
Speed	depends	on	time	constant	and	length	constant	
	
An	action	potential’s	speed	(=distance/time)	depends	primarily	on	two	things:	
	
(1)	It’s	inversely	proportional	to	the	time	constant:	The	longer	it	takes	the	membrane	
potential	difference	to	rise	in	each	segment,	the	slower	the	action	potential	will	travel.	The	
time	constant	is	given	by	t		=	RmemC.	
	
(2)	It’s	proportional	to	the	length	constant.	The	greater	the	length	constant,	the	further	the	
depolarizing	potential	difference	reaches	down	the	axon,	bringing	successive	segments	to	
the	threshold	potential	difference	required	to	regenerate	the	action	potential	sooner.	You	
measured	the	length	constant	of	your	model	circuit	in	Investigation	1.	In	general,	the	length	

constant	l	is	proportional	to	 .	Makes	sense:	If	the	membrane	resistance	is	really	big	

 

Rmem
Raxon

	

(Fig	7)	Membrane:	magnifying	view	
	

(Fig	8)	Membrane:	RC	circuit	model	
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(or	if	the	axon	resistance	is	really	small),	current	mostly	flows	down	the	axon,	with	just	a	
little	leaking	across	the	membrane	in	each	successive	segment.			
	
You	can	probably	appreciate	that	faster	propagation	of	nerve	impulses	confers	an	
advantage	to	an	organism.	(Why?	Think	for	a	minute	and	discuss	in	your	group.)	In	this	
investigation,	we’ll	examine	some	possible	adaptations	leading	to	speedier	action	
potentials.	
	
	
Activity	1:		A	wider	axon?	
	
1.	It	should	be	apparent	that	increasing	the	diameter	of	the	axon	changes	Raxon.		
	
a.	Does	Raxon	increase	or	decrease?	Explain.	
	
	
	
	
b.	On	that	basis,	would	you	expect	the	speed	to	increase	or	decrease?	Explain.	
	
	
	
	
So	a	wider	axon	might	be	one	strategy	for	increasing	the	speed	of	an	action	potential.	We	
need	to	be	careful	to	account	for	changes	in	Rmem	though.	Let’s	carry	out	a	scaling	argument	
to	discover	exactly	how	the	speed	depends	on	the	diameter	of	the	axon.		
	
2.	Let’s	say	the	diameter	of	the	axon	is	increased	by	a	factor	of	f.	[Fig	9]	
	
	
	
	
	
	
	
	
	
	
	
a.	By	what	factor	does	Raxon	change?	(Note:	The	resistivity	of	axoplasm	is	constant,	as	is	the	
1	mm	length	of	an	axon	segment.)	
	
	
	
b.	By	what	factor	does	Rmem	change?	
	
	
	
	

d	 d*f	

t	

t	

t	

(Fig	9)	A	wider	axon	
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3.	So,	by	what	factor	does	the	length	constant	l	change?	
	
	
	
	
	
	
4.	Assuming	that	the	time	constant	doesn’t	change,	by	what	factor	does	the	speed	therefore	
change?	
	
	
	
	
	
	
	
	
5.	By	what	factor	would	the	diameter	of	the	axon	have	to	change	to	increase	the	speed	by	a	
factor	of	10?	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
This	strategy	is	found	in	the	squid,	whose	“giant”	axons	make	it	a	master	of	quick	escapes.	
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Activity	2:	A	thicker	membrane?	
	
Wider	axons	work	fine	for	a	squid,	but	are	highly	impractical	for	organisms	with	lots	of	
neurons	like	humans.	(If	each	of	your	neurons	were	the	size	of	a	squid’s,	your	head	
wouldn’t	fit	through	a	doorway.)	Let’s	explore	another	possible	way	of	increasing	the	
length	constant	and	therefore	the	speed:	To	increase	Rmem.	This	is	the	strategy	commonly	
adopted	by	vertebrates	like	us.		It’s	achieved	by	extra	insulation		(a	myelin	sheath)	that’s	
wrapped	around	the	axon.	[Fig	10]	
	
	
	
	
	
	
	
	
	
1.	Let’s	say	that	myelination	increases	the	membrane	resistance	by	a	factor	of	1000.	By	
what	factor	does	the	length	constant	increase?	Why?	
	
	
	
	
	
	
2.	Assuming	that	the	time	constant	doesn’t	change	(you’ll	provide	justification	for	this	in	
homework),	by	what	factor	does	the	speed	therefore	change?		Why?	
	
	
	
	
	
	
3.	One	issue	with	myelination	is	that	it	obstructs	the	membrane’s	voltage-gated	Na+		
channels	which	enable	the	action	potential	to	be	regenerated.	Using	your	model	results	
from	Activity	1	and	your	response	to	(1)	above,	determine	the	length	constant	in	a	typical	
myelinated	axon,	and	compare	it	with	the	typical	length	of	an	axon.	Can	a	change	in	
membrane	potential	difference	applied	at	one	end	of	a	typical	axon	make	it	to	the	other	end	
–	in	other	words,	is	passive	transmission	of	an	action	potential	possible	in	myelinated	
axons?	If	so,	explain.	If	not,	describe	the	feature	of	myleninated		axons	which	permit	the	
regeneration	of	axon	potentials.	
	

t	
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Myelin	sheath	

(Fig	10)	A	myelinated	axon	
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Final	Questions:	
	
1.	You	showed	in	Investigation	2	Activity	1	that	increasing	axon	diameter	increases	the	
length	constant.	Show	that	increasing	the	axon	diameter	has	no	effect	on	the	time	constant,	
justifying	your	conclusion	that	the	increased	length	constant	results	in	increased	speed.		
Explain	your	assumptions	and	calculations.		
	
	
	
	
	
	
	
	
	
2.	In	the	next	activity	you	showed	that	myelination	increases	the	length	constant.	Show	that	
myelination	has	no	effect	on	the	time	constant,	justifying	your	conclusion	that	the	
myelination	results	in	increased	speed.		Explain	your	assumptions	and	calculations.		
	
	
	
	
	
	
	
	
	
3.	List	three	human	functions	possible	due	to	neuronal	communication.		
	
	
	
	
	
	
4.	MS,	multiple	sclerosis,	is	a	demyelinating	disease,	which	means	the	axons	of	neurons	are	
intact,	however	the	myelin	sheaths	are	damaged.	Why	would	loss	or	damage	to	the	myelin	
sheath	be	a	problem	even	if	the	axon	was	intact?		
	
	
	
	
	
	


