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Geometric Optics 

Purpose 
The purpose of this lab is to become familiar with the simple geometric model of lenses 
and how ray tracings can be used for laying out optical instruments, such as the 
microscope and telescope. 
 

Procedure 

Part 1: Finding the focal length 
Lenses can focus light ALMOST to a point, and so (although we really do know better) 
we will often refer to the focal point as if it were a mathematical point, as in Figure 1. 
The distance along the optic axis from the center of the lens to the focal point is known 
as the focal length, f. 
 
 
 
 
 
 
          f                        f 
           (a)       (b) 

Figure 1: A lens in action. (a) A convex lens, where the image is formed on the transmission side of the 
lens and (b) A concave lens, where a virtual image is formed on the side of incidence.  

The dashed line of symmetry is called the optic axis. 
 
According to the convention we will use today, if the image is formed on the 
transmission side of the lens, we will record the focal length as a positive number. 
 
Technically, the focal length is properly found by having parallel light rays enter a lens 
and then measuring the distance to the point of greatest focus, as indicated in Figure 1. 
However, the light rays coming from our source would only (asymptotically) become 
parallel when the light source is moved infinitely far away. That said, in practice, keeping 
a small source a couple of meters away from the lens is enough to achieve the desired 
effect. So, with this goal in mind, you will work with a group across the room, using 
their light source and your lens. Turn the other group’s light on and fix your lens in 
place on the optics bench at your station. Move your observing screen, until you find the 
distance where optimal focus is achieved. Record the distance from the lens to the screen 
and then repeat this measurement ten times. The mean of these measurements is taken to 
be the focal length of your lens. Do this for the lenses labeled as having a focal length 
(for some particular wavelength of light) of 127 mm and 48 mm. (You’ll see later that 
the focal length depends on wavelength.) Your data can be recorded on the next page. 
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Reported Focal Length
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1

2

3

4

5

6

7

8

9

10

Mean Focal Length  
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Mean Focal Length  
Standard Deviation of the Mean:_________ Standard Deviation of the Mean:_________ 
 
 
 
Which has the greater % uncertainty, the longer focal length or the shorter focal length? 
 
 
 
 
Which has the greater % difference from the nominal focal length value reported on the 
lens holder? 
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Part 2: The Thin Lens Equation and Magnification 
 
The technique used in Part 1 to find the focal length is somewhat cumbersome and time-
consuming. Fortunately, there is a much simpler technique for thin lenses, which makes 
use of the so-called Thin-Lens Equation: 
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where 

€ 

do  is the distance from the object to the lens, 

€ 

di  is the distance from the image to 
the lens and f is the focal length of the lens used. To examine the validity of the thin-lens 
equation, we use the setup seen in Figure 2. 
 
      Light  
     Source    Object   Lens    Screen 
     
 

Figure 2 
 
Using a lens from part 1 and slide 9121 (crossed arrow target) as your object, set-up the 
system shown in Figure 2. Set the object distance and move the screen until the image is 
clearly focused. Record the image and object distances and then repeat this process for 
nine other object distances. You should also record the heights, both of the object (the 
arrow on the slide) and of the image formed (the arrow projected onto the screen); you’ll 
need that info in a later section of this week’s lab. Your data can be recorded below. 
 

Focal Length Object Height

Measurement Object Distance (    ) Image Distance (    ) Image Height (   )
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Is the thin-lens equation valid for your data? As before, it is often useful to cleverly plot 
your data and perform a fit that is suggested by your model (in this case Equation 1) for 
the phenomena being examined. By carefully choosing your axes, your data should 
produce a simple curve, where a parameter from the curve fit is related to the focal length 
of the lens. What should your axes be? If the thin-lens equation is correct, what type of 
curve do you expect using these axes? What should constants of your curve fit be?  
(Huge hint: It may be useful to plot the inverses of the image and object distances.  
– At this point we really shouldn’t have to give these sorts of hints anymore, should we? 
– In all future labs, you will be expected to figure out for yourselves the connection 
between the equations supplied and sorts of plots and fits that you should make.) 
 
 
 
 
 
 
 
 
 
Using your favorite graphing software, plot your data and perform the curve fit that you 
proposed above. Attach a copy of your plot and fit to the lab manual. Be sure to save your 
data for use in a later section of this week’s lab. Based upon the results found in fitting 
your data, how should you report your experimental results on the focal length of your 
lens? Show any relevant calculations and explain what you did. 
 
 
 
 
 
 
 
 
 
 
To what degree do these results agree with what you expected, based on your 
measurements from Part 1 of this lab? To what degree is your data consistent with the 
Thin-Lens Equation? If your data shows what you would argue to be significant 
disagreement with the model used, discuss why this may be. 
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You may have noticed that the size of the image was not constant. This leads us to a 
second important property of an optical system - magnification. You should construct a 
simple ray diagram and invoke the geometric rules regarding similar triangles to argue 
that the magnification should (according to this geometric model of light propagation) be 
given by Equation 2: 
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where 

€ 

do  is the distance from the object to the lens, 

€ 

di  is the distance from the image to 
the lens and M is the magnification. 
 
Let’s take a look at the magnification data that you took. Does it support Equation 2? 
(There are many ways to use scientific language in answer to that question.) Support your 
argument using your data. Be sure to include and discuss any relevant analysis. 
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Part 3: Compound Lenses 
 
So far you have examined the behavior and properties of convex lenses, which, according 
to the convention we are using today, have a positive focal length. Eventually, we will 
examine concave lenses (lenses that have a negative focal length). The (virtual) image 
formed by a single concave lens is located behind the lens, i.e. between the object and the 
lens. This is the physical meaning of the negative focal length. Because of where the 
image is formed, you can’t measure the focal length as you did earlier. However, when 
two lenses are placed close together, they form what is called a doublet lens, as seen in 
Figure 3. 
 
 
 
 
 
 
        s 

Figure 3: A doublet lens 
 
The effective focal length of a doublet lens is given by Equation 3. 
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where 

€ 

fdoublet  is the focal length of the doublet lens, 

€ 

f1 and 

€ 

f2  are the focal lengths of the 
lenses used and s is the distance between the center of the two lenses. 
 
Construct the setup seen in Figure 4. Let Lens 1 (the one closest to the object) be a 
concave lens – the (nominally) “-109 mm” focal length lens. For Lens 2, use one of the 
convex lenses from Part 1. 
 
     Light  
     Source    Object  Lens 1 Lens 2   Screen 
     
 

Figure 4 
 
What effective focal length do you expect? 
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Although the effective focal length given by Equation (3) is a really good reality check to 
perform before doing any experiment with compound lenses, keep in mind that the Thin-
Lens Formula measures all distances with respect to a fictitious plane. For your work 
with a single lens in Part 2, you naturally took this plane to be something like the middle 
of the lens, but as we start working with compound lenses, it becomes less intuitive what 
plane to measure your distances from!! If we were being really persnickety, we would 
define a plane called the “Second Principal Plane” that is located at a position relative to 
the second lens given by: 

€ 

−
fdoublets
f1

 

 
Instead, the only use we’ll make of Equation (3) is just as a VERY rough guide to get you 
started. Once you have identified (at the bottom of the previous page) a lens separation 
that will give you a reasonable focal length, and moved your imaging screen until you 
find (experimentally) the approximate location of the sharpest image, we will now 
‘restart’ our thinking about this compound lens as follows: 
 
The input to the second lens is simply the output of the first lens. So, we consider the 
"object" seen by the second lens to be the "image" created by the first lens. However, 
since our first lens is a diverging lens, it will be simplest to work backwards to find the 
effective “object” position “seen by” the converging lens and to then use this as the 
expected image position of the diverging lens. (Trust me, and read on!) 
 
The known values (besides the converging lens focal length fconv) are the coordinates, 
measured on your optical rail, of the object, the two lenses, and the image, which we 
will call xobj, xdiv, xconv, and xim, respectively: 
 
     Light  
     Source    Object  Lens 1 Lens 2   Screen 
     
 

                                                                xobj                     xdiv       xconv             xim 
Figure 5 

 
1. We first find the object distance relative to the position of the diverging lens and 

the image distance relative to the position of the converging lens: 

€ 

do div = xdiv − xobj 
 

€ 

di conv = x im − xconv  
 

2. From observed imaged distance of the converging lens, we can use the Thin-Lens 
Equation, to find the position of the effective object seen by the converging lens: 
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3. Again, the “object” seen by the converging lens is taken to be the “image” created 
by the diverging lens. So, we now know the location of the (virtual) image created 
by the diverging lens. However, before we use that in our Thin-Lens Equation, we 
need to shift our coordinates by 

€ 

s = xconv − xdiv  so that this distance is now 
measured with respect to the position of the diverging lens: 

 

€ 

di div = s− do conv  
 

4. At last, because you already knew how far the object was from the diverging lens, 
and you now know how far the effective image is from the diverging lens, you 
can immediately find an experimental estimate of the focal length of the diverging 
lens, just by plugging these two values into the Thin-Film Equation. – However, 
there is enough experimental uncertainty in identifying the location of the 
sharpest image, that it is much more accurate to instead use the “Method of 
Many Images:” namely, find a bunch of values of do div and di div and then plot 
1/di div vs. 1/do div. The y-intercept gives 1/fdiv. 

 
As before, you should take as many data points as you feel are necessary. 
 
     s       .  
 
             fconvex    . 
 
Measurement xobj xdiv xconv xim 
     
     
     
     
     
     
     
     
     
     
 
         Experimental results for fdiv:          . 
 
How do your reported experimental results compare with the nominal focal length written 
on the lens holder? What is the percent difference? 
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Part 4: Lens Errors 
 
In the previous parts of this lab, we have treated the lenses as being, in a certain sense, 
ideal. Of course, there is no such thing as an ideal lens. Consequently, it is important to 
understand some of the errors, or “aberrations,” which can arise. Today, we examine just 
one such aberration – chromatic aberration. Chromatic aberration involves the 
dependence on the focal length on the wavelength (color) of the light.  
 
You will now repeat what you did in Part 2 of the lab, but with a color filter in front of 
the lens. You will first use a red filter and then replace that with a blue filter. Record 
your data below: 
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A nice way to see the effect of this lens error to plot this data, along with your original 
data from part 2, all on the same set of axes. Do you notice anything? Are there 
differences in the observed focal lengths? What does your data suggest? 
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Initiative 

 
Possible ideas: 
 
1. If any part of the readings on optics in your text were confusing, the lab offers a 

real opportunity for you to sort things out! 
 

2. The pupil of the human eye determines the amount of light that enters the eye. 
When it is bright, it contracts, allowing less light in and when it is bright, it 
widens, allowing more light into the eye. A variable diaphragm on the optics 
bench can simulate the effect. Try blocking half of the lens with a piece of paper 
taped onto the lens holder, and report What do you think would happen to the 
image formed if you 
 

3. There are a couple of ophthalmoscopes ( http://www.yorku.ca/eye/ophthal.htm ) 
in the room and a chart on the next page that illustrates certain bodily 
impairments, such as glaucoma, diabetes and hypertension, which can be detected 
by observing the retina. You can try to use these devices on others in your group 
(trying not to blind each other in the process): 
http://www.yorku.ca/eye/retview.htm 

 
 

Conclusions 
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http://cms.revoptom.com/index.asp?ArticleType=SiteSpec&Page=osc/3146/lesson.htm 


